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Patch-Based U-Net Model for Isotropic
Quantitative Differential Phase Contrast Imaging

An-Cin Li , Sunil Vyas, Yu-Hsiang Lin, Yi-You Huang, Hsuan-Ming Huang, and Yuan Luo

Abstract— Quantitative differential phase-contrast
(qDPC) imaging is a label-free phase retrieval method
for weak phase objects using asymmetric illumination.
However, qDPC imaging with fewer intensity measurements
leads to anisotropic phase distribution in reconstructed
images. In order to obtain isotropic phase transfer
function, multiple measurements are required; thus, it is a
time-consuming process. Here, we propose the feasibility
of using deep learning (DL) method for isotropic qDPC
microscopy from the least number of measurements.
We utilize a commonly used convolutional neural network
namely U-net architecture, trained to generate 12-axis
isotropic reconstructed cell images (i.e. output) from
1-axis anisotropic cell images (i.e. input). To further extend
the number of images for training, the U-net model is
trained with a patch-wise approach. In this work, seven
different types of living cell images were used for training,
validation, and testing datasets. The results obtained from
testing datasets show that our proposed DL-based method
generates 1-axis qDPC images of similar accuracy to 12-axis
measurements. The quantitative phase value in the region
of interest is recovered from 66% up to 97%, compared to
ground-truth values, providing solid evidence for improved
phase uniformity, as well as retrieved missing spatial
frequencies in 1-axis reconstructed images. In addition,
results from our model are compared with paired and
unpaired CycleGANs. Higher PSNR and SSIM values show
the advantage of using the U-net model for isotropic qDPC
microscopy. The proposed DL-based method may help
in performing high-resolution quantitative studies for cell
biology.
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I. INTRODUCTION

OPTICAL microscopy provides a variety of medical appli-
cations, and has been widely utilized by researchers and

clinicians. Many biological objects of interest are composed of
weak phase features with minimal phase changes [1]. Hence,
weak phase objects (i.e. living cells) show poor contrast, and
they are barely observable without fluorescent labeling, which
induces significant phototoxic side effects in live biological
objects [2], [3]. Phase contrast microscopy [4] is a label-free
imaging technique to observe small phase changes, which are
invisible in a common bright-field microscope. Although a
standard phase contrast microscope qualitatively makes phase
changes visible, it does not provide true phase imaging in
quantitative fashion, and this limits its use in imaging weak
phase biological objects.

In contrast to phase contrast microscopy, quantitative phase
imaging (QPI) quantifies phase changes of weak phase objects
since phase of resultant label-free images can be directly
retrieved from intensity measurements. Various QPI methods
have been developed for biomedical applications [5], [6].
One of the most commonly used QPI methods is digital
holographic imaging [1], [5], [7]-[9], which requires strin-
gent interferometric experimental conditions, with inherent
speckle noise effects that degrade image quality. Alterna-
tively, among non-interferometric QPI methods, quantitative
differential phase contrast (qDPC) microscopy retrieves accu-
rate phase information with simple system configuration, and
requires no interferometric measurements [4], [10]. In contrast
to interferometric based QPI with limited spatial resolution,
qDPC microscopy, under partially coherent light (i.e. LEDs),
provides two times better resolution [1], [11], and alleviates
the speckle problems raised by coherent laser light.

Typically, in qDPC microscopy, the quantitative phase is
retrieved using an asymmetric half-circle illumination [4]
with 2-axis pairwise (i.e. four-angle) intensity measurements.
However, missing spatial frequencies in retrieved phase images
produces artifacts due to anisotropic phase transfer function.
In order to obtain missing spatial frequencies during quan-
titative phase recovery, efforts have been made to obtain
isotropic (i.e. circularly symmetric) transfer function by devel-
oping different designs of pupil patterns [11]–[13]. Recently,
qDPC imaging using 12-axis measurements, along twenty-four
different angles [14], has been reported to obtain isotropic
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Fig. 1. Flow chart of DL based qDPC microscopy. (a) Schematic diagram of the qDPC microscope using an asymmetric half-circle pupil for intensity
measurements. A TFT panel is positioned at the Fourier plane to generate an asymmetric half-circle pupil. (b) Experimentally obtained phase image
dataset for training a U-net model, and comparison of phase transfer functions using 1-axis qDPC and 12-axis isotropic qDPC. (c) The U-net model for
qDPC microscopy. For training U-net model phase reconstruction from 1-axis qDPC method is regarded as input dataset, and phase reconstruction
from 12-axis isotropic qDPC method is regarded as ground-truth dataset, respectively. The U-net model takes the input data one-by-one and predicts
each corresponding results. The output and ground-truth images are utilized for calculating the loss value for updating weights in each hidden layer
of the model.

