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Automatic Inter-Frame Patient Motion Correction
for Dynamic Cardiac PET Using Deep Learning
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Abstract— Patient motion during dynamic PET imaging
can induce errors in myocardial blood flow (MBF) estima-
tion. Motion correction for dynamic cardiac PET is chal-
lenging because the rapid tracer kinetics of 82Rb leads
to substantial tracer distribution change across different
dynamic frames over time, which can cause difficulties
for image registration-based motion correction, particularly
for early dynamic frames. In this paper, we developed an
automatic deep learning-basedmotion correction (DeepMC)
method for dynamic cardiac PET. In this study we focused
on the detection and correction of inter-frame rigid trans-
lational motion caused by voluntary body movement and
pattern change of respiratory motion. A bidirectional-3D
LSTM network was developed to fully utilize both local and
nonlocal temporal information in the 4D dynamic image
data for motion detection. The network was trained and
evaluated over motion-free patient scans with simulated
motion so that the motion ground-truths are available,
where one million samples based on 65 patient scans were
used in training, and 600 samples based on 20 patient
scans were used in evaluation. The proposed method was
also evaluated using additional 10 patient datasets with
real motion. We demonstrated that the proposed DeepMC
obtained superior performance compared to conventional
registration-based methods and other convolutional neural
networks (CNN), in terms of motion estimation and MBF
quantification accuracy. Once trained, DeepMC is much
faster than the registration-based methods and can be eas-
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ily integrated into the clinical workflow. In the future work,
additional investigation is needed to evaluate this approach
in a clinical context with realistic patient motion.

Index Terms— PET, myocardial perfusion, motion correc-
tion, deep learning.

I. INTRODUCTION

POSITRON emission tomography (PET) myocardial
perfusion imaging has been shown to improve the diag-

nostic accuracy of coronary artery disease (CAD) as compared
to other non-invasive imaging modalities [1]. Absolute quan-
tification of myocardial blood flow (MBF) and myocardial
flow reserve (MFR) using dynamic PET has shown superior
diagnostic and prognostic value as compared to the conven-
tional relative myocardial perfusion imaging [2]. In typical
dynamic PET, a dynamic sequence of images is acquired over
several minutes, starting from the injection of radio-labeled
tracer until myocardium is well perfused. Regions of interest
are usually defined on the reconstructed dynamic images to
sample the time-activity curves (TAC) in the myocardium
tissue and left ventricle (LV) cavity. These TACs can be further
processed via kinetic modeling to quantify MBF.

Patient motion during dynamic imaging, which typically
includes respiratory motion, cardiac motion and voluntary
body motion, can induce errors in MBF estimation [3], [4].
Specifically, patient motion can present as inter-frame motion,
which can cause misalignment of the heart between successive
dynamic image frames and result in distorted TACs due to
inconsistent ROI sampling. On the other hand, intra-frame
motion can lead to blurred images as well as inaccurate
image-derived input function (IDIF) measured within LV cav-
ity. Additional errors could also be introduced by the mismatch
between PET and CT-based attenuation map caused by patient
motion [5].

Respiratory and cardiac motion correction methods in PET
have been investigated in the past [6], [7]. External motion
tracking markers or sensors have been used in some stud-
ies [5], [8] to track respiratory motion at a high temporal res-
olution. Electrocardiography (ECG) is still the gold-standard
when it comes to track the cardiac motion due to high
temporal resolution. However, such tracking systems typically
require extra setup time and may not always be accessible.
Alternatively, data-driven motion detection methods [9]–[11]
without the need of external devices are preferred to facilitate
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easier clinical translation of motion correction. Nonetheless,
few studies focused on the correction of inter-frame motion
for 82Rb cardiac dynamic PET imaging due to its challenging
nature. The rapidly changing biodistribution of 82Rb leads
to dynamic changes in the distribution of the radiotracer
from frame to frame over time, which can cause difficulties
for image registrations. The accuracy of image registration
typically relies on the similarity between the two images
to be registered with each other. Due to the rapid tracer
kinetics, the tracer distribution in one dynamic frame can be
substantially different from another frame, which can result in
inaccurate or even failed image registration. This is particularly
the case for early dynamic frames (blood pool phase), and
therefore existing motion-correction studies [12]–[14] have
largely focused on the later dynamic frames (myocardial tissue
frames). To address this challenge, Hunter et al. [15] proposed
to correct patient body motion for dynamic cardiac PET-CT by
attenuation-emission alignment according to projection consis-
tency conditions. The method performed equally well on both
early and later frames, but was only evaluated on simulation
and phantom data. Lee et al. [16] developed an automated
motion correction framework for dynamic 82Rb cardiac PET.
The right-ventricle blood pool (RVBP) phase, left-ventricle
blood pool (LVBP) phase and tissue-phase were first identified
using an automated algorithm, then each dynamic frame was
rigidly aligned to match a fixed later tissue-phase summed
frame to achieve motion correction. Normalized gradient
fields, instead of image intensities, were used in registration
to account for rapid tracer kinetics during the blood pool
phase. Lee’s results were in good agreement with the manual
motion correction results in the evaluation of clinical studies,
and the method applies to the entire dynamic sequence.
However, Lee’s method’s performance in the transition frames
(in between LV blood phase and tissue phase) is questionable
due to the activity being in both blood pool and myocardial
tissue, causing unidentifiable boundaries and therefore unre-
liable gradient to compute registration. The RV frames were
also not validated due to a lack of manual motion correction.
Since the tissue-phase frames were summed to provide a
reference image, the reference image might be blurred due
to the interframe motion and could lead to inaccurate motion
estimation.

