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Assessing Myocardial Microstructure With
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Abstract— Biophysical models are a promising means
for interpreting diffusion weighted magnetic resonance
imaging (DW-MRI) data, as they can provide estimates
of physiologically relevant parameters of microstructure
including cell size, volume fraction, or dispersion. How-
ever, their application in cardiac microstructure map-
ping (CMM) has been limited. This study proposes
seven new two-compartment models with combination of
restricted cylinder models and a diffusion tensor to rep-
resent intra- and extracellular spaces, respectively. Three
extended versions of the cylinder model are studied here:
cylinder with elliptical cross section (ECS), cylinder with
Gamma distributed radii (GDR), and cylinder with Bingham
distributed axes (BDA). The proposed models were applied
to data in two fixed mouse hearts, acquired with multiple
diffusion times, q-shells and diffusion encoding directions.
The cylinderGDR-pancake model provided the best perfor-
mance in terms of root mean squared error (RMSE) reduc-
ing it by 25% compared to diffusion tensor imaging (DTI).
The cylinderBDA-pancake model represented anatomical
findings closest as it also allows for modelling disper-
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sion. High-resolution 3D synchrotron X-ray imaging (SRI)
data from the same specimen was utilized to evaluate
the biophysical models. A novel tensor-based registra-
tion method is proposed to align SRI structure tensors
to the MR diffusion tensors. The consistency between
SRI and DW-MRI parameters demonstrates the potential of
compartment models in assessing physiologically relevant
parameters.

Index Terms— Cardiac microstructure mapping (CMM),
biophysical models, compartment modelling, diffusion
weighted MRI, synchrotron X-ray imaging.

I. INTRODUCTION

THE heart is composed of cardiomyocytes, fibroblasts,
vessels, and nerves surrounded by a supporting col-

lagen matrix. Cardiomyocytes are organised into laminar
planes known as sheetlets separated by small cleft-like
spaces (Fig. 1) [1]. Within each sheetlet, cardiomyocytes
are locally-aligned where the cardiomyocyte orientation is
defined in the direction of their long axes. The cardiomyocyte
direction varies transmurally from a left-handed helix at the
subepicardium to right-handed helix at subendocardium. This
helical microstructure has a fundamental influence on the
electro-mechanical functionality of the heart [1]–[3]. Dysreg-
ulation of this structure is a key determinant of heart failure
[4]–[6]. This central role of myocardial microstructure has
motivated the development of non-invasive imaging techniques
to visualise and quantify cardiac micro-architectural properties
known as cardiac microstructure mapping (CMM).

Diffusion weighted Magnetic Resonance Imaging
(DW-MRI) is a valuable non-invasive method for probing com-
plex structures in biological tissues [7], [8]. DW-MRI recon-
struction can be broadly divided in two categories [9], [10]:
signal representations and biophysical models. Diffusion
tensor imaging (DTI) is the most commonly used technique
in the first category [7], [11]. In DTI, the principal eigenvectors
reflect the orientation of cardiomyocytes and sheetlets, and
macroscopic diffusion metrics indicate the underlying tissue
integrity. DTI parameters, despite being sensitive to the
underlying microstructure, remain an indirect characterisation
of tissue-specific properties such as cardiomyocyte diameter
and volume fraction.

The ability to map cellular-level biophysical parameters
has the potential to significantly benefit clinical applica-
tions [14]. This objective cannot be achieved using signal
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Fig. 1. Proposed CMM Pipeline. Diffusion signal from each voxel is modelled as a linear combination of signals from two compartments representing
the intra- and extracellular space, respectively. To model signal from aggregation of cardiomyocytes in each voxel, the standard cylinder model [12]
was extended such that each cylinder axis is drawn from a Bingham distribution [13]. Hindered diffusion from the extracellular space is modelled
with a single diffusion tensor. Estimated biophysical parameters are then validated against information from SRI data that provides ≈ 85 times better
spatial resolution with respect to the DW-MRI. Vessels and the extracellular space are coloured in red and blue, respectively.

representation techniques including DTI, diffusion kurtosis
imaging (DKI) [6], or diffusion spectrum imaging (DSI)
[15], [16]. Biophysical models, on the other hand, can poten-
tially provide direct estimations of specific tissue features such
as cell orientation, dispersion, diameter, and volume, which
are of physiological/biomedical relevance. In this approach,
the underlying tissue environment is represented by a combi-
nation of basic geometrical compartments with known analytic
expressions for diffusion signals. The model parameters are
then estimated by comparing the empirical signal measure-
ments against those predicted from the model [14].

Biophysical models are increasingly used in the brain [10],
[17], [18]. However, their application to cardiac MRI has been
scant. Hsu et al. [19] proposed a two-compartment model to
account for non-mono-exponential diffusion signal decay at
high b-values. The first component with fast diffusion was
attributed to the capillary network or interstitial space, and
the second component with slow diffusion was associated
with the intracellular space. In another study, Kim et al. [12]
proposed a two-compartment model where the intra- and
extracellular space were represented by impermeable cylinders
and unrestricted isotropic tensors, respectively.

Despite the merits of these models, they have failed to yield
realistic parameters in agreement with reported physiological
ranges [20], [21] or fit the diffusion signal sufficiently well.
Previous studies were also restricted in the DW acquisition
scheme. In [12], the gradient strength was fixed and data
were collected at different diffusion times. Conversely, in [19],
the diffusion time was fixed and data were collected at
different b-values. In brain microstructure mapping, it has been
shown that estimating cell sizes and shapes requires diffusion
information with multiple q-shells and diffusion times [22].