phase transfer function, with significantly improved stability
and accuracy for quantitative phase recovery. On the other
hand, additional intensity acquisition is time-consuming and
causes slow phase recovery, which significantly limits tem-
poral resolution for qDPC in high-speed operation, such as
real-time observation and live cell imaging applications.

Data-driven methods of deep neural networks (DNN) are
able to enhance efficiency and performance of optical imag-
ing [14]–[16]. The deep learning (DL) approach has been
applied for different optical microscopes [17]–[21], including
interferometric based QPI [22]. Recently, a physics-based
DL method has also used in qDPC to optimize illumination
conditions for different pupil patterns [23]. Here, the pri-
mary objective is to demonstrate the implementation of deep
learning to ease experimental requirement by performing
image-to-image translation from anisotropic to isotropic phase
images. We adopted a U-net model for isotropic quantitative
phase retrieval in qDPC microscopy. Our U-net model results
using 1-axis pairwise (i.e. two-angle) intensity measurements
demonstrate similar accuracy as compared to 12-axis isotropic
qDPC (i.e. twenty-four angle) measurements. In addition,
utilization of the patch-based approach provides sufficient
image data for the model training. The small size of patched
images enables the U-net model to be trained with a higher
efficiency.

To the best of our knowledge, this is the first report on
applying a U-net model to predict the isotropic quantitative
phase distribution, with the least number of intensity mea-
surements. To demonstrate our approach, we conducted exper-
iments with seven types of living cells. Using three different
metrics, the performance of the U-net model for qDPC was
evaluated from experimental data to train, validate and test

using different living cells. Accuracy of recovered quantitative
phase from our well-trained U-net model is measured for dif-
ferent loss functions. To further analyze quantitative features
of cells using our approach, dry mass from measured values of
the quantitative phase was calculated. The results show that our
model provides accurate phase values, as well as dry mass den-
sity maps. In addition, results from our model are compared
with paired and unpaired Cycle GANs. Higher PSNR and
SSIM values show the advantage of using U-net for isotropic
qDPC microscopy. The deviation of dry mass values predicted
from our model is less than 5% of the estimated values.

II. QUANTITATIVE DIFFERENTIAL PHASE CONTRAST

MICROSCOPY

A. Quantitative Differential Phase Contrast Microscopy

The flow chart of DL based qDPC microscopy is shown in
Fig. 1. A qDPC microscope is designed based on an inverted
microscope (Leica, DMI 3000 B) as shown in Fig. 1 (a).
A 10× objective lens (HC/X PL Fluotar 0.3NA) and a con-
denser lens (Leica, S28 module) are used. Half-circle pupil
patterns are generated and controlled through a TFT panel
(Seeed, 2.8” TFT Touch Shield V2.0), which is located at
the front focal plane of the condenser lens [24]. Pairwise
images are captured by a CCD camera (Tucsen, TCH-5.0ICE
5.0MP). In Fig. 1 (b), qDPC images using 1-axis and 12-axis
intensity measurements are reconstructed for anisotropic and
isotropic phase images, respectively. In Fig. 1 (c), the
patch-based method is used for training our U-net model to
predict the 12-axis isotropic qDPC images from 1-axis qDPC
images. The U-net architecture will be discussed in detail in
section III.



LI et al.: PATCH-BASED U-NET MODEL FOR ISOTROPIC qDPC IMAGING 3231

B. Principle of Quantitative Differential Phase Contrast
Microscopy

Under partially coherent light, the intensity measurement at
the image plane can be written as [12], [24]:

I (r) =
�� ���F �

F
��

LS (u)ei2πur O (r)
�

P F(u)
����2

d2u, (1)

where LS (u) = m(u)circ(u/ρc). m(u) denotes half-circle
amplitude mask function, ρc = N Acondenser/λ, and
circ(u/ρc) is the pupil function of an objective lens. λ
denotes the central wavelength of illumination in a qDPC
microscope. r = (r x , ry) denotes spatial coordinate, and
u = (ux , uy) denotes the coordinates in the spatial frequency
domain. An object can be expressed as a complex function
O (r) = ex p(−α (r)+iφ(r)), where α (r) and φ(r) denote the
amplitude and phase distribution. P F(u) is the pupil function
of the objective lens. F denotes the Fourier transform induced
by a condenser lens and an objective lens.