Deep learning has demonstrated its promising perfor-
mance in many medical imaging tasks, including image
enhancement [17]–[20], image registration [21], image seg-
mentation [22], [23], image generation [24]–[26], and
computer-aided diagnosis [27]. However, using deep learning
for motion detection on sequential images has been mostly
unexplored. Recently, recurrent neural network (RNN) and
long short-term memory (LSTM) [28], [29] have achieved
great success in processing sequential multimedia data and
yielded state-of-the-art results in video and signal process-
ing [30], [31]. Li et al. [32] also obtained promising results by
applying convolutional LSTM on X-ray fluoroscopic images to
recover cardiac and respiratory signal, although their study was
focused on extracting 1D motion signal from a sequence of 2D
images with similar anatomical structures. Guo et al. [33]
used LSTM to classify respiratory signals into regular and

irregular breathing patterns to guide optimal motion correction
strategies in PET.

In this paper, we developed automatic motion correction
for dynamic cardiac PET using deep learning (DeepMC) for
the first time, to the best of our knowledge. In this study,
we focus on detection and correction of the inter-frame rigid
translational motion caused by body motion and change in the
pattern of respiratory motion. The intra-frame motion resulting
from cardiac and respiratory motion are averaged within the
frames and are not considered in this study. A bidirectional-
LSTM [34] network structure was employed to utilize both
local and nonlocal temporal information in the 4D dynamic
image data for motion detection. The proposed method was
further evaluated on patient data with both simulated and real
motion, in terms of motion estimation and MBF quantification
accuracy.

II. MATERIALS AND METHODS

A. Dataset

A total of 160 anonymized clinical 82Rb PET rest and
regadenoson-induced stress studies were included from Yale
New Haven Hospital from December 2019 to January 2020.
The PET data were acquired using a Discovery 690 PET/CT
scanner (GE Healthcare, Waukesha, WI). The data anonymiza-
tion for this research was approved by the Institutional Review
Board of Yale University. 82Rb was delivered via a pro-
gramed infusion using a commercial 82Rb generator (Bracco
Diagnostics Inc.) with a weight-based targeted injection dose
of 20-35 mCi depending on patient body mass index. The
total acquisition time for each scan was 7 min, but only the
first 6 min 10 s data were included in the rebinning process
according to the clinical setting. Listmode data were rebinned
into dynamic image sequence of 14 × 5s, 6 × 10s, 3 × 20s,
3 × 30s, and 1 × 90s timeframes. Images were reconstructed
using OSEM with 2 iterations and 24 subsets, resulting in
128 × 128 × 47 voxels of size 3.125 × 3.125 × 3.270 mm.
Images were filtered with Butterworth filter with a cutoff
frequency of 21 mm−1 and an order of 5. Corrections for
isotope decay, photon attenuation and scatter, random and
prompt-gamma coincidences, detector efficiency, and deadtime
were all applied to reconstruct quantitative images of activity
concentration (Bq/mL), according to our standard clinical
practice. Note that each dynamic frame was reconstructed
independently. Therefore, the scatter estimation was derived
from each individual frame’s emission data, instead of from
an initial static reconstruction. CT and 82Rb PET image were
manually registered using the vendor ACQC package.

With the Corridor 4DM software that was used in our
clinical setting, one of the technologists performed motion
correction frame by frame manually until no visual motion can
be observed between frames. The manual motion correction
results were then double checked by one of the research
group members. Then, the 4DM software can automatically
display the motion magnitudes resulted from the manual
motion correction. A total of 85 motion-free scans (55 rest
and 30 stress scans) from 59 patients were identified from
the 160 patients’ studies. The motion-free scans were defined
as scans with a total motion (in all the frames) no more than
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TABLE I
A SUMMARY OF THE CHARACTERISTICS OF THE INCLUDED SCANS

3 mm, same as the convention used in [4]. Motion was defined
as the translational shift of any frame compared with the last
frame (frame 27 with the longest duration). Rotational and
non-rigid motions were not considered in this study, because
in clinical practice the majority of manual corrections were
done for translational motion. The 85 motion-free scans were
later divided into two subsets, with 65 used for training and
20 used for evaluation of the network with added simulated
motion. Additionally, 10 studies (4 rest and 6 stress scans)
from 9 patients that have at least 5 frames with mild or severe
motion (larger than 3 mm) [4] were selected for testing the
network. A summary of the characteristics of the included
scans were given in Table I.

B. Motion Simulation

Three types of motion were simulated during training of
the network, namely “square motion”, “triangle motion” and
“spike motion”. Square motion simulates a type of patient’s
motion that is consistent across multiple frames with the
same magnitude and direction in the 3D Euclidian space,
triangle motion refers to the scenario where patient motion
gradually builds up along one direction and then moves back
to the original position across several frames, and spike motion
simulates random motion, where the motion magnitude and
direction in each frame can be independent. An illustration of
the three types of motion is shown in Fig. 1. We believe the
combination of three basic motion types can approximately
represent the realistic motion patterns for training purpose,
even though the realistic motion could be more complicated.

For each dynamic image sequence, a window of 64×64×36
centered around the mid-point of the septal wall (manually
identified currently) was cropped from the last image frame
(frame 27). Motion in any other frame was simulated by
shifting the cropping window in the Euclidian space, with a
step size of 0.1 pixel (using linear interpolation) along each
axis.