To address these limitations, this paper focuses on three
aspects. First, a range of novel biophysical models tai-
lored to cardiac applications were developed and evaluated
in the preclinical setting to quantify cardiomyocyte size,

orientation, dispersion, and volume fraction. The contribution
of the total DW-MRI signal is modelled by two separate
non-exchanging compartments attributed to water molecules
inside the cardiomyocytes and the interstitial space between
them. This framework is built on our previous work where
a cylinder model with elliptical cross section (ECS) was
introduced to model intracellular diffusion signal from car-
diomyocytes [23]. Here two more extended versions of the
standard cylinder model are studied: cylinder with Gamma
distributed radii (GDR) and cylinder with Bingham distributed
axes (BDA). The models are compared against each other to
identify which one captures the diffusion signal best and, at the
same time, provides a plausible and accurate estimation of
desired biophysical parameters. Second, to facilitate parameter
estimation for biophysical models, new acquisition schemes
were investigated that collect multi-diffusion-time, multi-shell,
and multi-direction data. We show that previous acquisitions
schemes that only acquired a single shell with different diffu-
sion times, or multiple shells but with a single diffusion time
are insufficient. Third, synchrotron X-ray imaging (SRI) was
used to provide independent gold-standard measurements of
the tissue microstructure at a spatial resolution far higher than
available in MRI (section II-B; [24]).

II. METHODS

Fig. 1 shows the proposed framework for CMM.
Section II-A describes the biophysical models. In section II-B,
microstructure parameter estimation using the SRI dataset
is demonstrated. Finally, section II-C describes the sample
acquisition protocols for both MRI and SRI.

A. Theory

The total normalised MR signal S is modelled as a linear
combination of signals from the intracellular (IC) and extra-
cellular (EC) space:

S = vICSIC + vECSEC, (1)
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Fig. 2. Intracellular and Extracellular Compartments. To model restricted diffusion inside cardiomyocytes, four cylinder models were utilised. From
left to right, the standard model [12], cylinders with ECS [23], cylinders with GDR [25], and cylinders with BDA are shown, respectively. To model
hindered diffusion in the extracellular space, an isotropic tensor (ball) with d1 = d2 = d3 and an oblate tensor (pancake) with d1 = d2 ≥ d3 were
utilised, where d1, d2, and d3 are the primary, secondary, and tertiary diffusion eigenvalues.

where {vIC, vEC} ∈ [0, 1] are volume fractions for each
compartment and vIC + vEC = 1. Here, the interstitial space
and vascular components are lumped into one effective com-
partment similar to Hsu et al. [19], Kim et al. [12].

Hindered diffusion of water molecules in the extracellular
space is modelled using a symmetric diffusion tensor D. The
normalised signal is

SEC = exp[−b ĝ D ĝ], (2)

where b = γ 2δ2(� − δ/3)|g|2 for the PGSE sequence, � is
the diffusion time, δ is the diffusion gradient duration, γ is the
gyromagnetic ratio, and |g| and ĝ are the gradient magnitude
and direction, respectively. Two different tensor models with
isotropic diffusivity (ball) and oblate anisotropy (pancake)
were studied here. (Fig. 2).

To model restricted diffusion in cardiomyocytes, four
cylinder models were investigated: the standard cylin-
der [12], cylinder-ECS [23], cylinder-GDR [25], and
cylinder-BDA (Fig. 2).

The signal model for the standard cylinder Scyl is presented
in Appendix A (Eq. 21). Similarly for the cylinder-ECS,
the signal model is represented by the product of signals
parallel to the cylinder axis û1 and perpendicular to it along
the second (û2) and third (û3) diffusion eigenvectors:

Scyl-ECS = s0 exp −L‖(d‖)
[

gT û1

]2

× exp −L⊥(rl , d‖)
[

gT û2

]2

× exp −L⊥(rs , d‖)
[

gT û3

]2
, (3)

where s0 is the signal at b-value equals zero, d‖ is the
diffusivity along the cylinder axis û1, and rl and rs are
the major and minor radii along û2 and û3, respectively.
The functions L‖ (Eq. 22) and L⊥ (Eq. 23) are defined in
Appendix A.

Instead of a fixed cylinder radius r in the cylinder-GDR
model, each r is drawn from a Gamma distribution � [25].

P�(r; κ, ν) = rκ−1 exp[−r/ν]
�(κ)νκ

, (4)

where κ > 0 is the shape parameter, and ν > 0 is the scale
parameter. The signal from the cardiomyocytes with GDR is
then computed as the signal from a cylinder weighted by the

Gamma distribution function:
Scyl-GDR = s0

∫ ∞

r=0
P�(r; κ, ν)Scyl(r; n̂, d‖)dr. (5)

Given a typical voxel size of ∼ 200 µm in our DW-
MRI, each voxel may include a few hundreds of myocytes.
While these myocytes are locally aligned within sheetlets,
they demonstrated non-linear undulation in the corresponding
SRI data (supplementary Figure 1). Given micro-structure
tensors within each corresponding MRI voxel, a distribution
of the preferred directions along the tertiary eigenvectors can
be estimated using a Bingham distribution. To model this
dispersion, a new cylinder model with BDA is proposed here.
Use of sticks (cylinders with r = 0) with BDA has previously
been investigated in neuro-microstructure mapping [26], [27].
Here, the idea is generalised for cylinders with r > 0.

The probability density of an orientation about the mean
cylinder axes n̂ is modelled by a Bingham distribution [13] in
terms of a symmetric 3 × 3 matrix B,

PB(n̂; B) = 1F1(
1

2
,

3

2
, B)−1 exp(n̂T Bn̂), (6)

where the normalising constant 1F1(.) is the hypergeometric
function of the first kind with a matrix argument defined as

1F1(
1

2
,

3

2
, B) =

∫
S2

exp(n̂T Bn̂)d n̂. (7)

Note that the integration is over the unit sphere surface
denoted by S

2 := {(x, y, z) : x2 + y2 + z2 = 1} in the standard
Cartesian space.