With weak object approximation, the object function can
be simplified as O (r) = 1 − α (r) + iφ(r). According to
this assumption, the corresponding spectrum of (1) in the
spatial-frequency domain can be re-written as [24]:

Ĩ (u) = Ĩbackground · δ̃ (u) − H̃amplitude (u) · α̃ (u)

+i H̃phase(u) · φ̃ (u) , (2)

where Ĩbackground denotes background DC term,
H̃amplitude (u) denotes the amplitude transfer function, and
H̃phase(u) denotes phase transfer function. δ̃ (u) is the Fourier
transform corresponding to background term. α̃ (u) and
φ̃ (u) are the amplitude and phase spectrums, respectively
evaluated following earlier works [12], [24]. For the j-th
axis measurement, pairwise images are captured on the
camera as intensity distribution (I1, j , I2, j ). Accordingly,
the phase contrast image along the j-th axis is given by
ID PC, j = (I1, j − I2, j )/(I1, j + I2, j ). The retrieved phase is
given as [24]:

φ (r) = F−1

⎧⎪⎨
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where n is the number of measurements, and γ is the
regularization parameter for preventing singularity in the
reconstructed phase. In addition, the reconstruction procedure
involves multiple Fourier transform operations which reduces
reconstruction speed. Phase transfer functions for each mea-
surement can be written as:

H̃D PC, j (u) =
�

H̃phase,1, j (u) − H̃phase,2, j (u)
�
/2 Ĩ0, (4)

where H̃phase,1, j (u) and H̃phase,2, j (u) are the pairwise phase
transfer function from an asymmetric half-circle mask along
the j-th axis direction. Fig. 2 (a) and (b) show comparison
of different phase transfer functions, using 1-axis and 12-axis
measurements, and the difference between 1-axis and 12-axis
phase transfer functions is shown in Fig. 2(c)

Fig. 2. Simulation results of phase transfer function (



i

���H̃phase,i

���2)
with an asymmetric half-circle pupil with different numbers of one
and twelve measurements. (a) 1-axis qDPC phase transfer function,
(b) 12-axis isotropic qDPC phase transfer function, and (c) difference
of transfer function between (a) and (b).

III. U-NET MODEL FOR QUANTITATIVE DIFFERENTIAL

PHASE CONTRAST MICROSCOPY

A. U-Net Modeling

The U-net model has been often utilized in image
transformation as an alternative method for inverse
problems [25]–[27]. U-net has already been considered
as one of the most useful architectures for biomedical
imaging [28]. Compared to traditional CNN models, U-net
is simple, effective, straightforward, less computationally
expensive and faster with different scales of feature delivery.
The skip connection of the U-net intends to provide the local
information to the global information in the up-sampling
process. Because of the symmetry of U-net, the network has a
large number of feature maps in the up-sampling path, which
allows it to transfer information. In addition, the U-net model
has shown a better performance for phase contrast and DIC
imaging in the previous work [29]. The purpose of the U-net
in our work is to transform anisotropic quantitative phase
images to isotropic quantitative phase images. The ground
truth and input training images are obtained from isotropic
and anisotropic phase reconstruction, respectively. The phase
transfer function for ground truth images are isotropic whereas
the phase transfer function for input images are anisotropic.
In the training process, the U-net model is implicitly
dependent on the phase transfer function shown by (4).
A U-net model for obtaining isotropic qDPC images from
only 1-axis qDPC image as shown in Fig. 1 (c) [29].
In addition, the use of multiple scales and skipping
connections in the model help in retaining both low and high
level information, for recovering fine features within cells.