C. Network Architectures

To predict the motion of a given frame, not only the
adjacent frames can provide local information in the form
of relative motion, the non-adjacent frames can also provide
nonlocal information about the cross-frame motion correlation
due to inertia, especially for the motion with long-duration
that affects multiple frames (e.g., the previously mentioned
triangle motion and spike motion). In addition, knowing the
spatial tracer distribution change in time can also poten-
tially help motion detection. However, this also requires the

Fig. 1. An illustration of the three types of motion in simulation for network
training. This illustration only shows 1-D motion displacement patterns
with the motion magnitudes changing over frames, whereas the motion
directions are not reflected in this figure.

network to “see” multiple frames simultaneously. Recurrent
neural network approaches such as long short-term memory
(LSTM) [29] are capable of interpreting and summarizing
patterns among correlated data samples, which is an ideal
network architecture for our problem. The cell state of LSTM
allows nonlocal information from non-adjacent frames to be
transferred all the way along the sequence, to assist motion
prediction for each individual frame. In this work we used
a bidirectional 3D convolutional LSTM (convLSTM3D) net-
work to allow information to flow along both ways between
the early and late phases.

Our architecture is depicted in Fig.2 (a). Each 3D image
frame is fed into two 3D convolutional layers (Conv3D) with
64 kernels for encoding the spatial feature. The Conv3D layers
are all followed by a ReLU activation function (each blue
box in Fig.2 indicates a Conv3D + ReLu layer). The feature
maps for all the image frames are then sent to a bidirectional
ConvLSTM3D unit for processing. This Conv3D plus bidi-
rectional ConvLSTM3D combination was then repeated, with
128 kernels in each layer. Lastly, the feature map for each
frame is flattened, followed by a dropout layer with ratio
0.5 and ReLu, and finally passed to a fully connected (FC)
layer to regress the predicted motion displacement vector Pn =
(Pn,x, Pn,y, Pn,z), where Pn,x, Pn,y and Pn,z are the predicted
motion displacements in the left-right (x), anterior-posterior
(y) and superior-inferior (z) directions for each frame, n
(1 ≤ n ≤ N) is the frame index and N is the total number of
frames.

We used a stride of 2 in all the Conv3D layers instead of
using max pooling, because max pooling has the well-known
property of being local shift invariant to the small changes
in the input [35]. In our application we do not seek for this
property since our goal is to design a network sensitive to
small changes caused by motion.

D. Image Pre-Processing

For each dynamic image sequence, a median filter with
window 3 × 3 × 3 was applied to each frame for noise
suppression. The median filter was only applied for motion
detection purpose. The detected motion was later applied to
images without the filtering, to be consistent with the clinical
filter settings. In addition, the following steps were applied.
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Fig. 2. (a) The architecture of the motion prediction and EQ frame prediction network. The input frame images are only displayed as 2D images,
although they are actually 3D images, with dual-channels (red) for motion prediction network and single-channel (purple) for EQ frame prediction
network. The motion prediction network and the EQ frame prediction network share the same network structure except for the last fully connected (FC)
layer. They are trained separately. (b) A diagram of the entire motion prediction workflow.

1) Dual-Channel Input: In order to ensure the reference
frame’s information was not lost along the information flow of
the LSTM network, the reference frame (the last frame) was
concatenated to each frame’s image as a second channel of the
input (see Fig.2 (a)), to provide a consistent motion estimation
reference.

2) Image Intensity Normalization: The tracer activity level in
our regions of interest (blood pools and myocardium) can vary
a lot between frames, especially during the early frames. This
can cause unstable training of the neural network. Therefore,
each frame (cropped to 64 × 64 × 36) was normalized by the
mean activity of the cropped region. Here, mean normaliza-
tion was chosen over maximum normalization for being less
sensitive to noise [25].

3) Temporal Normalization: After tracer injection and the
start of the scanning, the time for tracer to reach the left
ventricle blood pool can be different for each patient, which
is another factor that could unstabilize the neural network’s
performance. We defined equal (EQ) frame (with frame index
nE Q), which is the first frame in which the activity in LV
blood pools is equal or higher than that in the RV blood pool
(see Fig.3), to be used for temporal normalization. For each
study, we shifted the whole image sequences back and forth
so that the EQ frame has the same frame index nRE F in the
shifted sequence. If nE Q > nRE F , the 4D image sequence is
moved towards the early phase. To maintain the same number
of total frames, a number of (nE Q − nRE F ) frames with no
or little activity at the beginning were discarded, and the
same number of the last frame was duplicated and added
to the end. If nE Q < nRE F , the image sequence is moved
towards the late phase, with (nRE F − nE Q) all-zero frames
added at the beginning and the same number of the frames
discarded at the end. However, the latter case will result in
losing the information of the frames at the end of sequence.
We noticed that for all the studies we acquired, (nRE F −nE Q)

Fig. 3. An example of the early frames and late frames after intensity
and temporal normalization. The whole sequence was shifted towards
the early phase by three frames, therefore the first three frames with zero
activity were discarded, and the last frame was duplicated three times at
the end of the late frames (purple). The last frame was also put at the end
of the early frames to provide a reference (red). All the images are shown
in the coronal view. The frame number after temporal normalization was
shown for each frame. The EQ frame was pointed out in blue color.

never exceeds two when nRE F = 7 was used and the first
two frames always have zero or minimal activity. Therefore,
we discarded the first two frames and duplicated the last frame
twice for all the image sequences beforehand, to make sure no
useful information was lost during the temporal normalization.
We also set any frame before the EQ frame, with a total
activity less than 1/10 of the EQ frame, to zero since these
frames provide no useful information for motion estimation.

To automatically identify the EQ frame, the same network
architecture in section II.C was used, except for the output
layer. For the input of N frames, the output is a probability
vector Q = (Q1, Q2, . . . , QN ), as shown in Fig.2 (a), where
Qn ∈ R

+ is the probability that the n-th frame is the EQ
frame. The index nE Q = argmax1≤n≤N Qn indicates the EQ
frame. All 27 frames were used to predict the EQ frame, and
only single channel images were used as the inputs (as shown
by CH1 in Fig.2 (a)).