This extension enables quantification of cell dispersion
(Fig. 3). The signal from the cardiomyocytes is then computed
as the signal from a cylinder weighted by the Bingham
orientation distribution function:

Scyl-BDA =
∫

S2
PB(n̂; B)Scyl(n̂; d‖, r)d n̂. (8)

The symmetric parameter matrix B can be represented in
the diagonalised form

B = [
û1 û2 û3

]⎡
⎣ κ1 0 0

0 κ2 0
0 0 κ3

⎤
⎦[

û1 û2 û3
]T

, (9)

where U = [
û1 û2 û3

]
is an orthonormal frame, and

κ1, κ2, and κ3 are shape parameters. Note that the Bing-
ham distribution has a degeneracy in specification of shape
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Fig. 3. Illustration of a set of Bingham distributions with the same orthonormal frame U = I3×3 and different concentration parameters κ1 = 0, κ2,

and κ3. For each point p = �x,y,z�T on the surface of the graphs, the distance from the centre, i.e., ‖p‖�2 =
√

x2 + y2 + z2, represents the probability
of observing a direction along p̂ = p/‖p‖�2 , i.e., cPB(p̂; B), where the constant c is selected such that the maximum distance is set to eight in all
plots for ease of visual demonstration. Note that the larger the distance is from the centre, the higher is the probability along that direction. (a) When
κ1 = κ2 = κ3 = 0, all directions are equally probable to be selected from the Bingham distribution. (b) For positive values κ2 = κ3 = 4, directions
concentrated around û� = x̂ are more likely to be selected. When κ2 = κ3, the distribution is cylindrically symmetric and reduces to a Watson
distribution. (c) Increasing κ2 = κ3 = 16 decreases the dispersion around û1. (d) When κ2 	= κ3, dispersion around û1 is no longer isotropic.

parameters κ [13]. To address this degeneracy, we assume
κ1 = 0. Parameters κ2 and κ3 control the degree of dispersion
around û1. The larger the κ , the more concentrated the dis-
tribution is. Note that κ2 = κ3 models an isotropic dispersion
around the axis û1 which is equivalent to a Watson distribution
(Fig. 3). For anisotropic dispersion (κ2 	= κ3), we further
assume that κ3 ≥ κ2 to make sure the diffusivity along û3
is smaller or equal to the diffusivity along û2.

Estimating κ2 and κ3, the angular dispersion about the
primary axis in the sheetlet plane, i.e. the plane perpendicular
to û3, and sheetlet-normal plane, i.e. the plane perpendicular
to û2, are computed as

α2 = tan−1(1/κ2), (10)

α3 = tan−1(1/κ3). (11)

1) Tissue Models: Each tissue model is named after its
constituent compartments. For example, Cylinder-Ball is a
two-compartment model where the intracellular space is mod-
elled using the standard cylinder and the extracellular space is
modelled with a ball. In total, eight different two-compartment
models can be constructed by combining each of the four
cylinder models with either a ball or a pancake, out of which
seven models are new while one has previously been proposed
by Kim et al. [12] (Fig. 2). Including two models previously
proposed by Hsu et al. [19] and McClymont et al. [23], ten
different compartment models were investigated (Table II).

In all tissue models, the primary cylinder axis is enforced to
be parallel with the primary diffusion eigenvector. The intra-
cellular diffusivity dI C along the cylinder axis is constrained
between 0.5 and 1.8µm2/ms [28]. The extracellular diffusivity
dEC along the primary diffusion eigenvector is constrained

between 2.0 and 3.0µm2/ms [28]. The cylinder radius was
constrained between 1 and 20 µm [20].

2) Model Fitting: To estimate the model parameters,
the model is fitted to data by minimising the following cost
function:

J =
M∑

m=1

[
S̃m(δ,�, g) − Sm(δ,�, g, p)

]2
, (12)

where M is the total number of measurements, S̃m is the mth

measurement, Sm is the corresponding predicted signal from
the model (Eq. 1), and vector p includes the free parameters
for each tissue model.

To enforce constraints on model parameters, the method of
substitution is applied similar to [25]. In this method, each
constrained variable is substituted with an appropriate trans-
formation of a corresponding unconstrained variable into the
objective function to create an unconstrained composite cost
function. A Levenberg-Marquardt algorithm was employed to
solve the unconstrained non-linear optimisation problem. All
experiments were conducted using an in-house Matlab toolkit
developed for compartment modelling.

B. Biophysical Parameter Estimation Using SRI

SRI data were acquired with effective pixel size of 1.1 µm
and then downsampled with a factor of two giving effective
pixel size of 2.2 µm. First, the 3D structure of the samples
were reconstructed from the acquired projections. Second,
structure tenors were computed using quadrature filters. Third,
SRI reconstructed scans were rigidly registered with DW-MRI
scans such that structure tensors were aligned with diffusion
tensors. Finally, biophysical parameters were quantified and
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then averaged over the SRI domain corresponding to each
DW-MRI voxel. Here, cardiomyocyte orientation and volume
fractions were quantified using structure tensors and manual
segmentation masks, respectively.

1) Image Reconstruction: SRI can provide 3D information
on the inner microstructure of a sample when performed in
tomographic mode. For tomographic SRI, 2D projections are
acquired at different viewing angles of a rotating sample
and combined together with a tomographic reconstruction
algorithm to obtain a 3D volume. As a first step, the 2D
projections P were corrected for the detector dark current
(dark correction, D) and the empty-beam profile without the
sample in the beam (flat-field correction, F):

Pc = Pr − D

F − D
, (13)

where Pc and Pr are calibrated and raw projection data,
respectively. Next, the data was rearranged into 2D sinograms
by grouping the signal for each row of the projection data
across all different rotation angles. Second, the centre of
rotation was corrected by a translation of 20 pixels to the right
along the x-axis [29]. Third, Raven filter Hr (u, v) [30] was
applied to remove ring artefacts [31]. Raven filter is a hori-
zontal notch filter to reject vertical lines from the sinogram:

H (u, v) =
⎧⎨
⎩

1

1 + ( u
u0

)2n
if |v| ≤ v0

1 otherwise
(14)

where u and v are the spatial frequencies. The parameters
were set as u0 = 30, v0 = 2, and n = 4. Fourth, to enhance
soft-tissue contrast, each 2D sinogram was smoothed with
a Gaussian filter with σ = 1.5 and then passed through a
logarithmic function f (x) = 1000 log(x). Finally, a filtered
back-projection algorithm [32] was applied to reconstruct
the 3D volume from the sinograms. All parameters were
heuristically set by visual optimisation of image sharpness
and contrast.