As shown in Fig. 3, a U-net model consists of total 19
convolutional layers for feature extraction, with four maximum
pooling (max-pool) layers, and four transpose convolutional
layers to generate multi-scale features. The number of con-
volution layers in each scale was chosen from the empirical
results following the previous works [28], [30]–[33]. The
kernel size of each convolutional layer including transpose
convolution is chosen as 3 × 3. The last layer for outputting
results is a 1 × 1 convolutional layer. The number of fil-
ters used for feature extraction is shown at the upper part
of each convolutional layer in Fig. 3. The rectified linear
unit (ReLu) activation function is applied after each convo-
lutional layer, except for the last layer which uses the tanh
activation function. The max-pool layer takes the maximum
value in the 2 × 2 area, and reduces the feature size by half.
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Fig. 3. The U-net architecture includes an encoding and decoding process with maximum pooling layer and a convolution transpose layer from left
to right, respectively. Concatenate connections, between down-sampling and up-sampling procedure, are adapted for overall contextual information
matching. The 1-axis qDPC images are used for input datasets, and 12-axis isotropic qDPC images are used for ground-truth datasets in the training
process.

The stride in the transpose convolutional layer is equal to
2 with zero-padding to obtain consistent output feature size.
The U-net model consists of multiple skipping connections
to reuse features extracted during the encoding process. The
encoded features are concatenated to the transpose convolu-
tional layer, and provide low-level information while remain-
ing high-level features [34].

In a traditional DNN model, the value vl,k
x,y at the x, y-th

pixel position in l-th convolutional layer and k-th feature map
is given by following [20]:

vl,k
x,y =

�
p f

�P−2

p=−1

�Q−2

q=−1
wl,k

p+1,q+1v
l−1,p f
x+p,y+p, (5)

where wl,k
p+1,q+1 is the weighting value in a convolutional

kernel at (p+1, q+1) position for l-th convolutional layer, and
k-th feature map. P and Q represent the size of convolutional
kernels. v

l−1,p f
x+p,y+q is the pixel value from (l-1)-th convolutional

layer, and pf indicates the feature maps in the (l-1)-th layer.
The weighting value wl,k

p+1,q+1 determines the proportion of
each pixel value that corresponds to the l-th layer. The l-th
layer of convolution involves multiplication of weighting value
and pixel value. In the training procedure, the weighting values
are updated iteratively according to the loss function. The
updated model can thus reduce the difference between the
input image and the ground-truth image.

B. Model Learning Objective

The learning objective is minimized using the following
equation:

Ulearn = argmin
Uw,w∈W

F(Uw), (6)

where Ulearn is the optimal U-net model. Uw denotes initial
U-net model weights, which are updated by training procedure,
and monitored by the loss function F . W is the set of all
possible parameters [25]. The loss function F used is the mean
square error (MSE) and given as,

F (Uw)= 1

B N M

�B

b=1

�N

n=1

�M

m=1

���� Uw

�
φ1

b (n, m)
�

−φ12
b (n, m)

����
2

2
,

(7)

where φ1
b ∈ �N×M and φ12

b ∈ �N×M represent patched
phase images from 1-axis qDPC and 12-axis isotropic qDPC,
respectively. N and M are the width and height of the single
patched image, and (n, m) are the pixel coordinates in each
phase image. B is the number of mini-batches, and in our
case B is equal to 50.

C. Evaluation Metrics

The performance of our U-net model can be evaluated by the
peak signal to noise ratio (PSNR) which assesses the quality
of prediction and can be calculated as follows:

PSNR = 10 log10

�
Maxv2

M SE

�
, (8)

where Maxv is the maximum value in the image data. The
calculation of MSE is the same as that shown in (7) without
mini-batch index. It shows that a higher PSNR value provides a
higher image quality as compared to the ground-truth images.
On the other hand, a small value of the PSNR implies high
numerical differences between two images.

Structural similarity (SSIM) is alternative evaluation metric,
regularly used for DL, and can be calculated as [35],

SSIM (im1, im2) = �
lm(im1, im2)

ε1 · ct (im1, im2)
ε2

·st (im1, im2)
ε3

�
, (9)

where im1 and im2 represent the two images to be compared.
In our case, im1 is the input or predicted images and im2 is
the ground-truth image. lm, ct, and st represent the luminance,
contrast, and structure, respectively. ε1, ε2, and ε3 are the
weighting factors for emphasizing specific parameters, which
are set to units. Here, PSNR is utilized to access the quality
of images, while SSIM is used to quantify the similarity of
the predicted and ground-truth images.