4) Early and Late Frames: The tracer distributions are
dramatically different between the early and late frames.
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Therefore, to let the network focus on the unique time depen-
dent problems and to yield better performance, two networks
with the same architecture (as described in section II.C) were
trained independently for the early and late frames. After
temporal normalization, all the frames were approximately cut
into halves: the first 14 frames are considered the early frames
and reflect the input function and initial myocardial extraction,
and the last 13 frames are considered late frames and primarily
reflect myocardial uptake and retention. The reference frame
(the last frame) was also added to the end of the early frames
set to provide a consistent reference, so that the early frames
include 15 frames in total. An example of the early and late
frames is shown in Fig. 3. The images are pre-processed with
the image intensity normalization and temporal normalization.

During motion prediction, two network’s results were com-
bined to provide the motion estimation for the whole image
sequence.

E. Network Training

To train the motion detection network for either early frames
(15 frames in total) or late frames (13 frames in total),
a total of 1 million motion replicate samples were randomly
simulated based on the 65 patient scans described in section
II.A. The training process was stopped after running through
the 1 million examples. For each sample, one type of motion
(square, triangle or spike) was randomly selected with a chance
of 1/3. The number of motion frames were randomly selected
between 2 and 7 with equal chances. Motion was randomly
added anywhere except for the first 3 frames with negligible
tracer activity (after temporal normalization) and the last
reference frame. The maximum motion shift was limited to (4,
4, 4) voxels. For each axis, the direction and motion magnitude
were randomly chosen with equal chances. For square motion,
one set of motion shift and direction was simulated and used
for all the selected frames; for triangle motion, one set of
motion shift and direction was simulated and used as the
maximum motion shift, with the other frames’ magnitude
calculated with basic properties of triangles; for spike motion,
the motion magnitude and direction for each selected frame
was simulated independently. To further augment the data,
an initial window shift was applied to all of the frames in
each sample before the motion was added, and the maximum
shift was limited to 3 voxels along each axis. For each sample,
the whole sequence was also randomly moved towards the
early phase or late phase up to 1 frame to provide data
augmentation in the temporal dimension. All the randomness
described above follows uniform distribution. The batch size
for training was 32. The mean square error (MSE) loss was
used to update the network. The Adam optimizer with an
initial learning rate of 0.001 was used, where the learning
rate decayed by a factor of 0.999 for every 10 batches trained.

Training the EQ frame prediction network is similar to train-
ing the motion prediction network, except that all the original
27 frames were used as the inputs and the cross-entropy loss
was used instead of MSE loss. The temporal data augmentation
can be up to 3 frames towards either the early or the late
phase. Moreover, only 100,000 samples were generated and
the learning rate decay factor was changed to 0.998, because

this is a much less challenging problem compared to motion
prediction hence fewer samples are needed. The frameworks
were implemented using PyTorch and trained on a NVIDIA
Quadro RTX 8000 GPU.

F. Iterative Motion Correction

Once the motion estimation network was trained, motion
correction was achieved by reversely shifting the cropping
window in the original image space, based on the predicted
motion. An iterative motion correction (IMC) strategy was
applied during evaluation and testing, to ensure any residual
motion can be detected and corrected: the corrected sequence
from the previous iteration was fed into the network again
for motion detection and correction in the next iteration. The
iterative process stops until the iteration number exceeds 5 or
the sum of the detected motion magnitudes of all the frames
for the current iteration is smaller than 0.1 voxels, whichever
comes first. The final motion estimation is the concatenation
of the estimated motion for the early and late frames. The
entire motion prediction workflow is shown in Fig.2 (b).

G. Comparison With Conventional Registration
Approaches

The proposed DeepMC was compared with conventional
registration methods. Two registration strategies were evalu-
ated, namely individual registration (IR) and chain registration
(CR). Individual registration is the most straight forward
approach: each individual frame was directly registered to the
reference frame (the last frame). However, this might not be a
fair comparison since the early frames are substantially differ-
ent from the reference frame, which could cause unsatisfactory
or even failed registration. Therefore, we also implemented
chain registration, where starting from the second to last frame,
each frame was registered to its next frame. Since registration
was only performed between two adjacent frames that share a
lot of similarities, superior performance might be expected in
the presence of tracer distribution change between frames.

The SimpleElastic library was used for both registration
approaches. Only rigid translational motion was considered,
and the ‘Advanced Mattes Mutual Information’ metric was
used. The ‘Number of Resolutions’ was set to 3. Other
parameters were used as default and can be found at [36].
Same as DeepMC, a median filter was applied to each frame
in advance for noise suppression.

H. Comparison With Other Neural Networks

The proposed DeepMC was also compared with another
convolutional neural network (CNN). We chose a recent CNN
architecture [37] that was designed for estimating rigid motion
between two 3D image volumes. We made a few slight
changes to the network structure, and the details about this
network can be found in the supplementary material. This
network can be viewed as a CNN-based image registration
method, although without the LSTM component.

Similar to the conventional registration methods, we applied
the CNN-based method through two strategies. In the first
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strategy, the CNN was trained and applied between each frame
and the reference frame for motion estimation. In the second
strategy, motion estimation was performed in a chain fashion,
where the CNN was trained and applied between each frame
and its next frame. We refer to these two methods as MC-CNN
and MC-CNN-C (C stands for chain) from now on. For fair
comparisons with DeepMC, we adopted the same convention
to divide the image sequences into early and late frames for
both MC-CNN and MC-CNN-C. Image normalization was
also applied beforehand, although iterative motion correction
(IMC) was not used because we found IMC resulted in slightly
worse results here. More training details can be referred to the
supplementary material.