2) Structure Tensor Analysis: Structure tensors (STs) were
computed based on grey level intensity gradients in the recon-
structed SRI scans using the method of quadrature filters [24],
[33], [34]. A quadrature filter with an orientation vector n̂k ,
bandwidth B , and centre frequency fc can be defined in the
Fourier domain as:

Fk(u) =

⎧⎪⎨
⎪⎩

e
−4

B2 log 2
log(‖u‖2/ fc) (uT n̂k)

2

‖u‖2
2

if uT n̂k > 0,

0 otherwise.
(15)

For quadrature filters to be invariant to the rotation of axes,
the orientation of each filter should be uniformly distributed
on a diametrically symmetric regular polyhedron [33], [34].
Following filtering the reconstructed SRI image with quadra-
ture filters Fk , the filtered images qk are used to compute the
structure tensor T as

T =
6∑

k=1

qk

[
5

4
n̂k n̂T

k − 1

4
I3×3

]
, (16)

where I is the identity tensor.

The quadrature filtering was performed in the spatial domain
using freely available Matlab code [35]. Note that the role
of fc is analogous to the diffusion time (�) in DW-MRI;
both parameters influence the size of local environment that
contributes to the structure tensor/diffusion tensor. In DW-
MRI, diffusion time is proportional to the root mean squared
displacement of water molecules in tissues, whereas in SRI,
the centre frequency should be chosen relative to the structure
size of interest.

3) Image Registration: Unlike 2D histological methods that
are destructive and prone to distortions, SRI analysis can be
performed on the same samples prepared for MRI acquisition
without further changes. Since samples are embedded in
tubes filled with agarose gel, distortion artefacts are minimal,
and a rigid transform is sufficient to map SRI data to the
DW-MRI scans. However, finding the optimal transform is still
challenging for two reasons. Firstly, grey level values in SRI
data are not directly proportional to intensity values measured
in DW-MRI. Secondly, a single voxel in DW-MRI represents
a volume of ≈ 1873 voxels in SRI. Therefore, mesh-based
methods with binary masks have limited accuracy (Fig. 5).

To address these challenges, a new registration method
based on aligning tensor fields is proposed as follows. First,
to account for the difference in voxel width w between MRI
and SRI scans, the structure tensor S is smoothed with a 3D
Gaussian filter with σ = 1

2
wmri
wsri

. Next, given an estimate of the
rotation matrix R and the translation vector t , the structure
tensor S is warped to the MRI domain in two steps. Firstly,
each structure tensor element si j is transformed using a linear
interpolation.

s′
i j (x) = si j (Rx + t), (17)

where x represent the coordinates in the DW-MRI domain.
Secondly, the full element-wise warped tensor S′ is rotated to
account for the rotation of the frame.

S′′ = RS′. (18)

Given the warped structure tensor S′′ and diffusion tensor
D, the cost function Jreg is computed as

Jreg = 1 − 1

3|
|
3∑

i=1

∑
x∈


|uT
i (x)v(i)(x)|, (19)

where ui are the eigenvectors of diffusion tensor D, v(i)

are the corresponding eigenvectors of the warped structure
tensor S′′, and 
 is the selected ROI on the MRI frame
over which the cost function is calculated. It has been shown
in [24] that the primary, secondary, and tertiary diffusion
eigenvectors correspond to the tertiary, secondary, and primary
structure tensor eigenvectors, respectively. Note that Jreg is
between zero and one where zero means a perfect registration.
A gradient descent technique is used to minimise Jreg with
respect to the rotation matrix R and translation vector t.

4) Segmentation: A stack of 1002×1002×150 voxels from
the reconstructed SRI images were segmented manually into
three clusters including vessels, cardiomyocytes, and the extra-
cellular space using ITK-SNAP [36]. Based on the manual
annotations, the grey-value intensity profiles for each cluster
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were estimated by a Gaussian distribution. A Gaussian mixture
model is then fitted to the SRI data at each corresponding
DW-MRI voxel. Estimated weights for each cluster yield the
volume fraction for each compartment.

To quantitate cell geometry, eight individual cardiomyocytes
were manually segmented from the mid-ventricle wall (sup-
plementary Figure 2). The mean and standard deviation (SD)
for cell radius were reported in Table II.

C. Data Acquisition

1) Sample Preparation: Sample preparation was performed
as described previously [28]. In brief, two hearts were excised
from healthy mice, and perfused in constant pressure Lan-
gendorff mode at 80 mmHg with modified Krebs-Henseleit
solution and cardioplegically arrested with STH-2 buffer. The
hearts were then perfused via an aortic cannula at constant flow
with 4% paraformaldehyde (PFA) and subsequently with 1%
PFA. The hearts were immersed in 1% PFA and stored at 4 ◦C
to continue fixation. Prior to imaging, the hearts were rinsed
of fixative via immersion in phosphate-buffered saline (PBS)
and perfusion of PBS by aortic cannula. The hearts were then
embedded in 2% agarose-PBS gel (Web Scientific, Crewe,
UK) to minimise sample motion for MRI and subsequent syn-
chrotron imaging. All experimental investigations conformed
to the UK Home Office guidance on the Operations of Animals
(Scientific Procedures) Act 1986 and were approved by the
University of Oxford ethical review board.