Since the phase value is related to non-aqueous content
in the biological cells, the cell dry mass can be used to analyze
the progress of cell growth, the changes of the ingredients in
the cells, and the changes of cell populations [36]. For the
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Fig. 4. Resultant images of different living cells, using 1-axis qDPC (input), 12-axis isotropic qDPC (ground truth), and DL-based qDPC (prediction).
Images of HaCaT, Bovine Endo, L929, and DP cells were taken for training datasets, and Rabbit Epi cell images were taken for validation datasets.
Absolute error maps on the left show the difference between 1-axis qDPC images and 12-axis isotropic qDPC images, and the error maps on the
right shows the difference between DL-based qDPC images and 12-axis isotropic qDPC images.

1-axis qDPC and the DL-based isotropic qDPC, the cell dry
mass is given by following [36]:

Dry mass = λ

2παprotein

��
A

φ (n, m) dndm, (10)

where αprotein is the refraction increment for proteins [37],
and φ is the phase value at the position of (n, m). We chose
region of interest in the images. Total quantitative phase of
the ROI was evaluated by summation of phase values of all
the pixels.

IV. RESULTS

Phase images from seven different types of living cells
were used for training, validation, and testing datasets for our
model. The training datasets consisted of human keratinocyte
cell line HaCaT, Bovine endothelial (Bovine Endo), L929, and
DP cells. Images of Rabbit epithelial (Rabbit Epi) cells were
used for validation datasets, while both 3T3 mouse fibroblasts
cells and rat mesenchymal stem cells (RMSC) were used
for testing. Twelve different microscope images of each cell
type were obtained, and each microscope image contained
2048×1536 pixels. An out-of-memory error often occurs when
training such huge microscope images. To solve this problem,
the patch-based method was employed [38]–[40]. The full size
image was then disassembled before the training process, and
the patch size of 512 × 512 was adopted. We tested images
with the size of 128 × 128, 256 × 256 and 512 × 512, and
obtained the lowest loss value for 512 × 512 size images.

The image was cropped from the top left position, and
overlapped by half of the image area for each neighbor
patch. The stride for image cropping was equal to 256 pixels.
The same cropping method was repeated along both horizontal
and vertical directions. The number of patches per microscope
image was 35. For the training datasets, the number of patched
images for each cell type was 420. During testing, the input
of U-net was a patched-image, instead of the original image.
Due to patch images, there will be small seam errors, which
was reduced by overlapping the neighboring patched-images
and reducing the number of patches. Four different cell
types, including HaCaT, Bovine Endo, L929, and DP cells,
were used for the training datasets; hence, total number of
patched images was 1680. For the validation and testing
datasets, the number of patched images were 420 and 840,
respectively.

Our U-net model was trained by Adam optimization
method [41]. The learning rate was set to be 1e-3. The
beta1, beta2 were the optimization parameters for Adam, and
their values were equal to 0.9 and 0.999, respectively. The
number of epochs was set to 1000. In order to reduce the loss
value, during the training process, the training datasets were
utilized for updating the weights in each kernel, and we saved
model’s weights at the epoch with the lowest validation loss.
After finishing the training step, the testing datasets were then
used for evaluating the model performance. Our model was
implemented with TensorFlow and processed on a NVIDIA
Titan XP GPU.
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Fig. 5. Both images of 3T3, and Rmsc cells were taken for testing datasets. Resultant images of 3T3 and Rmsc living cells, using 1-axis qDPC
(input), 12-axis isotropic qDPC (ground truth), and DL-based qDPC (prediction). The comparison of MSE and MAE loss functions is shown. The
absolute error map on the left show the difference between 1-axis qDPC and 12-axis isotropic qDPC, and the error maps on the middle and right
show the difference between DL-based qDPC with MSE and MAE losses and 12-axis isotropic qDPC images, respectively.

Fig. 6. Comparison of results from different deep learning models. The U-net, paired CycleGAN, and unpaired CycleGAN have been trained by the
same datasets as displayed in Fig 5. The performance of three models are shown by absolute error maps.