I. Evaluation

To evaluate the performance of DeepMC and the other
approaches, for each one of the 20 scans described in Table I,
10 motion replicates were simulated for each type of the
square, triangle and spike motion types, resulting in a total
of 600 motion affected samples. The motion simulation
process was similar to the process described in section II.E,
except that: 1) a random number between 5 and 11 of frames
were added with motion; 2) for each sample, motion was
added to the entire sequence (except for the first 3 frames
and the last reference frame), instead of adding motion to
early frames and late frames separately; 3) the initial random
window shift was not applied.

The motion estimation was evaluated in terms of
motion estimation mean error and maximum error
across all the frames. The mean error was calculated as

1
N−3

∑N−1
n=3

√
(Pn,x −Mn,x )

2+(Pn,y − Mn,y)
2+(Pn,z −Mn,z)

2

where (Pn,x , Pn,y, Pn,z) and (Mn,x , Mn,y , Mn,z ) are the
motion prediction and ground-truth motion vectors in
three directions (x, y, z) for frame n, and N = 27
is the total number of frames. The first 2 frames
were not included in the evaluation for having no or
little activity and the last (reference) frame was also
not included. The maximum error was calculated as
max N−1

n=3

√
(Pn,x − Mn,x )2+(Pn,y − Mn,y)

2 + (Pn,z − Mn,z )
2,

which reflects the performance limitation of the motion
estimation.

Additionally, both the LV blood pool image-derived input
function (IDIF) and LV myocardium TACs were fit to a
1-tissue (1T) compartment model to obtain estimates for
uptake rate K1 corrected with LV blood volume and spillover
term [38]. Weighted least squares (WLS) fitting was used to
estimate the parameters. The weights were calculated as [38]:
wn = L2

n/(Tn × DC F2), where Ln is the nth frame duration,
Tn is the total activity for the nth frame and DC F is the
decay correction factor. The IDIF was estimated from a
rectangular VOI manually placed towards the base of the LV
(average size 3.9 cm3 for all the 30 scans in the evaluation,
including 20 motion-free scans and 10 scans with real motion)
for each scan. The entire LV myocardium was manually
segmented (average size 130.3 cm3 for all the 30 scans) to
measure the LV myocardium TAC. Myocardial blood flow
(MBF, in the unit of mL/min/g) was then computed from the

estimated K1using a previously validated relationship (using
scale-uncorrected IDIF) [39]. For the motion-corrected (using
the proposed method and the two registration approaches) and
uncorrected images, the MBF percentage biases were calcu-
lated using the MBF values obtained on motion-free images
as the ground-truth: (M B F M − M B F M F )

/
M B F M F ×100%,

where M B F M represents the MBF estimated on the motion
uncorrected or corrected images, and M B F M F were estimated
on the motion-free images. In addition, the weighted sum-
of-squared (WSS) residuals (the residuals between the MBF
model solutions and the measured TACs) from the WLS
fittings were also calculated for each group. Since the weights
wn have a unit of min2/Bq × mL, the WSS residuals have a
unit of (Bq/mL)2 × min2/Bq × mL = Bq/mL×min2.

For the 10 testing patient scans with real motion,
although they were selected based on the manually esti-
mated motions by the clinical staff using the 4DM soft-
ware, these estimates were not exportable and were based
on the resliced image views, whereas in our framework
motion was estimated in the original transaxial image views.
Therefore, due to the lack of the motion ground-truth
in our study, the percent difference between MBFs mea-
sured on the images before and after motion correc-
tion were reported. The percent difference was calculated
as 2(M B FUC − M B F MC )

/
(M B FUC + M B F MC) × 100%,

where M B FUC and M B F MC represent the MBF estimated on
the motion uncorrected and motion corrected images, respec-
tively. MBF for the region supplied by the right coronary artery
(RCA) (average size 58.3 cm3) was also calculated in addition
to the global MBF calculated on the whole LV myocardium.
In this study, we focused on RCA in the regional MBF
investigation as studies have shown that RCA is substantially
more susceptible than left anterior descending (LAD) and left
circumflex (LCX) arteries to motion induced MBF errors [40].
The WLS fitting residuals derived from the voxels within the
whole LV myocardium and RCA were also calculated for these
10 patient scans.

III. RESULTS

A. EQ Frame Prediction

The EQ frames nE Q (defined in section II.D.3) range
between 5-11 for the 20 evaluation scans and 5-10 for the
10 testing scans, based on our manual labeling. The EQ frame
prediction network trained over the 65 training scans correctly
identified the EQ frames for all of these 30 scans, an accuracy
of 100%.

B. Motion Characteristics in the Evaluation With
Simulated Motion

For the 600 image sequence samples used in evaluation with
simulated motion, a total of 4806 frames were added with
simulated motion based on the criteria described in section II.I.
Fig.4 shows the distribution of the motion magnitude (mm)
and the frame index of these motion-affected frames. From
the motion magnitude histogram, it can be observed that the
majority of the simulated motions range between 9-18 mm,
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Fig. 4. The distribution of the motion magnitude (mm) and the frame
index of the motion-affected frames for the 600 image sequences in the
evaluation.

TABLE II
ABLATION STUDY RESULTS IN TERMS OF MEAN AND MAX MOTION

ESTIMATION ERRORS ACROSS ALL THE 600 EVALUATION SAMPLES.
MC: MOTION CORRECTION; IN: INTENSITY NORMALIZATION; TN:

TEMPORAL NORMALIZATION; IMC: ITERATIVE MOTION CORRECTION

which is similar to what was observed in [4] where a sig-
nificant fraction (38%) of the observed motions were severe
motion (7-18 mm) in a study with 236 patients. The frequency
of motions also roughly has a uniform distribution across all
the frames, as can be seen in the motion frame histogram.