2) Diffusion-Weighted MR Imaging: MRI was performed
on a 9.4 T preclinical MR scanner (Agilent, CA, USA)
with shielded gradients (max gradient strength = 1T/m,
rise time = 130 µs) and a quadrature-driven birdcage coil
(Rapid Biomedical, Rimpar, Germany) of inner diameter =
20 mm. Images were acquired using a DW fast spin echo
sequence with six gradient strengths and five diffusion times
(� = 10, . . . , 50 ms), and ten diffusion-encoding directions.
One non-DW image was also acquired for each diffusion
time, bringing the total number of images to 305. Imaging
parameters: resolution = 187.5 µm isotropic, field-of-view =
9 × 9 × 5 mm, echo train length = 8, echo spacing =
3.4 ms, diffusion gradient duration δ = 2.5 ms, and maximum
b-value = 2500s/mm2. The total acquisition time for MR
imaging was 37 h for each mouse heart.

To improve the signal-to-noise ratio (SNR), dynamic
receiver gain adjustment was used [28], and a lowpass But-
terworth filter of order n = 4 with normalised cutoff fre-
quency of 1/3 was applied. Similar to [12], different echo
times (TE) were used for each diffusion time. To compensate
for this variable TE, diffusion signals were normalised to
the corresponding s0, i.e. signal measured at b = 0, for
each diffusion time. To segment cardiac tissue, the image
collected with � = 10 ms was used. Two features including
apparent diffusion coefficient (ADC) and s0 were extracted
for each voxel. K-means clustering was used to automatically
segment the cardiac tissue. Using morphological operations,
small regions with less than 500 voxels were excluded.

3) Synchrotron X-Ray Imaging: SRI data were acquired
at beamline I13-2 imaging branch of the Diamond Light
Source (Didcot, UK) [37]. In-line phase-contrast imaging

and tomography were performed using monochromatic X-rays
(20-30 keV). For each full heart, a single region-of-interest
(ROI) in the apical LV myocardium was imaged with an
effective isotropic pixel size of 1.1 µm. We acquired 2401 pro-
jection scans (exposure time of ≈ 1.2 s) with uniform angular
spacing over 180 degrees of sample rotation. To correct for the
detector dark current, twenty projections were collected when
the X-ray beam was blocked. For flat-field correction, twenty
projections were collected without the sample in the beam.
The total acquisition time was 1 h 25min. See our previous
work for more details [24].

III. EXPERIMENTS AND RESULTS

A. Comparison Between Biophysical Models

1) Quality of Fit: For quantitative evaluation, the average
Akaike information criterion (AIC) is reported in Table II.
AIC rewards models that minimise the root mean squared
error (RMSE) but also penalises for an increase in the number
of free parameters.

AIC = 2n − 2 ln(L̂), (20)

where L̂ is the maximum value of the likelihood function for
the model and n is the number of estimated model parameters.
Note that a lower value (signed) of AIC suggests a better
model.

To reflect the overall fitting performance across the
myocardium, the distribution of RMSE in one cross-section
in the short-axis orientation are visualised using heat-maps
(supplementary Figure 3). An overall reduction of 16.0%,
18.9%, 30.6%, and 16.6% in RMSE compared to a single dif-
fusion tensor was observed for cylinder-pancake, cylinderECS-
pancake, cylinderGDR-pancake, and cylinderBDA-pancake
models, respectively (box plot in supplementary Figure 3).
To assess the variation of signal residuals along all diffusion
directions, Bland-Altman plots are presented in supplementary
Figure 4. Unlike DTI, all presented models were unbiased
estimators for the collected DW-MR signals. Fitting perfor-
mance varied between different diffusion directions. Supple-
mentary Figure 5 shows the measured DW-MRI signal and
the synthesised signal from the proposed biophysical models
in a single voxel along the primary, secondary, and tertiary
diffusion eigenvectors. Results are only presented for the
proposed models with enhanced fitting performance compared
to DTI.

2) Sheetlet and Cardiomyocyte Orientation: The orientations
of diffusion eigenvectors are known to reflect the spatial
arrangement of the cardiac microstructure. The primary, sec-
ondary and tertiary eigenvectors correspond to the long axes
of cardiomyocytes, the sheetlet and the sheetlet-normal direc-
tions, respectively. To compare the angular variability along
each direction between the proposed biophysical models,
the coupled angles θi j = arctan(vi .u j )/(vi .ui ) were computed
where ui is the i th DTI eigenvector and vi is the i th principal
diffusion direction estimated from the biophysical models
(Fig. 4). Table I shows the average and standard deviation
of each coupled angles. The average values demonstrate a
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TABLE I
AVERAGE (STD) OF COUPLED ANGLES ABOUT DTI EIGENVECTORS [DEGREE]

Fig. 4. Coupled Angles Demonstration. Given the reference orthonormal
basis of eigenvectors u1, u2, and u3, the angular variability of estimated
eigenvector vi about ui can be measured in terms of six coupled angles
θij, i.e. the clockwise rotation from ui to vi projected on ui − uj plane.

bias in estimation of the orientations and the standard devi-
ations represent the dispersion error, i.e. the radii of green
ovals in Fig. 4.

3) Biophysical Parameters: Table II shows the average intra-
cellular volume fraction v I C , cardiomyocyte radius r , aver-
age dispersion in the sheetlet plane α2 = arctan(1/κ2) and
sheetlet-normal plane α3 = arctan(1/κ3), and diffusivity along
the cardiomyocyte direction in the intracellular (d‖

I C ) and
extracellular (d‖

EC ) space. To avoid partial volume effects,
values were reported on the left mid-ventricular wall.

4) Effects of Vascular Component: To investigate the impact
of large vessels on estimated biophysical parameters, DW-MRI
voxels were grouped in two groups based on the estimated
volume fraction of vessels in the corresponding SRI voxels.
Group one comprises voxels with less than 1% vascular
component, whereas group two comprises voxels with over
5% vascular component. Table III compares the cardiomy-
ocyte radius r and the fractional anisotropy (FA) in the
extracellular compartment between two groups. No statistical
difference was observed between two groups for the cell radius
confirming that grouping the interstitial space and vascular
components does not affect the biophysical parameter estima-
tion. However, estimated FA for the extracellular compartment
was found to be significantly lower for the second group

Fig. 5. SRI-MRI registration for one sample heart. The top row shows
results for the optimum rigid space warp and the bottom row shows
the same warp but with 70 μm translation along the x-axis. (a,c) The
region with perfect overlay between MRI and SRI is coded with the green
colour. The red and blue regions shows the mismatched regions between
two masks. The Dice similarity metric is 0.84 for both experiments.
(b, d) Variation in helical angle between DW-MRI and SRI scans are
reported. Tensor fields, unlike binary masks, are sensitive to small
changes in the warping transform.

(p-val<0.001). This finding is consistent with our expectation
of almost free diffusion in large vessels.

B. Diffusion MRI Acquisition Scheme

To investigate the effectiveness of different diffusion acqui-
sition schemes [12], [19] for estimation of biophysical para-
meters, we used (i) multi-shell diffusion data at a single
diffusion time similar to [19], and (ii) fixed b-value and multi-
diffusion-time data similar to [12]. The effect of acquisition
schemes on estimation of cardiomyocyte radius and intracel-
lular volume fraction are reported in Table IV and Table V,
respectively. Multi-shell data acquisition was essential to
observe the non-mono-exponential signal decay and estimate
the intracellular volume fraction accurately (Table IV). Acquir-
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Fig. 6. Estimated volume fractions for vessels, intra- and extracellular space from registered SRI scans. (a) One cross-section of the heart in
short-axis orientation using high-resolution SRI data. The overlaid red squares represent DW-MRI voxels. Due to the heart curvature and limited
MRI voxel size, the average of SRI binary masks within each red square is less than one at the myocardium boundaries. This effect is referred to
as partial volume effect and is shown in panel b. Volume fractions for the intra- and extracellular space, and vessels excluding the partial volume
effect are shown in panels (c), (d), and (e), respectively. Note that one quadrant of the heart was selected for manual annotation due to extensive
manual labour required. Large vessels are mostly observed near the epicardium. The interstitial gaps between sheetlets appear to be larger near
the subendocardium leading to a lower intracellular volume fraction.

ing data with multi-diffusion-time was essential for accurate
estimation of cardiomyocyte radius (Table V).

C. SRI Microstructure Estimation

1) Registration: To compute structure tensors, parameters
for quadrature filters were set as follows: centre frequency
f0 = π/3, bandwidth B = 2 octave, and spatial filter size
w = 11. Fig. 5(a) shows the overlay of SRI binary mask on
the DW-MRI binary mask following the image registration.
Fig. 5(b) shows the variation in helix angles on the same slice.
Figs. 5(c) and 5(d) demonstrate the effects of small changes
in the warping transform on the maps; translating the SRI
image by 70 µm along the x-axis, i.e. less than a voxel in the
DW-MRI frame, does not change the overlap between the two
binary masks (Dice metric = 0.84) but imposes a distinct bias
in estimation of the helix angle.

2) Segmentation: Fig. 1 shows segmentation results in xy,
xz, and yz planes for three slices within one DW-MRI voxel.
Fig. 6 shows maps for partial volume effect, and volume
fractions for cardiomyocytes, extracellular space and vessels
based on manual segmentation in one slab corresponding to a
quadrature of a DW-MRI slice.

3) Comparison Between SRI and DW-MRI: Cardiomyocyte
and sheetlet orientation were quantified by averaging struc-
ture tensors in the corresponding DW-MRI voxels. Excellent
agreement was observed between the diffusion eigenvectors
v1, v2, and v3 and the structure tensor eigenvectors u3, u2, u1,
respectively. The average (STD) of coupled angles about SRI
eigenvectors in degree were 0.5(9.4), −0.5(4.8), −0.7(9.8),
2.3(15.9), 0.8(5.6), and −2.3(15.7) for θ12, θ13, θ21, θ23, θ31,
and θ32, respectively. Computing the coupled angles between
compartment models and SRI yielded similar results to Table. I
and are not shown here.

Fig. 7 shows Bland-Altman plots to compare intra-
cellular volume fractions estimated from the SRI scans

against the figures measured by each of the compartment
models. The Bland-Altman plots showed a small bias of
1.5% for the cylinderGDR-pancake model and a moderate
bias of 7.1%, 7.8%, and 6.7% for the cylinder-pancake,
cylinderECS-pancake, and cylinderBDA-pancake models,
respectively. However, the non-zero slope observed in
the Bland-Altman plots suggests a systematic difference
for estimation of the intracellular volume fraction. For
the cylinder-pancake and the cylinderBDA-pancake mod-
els, the slope is modest for intracellular volume fractions
between 58-65%.

IV. DISCUSSION

Ten different compartment models were developed, stud-
ied, and compared to derive microstructural tissue parame-
ters in the heart. This study included three models previ-
ously proposed by Hsu et al. [19], Kim et al. [12], and
McClymont et al. [23]. The tensor-tensor model [19] improved
the RMSE by ≈ 28% compared to DTI but failed to account
for restricted diffusion in cardiomyocytes. The tensor-tensor
model also underestimated the intracellular volume fraction.
This finding is consistent with results reported in [19]. The
cylinder-ball [12] modelled the restricted diffusion and pro-
vided reasonable estimates for cardiomyocytes radius but fit
the data poorly; the RMSE was ≈ 92% higher compared to
DTI. The model proposed by Kim et. al. [12] addressed both
issues but the estimated radius of 30 µm along the secondary
diffusion eigenvector was almost twice the physical sizes
known from the literature [20]. We show that previous models
do not fit well to the measured signals, or yield unrealistic
biophysical parameters (Table II)

Seven new two-compartment models with combination of
extended cylinder models and diffusion tensors were inves-
tigated. Among the proposed models, the cylinderECS-ball,
cylinderBDA-ball, and cylinderGDR-ball had higher RMSE
compared to DTI. This poor fitting performance can be
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Fig. 7. Bland-Altman plots for comparison between SRI and DW-MRI intracellular volume fractions. The result is based on the ROI shown in
Fig. 6(a) on a mid-ventricular wall to avoid partial volume effect with the surrounding gel/buffer. The solid black line represents the local average of
the scattered points using a rectangular moving average window of size 15. The dashed red lines represent the 95% confidence interval, i.e. the
mean±1.96SD. The dashed black line represents the overall bias.