C. Ablation Study

An ablation study was conducted to demonstrate the effects
of different image pre-processing components in the proposed
framework. The ablation study results are given in Table II.
It can be seen that, when all the image pre-processing methods
described in section II.D were applied, the lowest motion
prediction errors were achieved in terms of both mean motion
error and max motion error.

Particularly, the temporal normalization (TN) resulted in the
largest improvement. Two groups of studies were compared:
TN was applied in neither training nor evaluation data, and TN
was not applied in training data but applied in evaluation data.
As can be seen, when TN was applied during neither training
nor evaluation, the worst results were obtained. Although
applying TN on the evaluation data further helped, applying
TN on both training and evaluation is recommended.

Using the reference frame as the second channel for each
frame also substantially improved the results. Note that the
results from using only single channel are still reasonable,
though not optimal, suggesting that the LSTM architecture
was able to pass the information of the reference frame
nonlocally throughout the sequence. The iterative motion
correction (IMC) brought a moderate improvement, indicating
that the majority of the motions were successfully detected
in the first pass. On average, the iterative process stopped at

iteration number 2.61 ± 1.02 for the early frames and 1.90 ±
0.75 for the late frames, suggesting that the early frame motion
is slightly more challenging to be detected compared to the
late frame motion. The intensity normalization also moderately
improved the motion detection performance.

Using a validation dataset can potentially help reduce over-
fitting and identify the best hyperparameter settings (in our
case, the hyperparameter we want to optimize is whether or not
we should apply each image pre-processing step as described
in Section II.D). Therefore, we further randomly divided the
original training scan set (from 65) to 55 for training and
10 for validation, and used the validation error to identify
the best model for each group in the ablation study. The best
models identified by the validation set were evaluated on the
same evaluation set with 600 motion replicates. The validation
studies confirmed that the strategies presented in this paper are
indeed optimal by incorporating all these image-preprocessing
steps. However, we also found that using the validation set
resulted in larger motion estimation errors for most of the
groups, likely because of the reduction of the training scan
set. This suggests that using a validation set can be helpful
when there is an abundant training set, but might cause the
opposite effect with a limited training set. We only evaluated
the model trained without the validation set in the remaining
of this paper. For more details about training and results please
refer to the supplementary material.

D. Evaluation of Motion Estimation Performance

Fig. 5 shows two examples (selected from the 600 eval-
uation cases) of the image frames with simulated motion
(No MC) and after motion correction (DeepMC). The first
example shows the early frames with rectangle motion (motion
magnitude 16.1 mm) in sagittal view, and the second example
shows the late frames with triangle motion (peak motion
magnitude 12.5 mm) in axial view. In both examples, the LV
myocardium and LV blood pool ROIs drawn on the last
frame are displayed on each image frame. It can be seen
that without motion correction, motion caused mis-alignments
between the ROIs and the actual LV myocardium and blood
pool. In comparison, DeepMC can provide excellent motion
correction consistently across all the image frames.

Fig.6 shows the average of the motion estimation error (mm)
as a function of frame index for the motion correction with
DeepMC, individual registration (MC-IR), chain registration
(MC-CR), CNN (MC-CNN), chain CNN (MC-CNN-C) and
no motion correction results on the 600 evaluation image
sequences with simulated ground truth motion. As can be
seen, although the individual registration performed well for
the late frames, it completely failed for the early frames, due to
the substantial tracer distribution difference between the early
frames and the late reference frame. The chain registration
only performed better than the individual registration for the
early frames, but the errors for the early frames are still
much larger than those without applying motion correction.
A clear trend of increasing error from the late phase to
the early phase can also be observed, suggesting that the
registration error can accumulate for the chain registration. The
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Fig. 5. Two examples (selected from the 600 evaluation cases) of the image frames with simulated motion (No MC) and after motion correction
(DeepMC). The two examples correspond to two different patients. The images were displayed after intensity normalization. The top example shows
the early frames with rectangle motion (motion magnitude 16.1mm), and the bottom example shows the late frames with triangle motion (peak motion
magnitude 12.5mm). In both examples, the LV myocardium and LV blood pool ROIs drawn on the last frame are displayed on each image frame.

Fig. 6. The average motion estimation error (mm) by frame for the
different methods on the 600 evaluation image sequences. The first two
data points of MC-IR with large motion errors are shown in a zoomed
region for better illustration.

chain CNN also presented a trend of error increase towards
the early frames, and the results are slightly better than the
conventional registration methods. In comparison, the CNN
performed much better than the chain CNN. The proposed
DeepMC obtained the lowest error level overall, especially
in the challenging early blood pool phase and the transition
phase.

The proposed DeepMC was also much faster computation-
ally as compared with both conventional registration methods.
The computation runtime on the 600 cases (23 registrations per
image sequence) for each registration method was more than
20 hours, whereas the proposed DeepMC approach only took
less than 40 min using a batch size of 1. The CNN methods
were slightly faster than DeepMC, which took about 30 min.

A comprehensive summary of the evaluation results is
shown in Table III. In terms of all the error types,
the individual registration method (MC-IR) resulted in the
worse results among all the methods. The chain registration
(MC-CR) was superior to MC-IR, but was overall no bet-
ter or even worse than the results without applying motion

correction, mainly due to the large motion estimation errors
in the early phases (see Fig.6). Both the CNN (MC-CNN) and
the chain CNN (MC-CNN-C) outperformed the conventional
registration methods. Particularly, the CNN performed much
better than the chain CNN in terms of motion estimation error
and MBF bias, but interestingly produced larger fitting errors
than the chain CNN. Note that this is consistent with the
conventional registration, where the fitting residuals from the
chain registration was also smaller than the individual regis-
tration. The proposed DeepMC method obtained the lowest
motion estimation errors and MBF biases for all the three
motion types. The weighted fitting residuals for the DeepMC
method were also the lowest among all the comparison groups
and are highly consistent with the fitting residuals of the
motion-free images.