TABLE II
ESTIMATED BIOPHYSICAL PARAMETERS ON A SLICE FROM LEFT VENTRICLE WALL (FIRST HEART)∗. [MEAN(STD)]

explained with the inability of these models to represent the
anisotropy along the second and the third diffusion eigen-
vectors, whereby both the standard cylinder model and the
ball are fully isotropic about the primary diffusion eigen-
vector. Using a pancake to represent the extracellular space
addressed this issue by allowing a different diffusivity along
the sheetlet-normal direction (Table II).

Supplementary Figure 3 demonstrated the RMSE distri-
bution in one cross-section cut in the short-axis view for
the four cylinder-pancake models. All four models reduced
the RMSE comparing to DTI. Unlike DTI, these models
were also an unbiased estimator of the measured DW-MR

signals as confirmed by Bland-Altman plots in supplementary
Figure 4. Employing a more complex biophysical model
may result in a reduced RMSE but note that the estimated
RMSE could be also attributed to low SNR during DW-MRI
acquisition; RMSE cannot be reduced below the noise power
unless the model is over-fitted to noise rather than data. The
three-compartment model [23] studied here did not improve
the RMSE beyond the proposed two-compartment models
(Table II). This observation may suggest that the inherent
noise could be the main reason for the modest fitting per-
formance in this study. While improving data fitting could
be a challenge as biophysical models provide a simplified
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TABLE III
COMPARE THE CARDIOMYOCYTE RADIUS AND THE EXTRACELLULAR

FA BETWEEN TWO GROUPS OF VOXELS WITH DIFFERENT VOLUME

FRACTIONS OF VESSELS USING T-TEST

TABLE IV
DEPENDENCE OF BIOPHYSICAL PARAMETERS ON B-VALUE.

PARAMETERS ARE REPORTED FOR CYLINDER-PANCAKE MODEL

USING ALL FIVE DIFFUSION TIMES AND A SINGLE B-VALUE

TABLE V
DEPENDENCE OF BIOPHYSICAL PARAMETERS ON DIFFUSION TIME.

PARAMETERS ARE REPORTED FOR CYLINDER-PANCAKE MODEL

USING ALL B-VALUES AND A SINGLE DIFFUSION TIME

sketch of the underlying microstructure, their adequacy should
be also assessed on how well the biophysical parameters are
represented. An acceptable biophysical model should not only
fit the data sufficiently well, but also provide a reasonable
estimation of the underlying tissue microstructure [14].

Three specific microstructure properties including car-
diomyocyte radius, the intracellular volume fraction, and
cardiomyocyte dispersion were examined. Among the four
proposed models with improved fitting performance (bot-
tom four rows in Table II), the cylinderBDA-pancake model
yielded the closest approximation for the cardiomyocyte radius
(Table II). The cylinderECS-pancake model also provided
good approximations for the small and large radii assum-
ing an elliptical cross-section for cardiomyocytes. However,
the cylinderGDR-pancake model significantly overestimated
the cardiomyocyte radius with respect to the SRI measure-
ments. The closest estimation to the reference value for
the intracellular volume fraction [21] was provided by the
cylinderGDR-pancake (64%) whereas the remaining three
models yielded slightly lower approximations (≈ 60%). How-
ever, observing the residuals on a voxel-based comparison
suggested that the estimation error for ICV depends on its true
value (Fig. 7). This dependence is modest when ICV is around
≈ 62% and more distinct when ICV is at the other extremes.
One potential reason for this observation is that the extracel-
lular space is modelled with a planar/oblate tensor (pancake)
representing the cleavage planes between sheetlets in these
models. The interstitial space between cardiomyocytes in
sheetlets is not explicitly modelled here. Therefore, in voxels
with tightly packed sheetlets, ICV is overestimated and in

voxels with large gaps between sheetlets or large vessels, ICV
is underestimated. Of note, the cylinderBDA-pancake is the
only model that parameterises dispersion.

To facilitate parameter estimation for biophysical models,
multi-diffusion-time, multi-shell, and multi-direction data are
needed. Here we showed that previous acquisitions schemes
that only acquired a single shell with different diffusion
times [12] are inadequate as the intracellular volume fraction
varies strongly with b-value (Table IV). Acquiring multiple
shell but with a single diffusion time [19] is also insufficient
as the cell radius r varies strongly with the diffusion time
(Table V). Here a diffusion scheme with five different diffusion
times and six different gradient strengths was used.

One specific challenge to develop and refine biophysical
models is access to ground-truth parameters at the cellular
level [14], [22]. Here, SRI was employed as a solution for
two reasons: first, it provides information on the 3D tissue
microstructure at a high spatial resolution suitable for virtual
histology. Second, the prepared tissue samples can be imaged
immediately following the MRI acquisitions without further
sample preparation. Here intracellular volume fractions for
intracellular, extracellular, and vessels were quantitated using
a semi-automatic segmentation technique (Fig. 6). The average
ICV estimated from the reconstructed SRI scans was 63.9%.
Our finding was consistent with results reported in [21]. Here,
eight individual cardiomyocytes were manually segmented and
the mean and SD for their radius were reported in Table II.
The estimated radius from reconstructed SRI scans was 30%
lower than the value reported in [20]. This variation could be
attributed to anatomical variation between species [38].