The MBF bias for each evaluation sample can be positive
or negative, therefore the mean values of the MBF bias
across all the samples indicate if there is a systematic bias,
whereas the standard deviation shows the averaged absolute
MBF bias. From Table III it can be observed that both
conventional registration-based methods and both CNN-based
methods resulted in systematic biases in MBF measurement.
After motion correction using DeepMC, both the mean and
standard deviation of the MBF bias caused by motion were
reduced to a minimal level. Fig.7 and Fig.8 show the scatter
plots and Bland-Altman plots of the MBF estimation between
the motion-corrected and motion-free groups. Similar to our
previous observations, the proposed DeepMC obtained the best
performance among all the compared methods and obtained
highly consistent MBF results with the motion-free results.

E. Patient Evaluation With Real Motion

As was explained in section II.I, due to a lack of the
motion ground-truth, the motion correction for the patient
studies with real motion was evaluated qualitatively and
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TABLE III
A COMPREHENSIVE SUMMARY OF THE EVALUATION RESULTS. FOR

MBF BIAS, ∗ INDICATES THE RESULTS’ MEAN IS SIGNIFICANTLY

DIFFERENT FROM ZERO BASED ON PAIRED T-TEST

(5% SIGNIFICANCE LEVEL). BOLD FONT INDICATES

THE BEST PERFORMER IN EACH GROUP

semi-quantitatively. After motion correction using our pro-
posed method, most of the motions were correctly compen-
sated by visual checking of the dynamic series, although
underestimated motion was found for a few frames due to
the low image quality caused by intra-frame motion or image
noise. Examples of the early and late frames before and after
motion correction selected from three patient scans were given
in Fig. 9. The LV myocardium and blood pool ROIs drawn
on the last frame were overlaid with the images. The white
arrows pointed out the mismatches caused by motion, which
were successfully corrected by the proposed DeepMC method.
Residual mismatches can be observed in the images from all
the other methods (pointed by the green arrows), which were
caused by either over-estimated or under-estimated motion,
as can be seen from the detected motion magnitude beneath
each image (using DeepMC as reference).

Table IV summarizes the MBFs and fitting residuals mea-
sured on the whole LV myocardium and the RCA ROIs
for different motion correction methods. Both DeepMC and
MC-CNN obtained smaller fitting residuals than the fitting
residuals without motion correction (No MC), although the
fitting residuals from MC-CNN was smaller than those from
DeepMC. Nonetheless, we recommend only using the fitting

Fig. 7. The scatter plots of the MBF estimation between the
motion-corrected and motion-free groups. Each one of the parallel
clusters (20 in total) represents the results from the 30 motion replicates
derived from each of the 20 motion-free patient scans.

TABLE IV
SUMMARY OF THE MBFS AND FITTING RESIDUALS MEASURED ON THE

10 CASES WITH REAL MOTION FOR DIFFERENT MOTION CORRECTION

METHODS. THE RESULTS MEASURED ON BOTH THE WHOLE LV
MYOCARDIUM (GLOBAL) AND THE RCA ROIS WERE REPORTED

residuals as a reference for evaluation, as the fitting residuals
alone does not necessarily imply motion correction quality.
For example, in Table III, MC-CNN obtained smaller motion
estimation error and MBF bias compared with MC-CNN-C,
albeit larger fitting residuals. Without the motion ground-truth,
visual checking might be more suitable. The visual observa-
tions (as shown in Fig.9) suggest that DeepMC obtained better
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Fig. 8. The Bland-Altman plots of the MBF estimation between the
motion-corrected and motion-free groups. Each one of the parallel
clusters (20 in total) represents the results from the 30 motion replicates
derived from each of the 20 motion-free patient scans. Note the scale
difference of the y-axis for different groups.

Fig. 9. Examples of the image frames from three subjects before
and after motion correction selected from three patient scans. The LV
myocardium and blood pool ROIs drawn on the last frame were overlaid
with the images (the blood pool ROI was not shown on the selected slice
for Subject C). The white arrows pointed out the mismatches caused
by motion when no motion correction was applied (noMC). The green
arrows pointed out the residual mismatches after motion correction in
some of the results. The motion magnitudes detected by different motion
correction methods were also shown beneath the images.

motion correction results than the other methods, and we only
focus on DeepMC’s results from now on.

For DeepMC, on average 7.9 ± 2.1 frames with motion
larger than 3 mm were identified for each subject, and the aver-
aged detected motion within those frames with motion larger
than 3 mm was 4.9 ± 0.6 mm. Fig.10 shows the percentage
difference between the MBFs measured on the images before

Fig. 10. Scatter plots of the percentage difference between the MBFs
measured on the images before and after motion correction using
DeepMC.

and after motion correction using DeepMC. From the scatter
plot, it can be seen that the RCA MBF differences have a
wider distribution compared with the global MBF differences.
An average of 4.4% ± 2.4% and 5.5% ± 4.8% absolute
percentage difference before and after motion correction were
measured for global MBF and RCA MBF, respectively. This
suggests that the RCA MBF is more susceptible to the effect
of motion. Note that although median or severe motion were
identified in all of these cases, the global MBF and RCA MBF
differences before and after motion correction were not always
large.