While our work represents a significant advancement over
previously published work, our study had the following limi-
tations. Firstly, simplified two-compartment models were con-
sidered in this study with limited ability to account for the
capillary network and partial volume effects. In this study,
the interstitial space between cardiomyocytes and vascular
components were combined into one effective compartment
similar to Hsu et al. [19] and Kim et al. [12]. Given the
maximum diffusion time of 50 ms and the buffer mean dif-
fusivity of 2.0µm2/ms, the average diffusion distance would
be ≈ √

2Dt = 14 µm. This distance is three times lower
than the average diameter of ≈ 50 µm for large vessels
estimated from SRI scans. Therefore, we postulate that the
restriction effects imposed by vessels boundaries would be
negligible as confirmed in Table III. However, more complex
multi-compartment models may be warranted.

Secondly, this study focuses on healthy control hearts, and
the sensitivity of estimated biophysical parameters to disease
is subject of future work. Thirdly, the manual segmentation
of SRI data was highly laborious, limiting its application.
In future, advanced deep networks could help with automatic
segmentation of SRI data for extracting additional structural
properties including cell size and dispersion. Fourthly, two
healthy mouse hearts were used in this study. Despite the
limited number of hearts, note that each heart is comprised
of a few hundreds of voxels with a diverse range of structural
properties over which the estimated biophysical parameters
were validated.
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To improve SNR, this study employed different echo times
for each diffusion time. This strategy has the effect of produc-
ing different T2 weighting for data acquired at different diffu-
sion times. To address this effect, the data was normalised with
respect to b0 signal collected for each diffusion time. However,
if the tissue has compartments with different T2 values,
the relative contributions of the compartments to the signal
will not be the same at all diffusion times due to the difference
in the amount of T2 decay. Kim et al. [12] investigated this
effect on a cylinder-ball model and reported minor effects on
estimated biophysical parameters. Here, we followed a similar
approach to Kim et al. [12].

Water exchange between the intra- and extracellular com-
partments may also influence our measurements. Here, imper-
meable cylinders were employed to represent cardiomy-
ocytes assuming zero water exchange between compartments.
Forder et al. [39] simulated the influence of water exchange on
measurements using a simple tissue model [40] with a diffu-
sion time of 11 ms and concluded that the difference between
exchange rates of 0 and the estimated upper limit of 27 Hz [41]
is negligible. However, we recognise that permeability is of
potential importance, and this is subject of future investigation.

The employed ex vivo preservation and fixation technique
may affect the estimated biophysical properties. Fixatives
like formaldehyde stabilise microstructural organisation within
tissues and make them metabolically inactive [42]. However,
these fixatives alter the chemical and physical environments
contributing to the DW-MR signals [42]. Washing the excess
fixative from samples via immersion in PBS could help
to reduce these effects [42]. Agger et al. [43] compared
perfusion versus immersion fixation and concluded that the
latter should be preferred as this method provided diffu-
sion data closest to fresh hearts. However, perfusion fixation
with formalin yielded the best tractography results [43]. The
effects of continuous formalin fixation on diffusion tensor
properties were studied by Lohr et al. [44]; mean diffusivity
and FA were reduced by 22% and 10% post-fixation after
7 days [44].

This study presented new developments in DW-MRI bio-
physical modelling of myocardial microstructure based on
preclinical ex vivo data. Translation to clinical applications
with in vivo imaging would bring new challenges: firstly,
access to multiple diffusion times and very high b-values
is limited on clinical scanners. Secondly, blood flow in the
vascular network may have a significant effect on the apparent
diffusion coefficient. Thirdly, heart motion should be com-
pensated properly for enhanced sensitivity to water molecules
diffusion.

This study investigated the feasibility of DW-MRI biophysi-
cal models in heart. However, signal representation techniques
have advantages too and may be more sensitive in distin-
guishing healthy tissue versus disease. If a model is not close
to reality due to oversimplification of the tissue architecture,
the model parameters may not be useful. While changes of
values in signal representations are never wrong, this variation
may not be attributed to specific tissue properties easily;
biophysical models would allow for direct measurements of
specific tissue properties.

V. CONCLUSION

We proposed seven new two-compartment models of
DW-MRI to quantitate tissue microstructure in heart. Our
results suggested an oblate/planar diffusion anisotropy in the
extracellular space due to interstitial gaps between sheetlets.
Four extended version of cylinder models were studied here
to represent the intracellular space. The cylinderBDA-pancake
model represented anatomical findings closest as it also allows
for modelling dispersion. The cylinderBDA-pancake yielded
volume fraction = 58% and radius = 6.8 µm in agree-
ment with prior literature and SRI data analysis. Our results
suggested that multi-diffusion-time multi-shell multi-direction
diffusion schemes are required for a reliable estimation of
biophysical parameters.

APPENDIX A
SIGNAL MODEL FOR A CYLINDER

The signal model for a cylinder is represented by product of
signals parallel and perpendicular to the cylinder axis n̂ [25],
[45], [46],

Scyl(n̂, d‖, r) = s0 exp −L‖(d‖)
[

gT n̂
]2

× exp −L⊥(r, d‖)
[

gT g −
[

gT n̂
]2

]
, (21)

where d‖ is the diffusivity along the cylinder axis n̂ and r is
the cylinder radius.

Assuming non-restricted diffusion along the parallel direc-
tion and Gaussian Phase Distribution (GPD) approximation
in the perpendicular direction, L‖ and L ⊥ are defined as
follows [45]:

L‖(d‖) = γ 2δ2(� − δ/3)d‖, (22)

L⊥(d‖, r) = 2γ 2
∞∑

m=1

[
d2‖β6

m(r2β2
m − 1)

]−1

. . .
[
2d‖β2

mδ − 2

+ . . . 2 exp[−d‖β2
mδ]

+ . . . 2 exp[−d‖β2
m�]

− . . . exp[−d‖β2
m(� − δ)]

− . . . exp[−d‖β2
m(� + δ)]

]
. (23)

Here, βm is the mth root of equation J ′
1(βmr) = 0 and J ′

1
is the derivative of the Bessel function of the first kind, order
one.
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