Particularly, in the examples shown in Fig.9, the first two
rows are images from the same Subject A, where the detected
motions by DeepMC in the shown early and late frames
were 6.9 mm and 4.5 mm, respectively. The global MBF
and RCA MBF differences before and after motion correction
were 8.3% and 11.7%, respectively. The shown early frame in
Subject B corresponds to a detected motion of 8.9 mm, and
the late frame in patient Subject C corresponds to a detected
motion of 6.3 mm. However, the global MBF and RCA MBF
differences before and after motion correction were 6.3% and
−3.7% for Subject B, and −1.6% and −3.7% for Subject C.
As can be seen, not all motions have a large impact on MBF
estimation.

IV. DISCUSSION

Compared with other medical image registration problems
where the target image and reference image share a lot
of similarities, motion detection and correction in dynamic
images is much more challenging since the target image can
be dramatically different from the reference image due to the
rapid tracer kinetics. Therefore, we proposed to use a 3D
bidirectional-LSTM neural network to better utilize both local
and nonlocal temporal information in the 4D dynamic image
data for motion detection. The proposed network is capable
of learning the typical spatial trace distribution change in time
(also indicated by the ability to detect the EQ frame), which
can help motion estimation. Multiple image-preprocessing
methods customized to our unique problem were also designed
to further boost the motion detection performance. Due to the
lack of the ground-truth motion, we trained and evaluated the
network based on selected motion-free patient data incorpo-
rated with various types of simulated motion. Compared with
the conventional registration methods, the proposed DeepMC
method obtained substantially lower motion estimation error
and more consistent MBF estimations with the motion-free
results. In addition, the qualitative evaluation on 10 patient
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datasets with clinical observed real motion also demonstrated
the effectiveness of the proposed method.

Training the network took about 40 hours each for
the early phase and late phase. However, once the net-
works were trained, processing one dynamic image sequence
only took about 4 seconds, which is 30 times faster
than the registration-based methods. Since the proposed
method was a post-processing method that applies on the
already-reconstructed images and does not rely on the sino-
gram raw data, it can be easily integrated into the clinical
workflow.

This work has several limitations that lead to future inves-
tigations. First, only rigid translation motion was considered
in this study. At Yale New Haven Hospital, only translation
motion was typically corrected manually, with occasional
rotational motion correction. Correcting for rotation motion
or even non-rigid motion can potentially further improve MBF
quantification accuracy. Even though rotational and nonrigid
motions can be simulated during training, depending on the
severity of the rotational and nonrigid motions, whether it
is necessary to consider these more complicated corrections
needs further investigation due to the limited image resolution
and the presence of noise in 82Rb PET studies. Additionally,
to what extent our proposed DL method could be pushed for
these more complicated and challenging motion estimations
before breaking down is also of our great interest and will
be explored in future studies. Second, this work focused
on the inter-frame motion caused by the voluntary body
motion and breathing pattern change of respiratory motion.
However, the intra-frame motion caused by respiratory motion,
cardiac motion and body motion can result in blurred or
distorted frames, which might compromise the inter-frame
motion estimation. Using frames with short durations might
lead to improved temporal resolution with reduced intra-frame
motion, which could potentially lead to better performance for
DeepMC. However, shorter frame durations will also amplify
image noise, which could affect motion estimation perfor-
mance. Therefore, the trade-off between temporal resolution
and signal-to-noise ratio needs to be further investigated.
Alternatively, combining the proposed approach with other
approaches that focus on intra-frame motion estimation and
correction could further improve quantitative accuracy of
MBF, and will be explored in the future. Third, in this paper
we focused more on the technical development and demon-
strated the feasibility of deep-learning based motion correction
for dynamic cardiac PET, where evaluation was performed
using motion-free patient data with simulated motion. The
motion-free patient cases were selected visually, which may
not be truly motion-free. In addition, the simulated motion
might not mirror real clinical motion (e.g., the motion pattern
or magnitude). For the small cohort of patient data with real
motion, due to the lack of the ground-truth motion, the motion
estimation results were only evaluated qualitatively and only
the differences brought by the proposed motion correction was
shown. Future work will include acquiring more patient data
with manually labelled motions, and comparing the MBF with
motion correction to clinical outcome data. Fourth, currently
the CT-based attenuation correction was performed by manual

registration between the CT and the static PET reconstruction.
Misalignments between CT and each PET dynamic frame were
not accounted for because frame-by-frame attenuation map
realignment was not available in our PET/CT system. This
can cause attenuation artifacts [41] on the dynamic frames and
potentially impact quantification. Furthermore, the networks
are being trained with simulated motion applied to motion-free
patient cases, which as a result are not affected by this
activity-attenuation mismatch. The trained networks might
not expect this mismatch appeared on real patient cases and
suboptimal performance can be expected. Preferably motion
should be estimated from preliminary reconstructions without
attenuation correction, and then the estimated motion parame-
ters should be applied to the activity and attenuation pair to
obtain fully motion-corrected activity reconstructions. Training
and evaluating networks based on PET activity images before
attenuation correction will be explored in the future studies.
Fifth, in the current approach the image windows were cropped
around the mid-point of the septal wall, which were all
manually identified. However, this step can be easily achieved
by designing an image-processing method or training another
neural network.

In addition to the future works discussed in the previ-
ous paragraph, some other future directions are also worth
exploring, including segmenting out the heart region first to
exclude the influence of extra-myocardial activity, training and
evaluation based on images in the resliced views and applying
the proposed approach to dynamic imaging of other organs
(for example, brain imaging) and dynamic SPECT imaging.

V. CONCLUSION

This work presents an automatic motion correction frame-
work for dynamic cardiac PET using deep learning. The pro-
posed LSTM-based network can detect and correct inter-frame
rigid motion for both early frames with fast tracer distribution
change and later frames with slower tracer kinetics. Evaluation
with patient data demonstrated the effectiveness of motion
correction and improved accuracy of MBF quantification.
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