A. Training Results

The loss for training and validation for our U-net model
is plotted and the details can be found in supplemental
information (1). Figure 4 shows a comparison of input (i.e.
1-axis qDPC images), ground truth (i.e. 12-axis isotropic
qDPC images), and prediction (i.e. DL-based qDPC recon-
structions). Four different types of living cells, including
HaCaT, Bovine Endo, L929, and DP cells were used for train-
ing, and images of Rabbit Epi cells were used for validation.
Each cell has different structures, we have trained the model
for different combinations of seven distinct types of cells for
training, validation and testing. Eventually, we showed the best
result of utilizing four cell types for training, one cell type for
validation, and two different cell types for final evaluation on
our well-trained model. In Fig. 4, phase error maps on the left
show the absolute difference between the input and the ground-
truth images, while absolute phase error maps on the right
show the difference between the predicted and the ground-truth
images. Compared to the input images, the predicted images
provide similar accuracy to the ground-truth. In addition,
absolute error maps show that the trained U-net model recovers
images at low spatial frequencies, as well as detailed fine fea-
tures at high spatial frequencies in the input phase distribution.
By a large number of training data images, the U-net model
we applied in our study can extract the correct features during
the encoding process in the model architecture. The features
from the input images then can be converted to the 12-axis
isotropic phase by the combination of multiple convolutions

Fig. 7. Histogram of PSNR and SSIM from U-net and CycleGAN models.

and activation functions. The correspondence between the
input data and the ground-truth data enables the realization
of recovering the missing phase contents that are absent in the
input datasets. The utilization of patch-wise approach provided
more image features to be learned by model.

Apart from the training datasets, in Fig. 4 Rabbit Epi
cells show prediction results for validation datasets. To select
an optimal model without overfitting, we need to use data
that is absent in the training process for model validation.
Here, one type of cells is utilized to validate the model with
15% of available data. Here, Rabbit Epi cell are used for
validation since they have diverse shapes and structures as
compared to other cell samples. Similar to the results of
training, the error values in most of the regions were reduced
by U-net model prediction. The PSNR values in 1-axis and the
DL-based isotropic qDPC are respective 16.95 ± 1.76 dB and
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Fig. 8. (a) Phase distribution from (i) 1-axis qDPC image, (ii) 12-axis isotropic qDPC image, and (iii) DL-based isotropic qDPC image. Three regions
of interest are high-lighted with black rectangles. (b) The dry mass corresponds to selected ROIs shown in (a, i-iii). (c) Zoomed-in images from
(a) at ROI #2. (d) Cross-sections along horizontal, vertical, and diagonal directions in (c, i-iii). The corresponding profiles from input, prediction and
ground-truth in dash red, blue lines and solid black line, respectively.

24.10 ± 1.65 dB for the validation datasets. The optimal model
is generally biased towards the training datasets. Because of
the exclusion of validation datasets in the training process,
the hyper-parameters in the model were not adapted to the
features appearing in the validation data.

B. Model Evaluation

To further evaluate the performance of the U-net model,
additional unseen living cells of 3T3 fibroblast cells and
RMSC cells were utilized for testing datasets. These two
distinct cells have diversity in the cell density and shape. Fig. 5
shows phase error maps for MSE and MAE loss functions.
The phase error maps on the left show absolute difference
between the input and the ground-truth images. The phase
error maps in the middle show absolute difference between the
prediction of U-net, which is trained with MSE loss function,
and ground-truth. The phase error maps on the right show
absolute difference between the prediction of U-net, which is
trained with MAE loss function, and ground-truth. Compared
to the input images, the phase errors show similar accuracy
for MSE and MAE predicted images.

PSNR is utilized to evaluate the performance of our U-net
model, and is also evaluated for all predicted phase images
from testing datasets. In Fig. 5, the PSNR values in 1-axis and
the DL-based isotropic qDPC are respectively 26.15±1.70 dB
and 30.89 ± 2.78 dB, which are represented by the average
and standard deviation. The calculated PSNR demonstrates
that the image quality of our U-net model prediction on testing
datasets is superior to the phase reconstruction from 1-axis
qDPC. The results obtained from testing datasets show solid
evidence that our trained U-net model has the capability to deal
with different cell types with a variety of phase distributions.

In order to show the advantage of the U-net model,
we compared it with an advantages model based on
Cycle-Consistent Adversarial Networks (CycleGAN).

CycleGAN [31], [42], [43] can be considered as the improved
version of the original GAN network [44]. The results
presented here can also be obtained using conditional
GAN (cGAN) with some limitations such as hallucinations
and unwanted information in the generated data [45]. The
details of the CycleGAN architecture used in our work can
be found in supplemental information (2). Our experimentally
generated data have been used to compare the performance of
both paired and unpaired CycleGAN approaches. Comparison
of phase reconstructed results from different models is
shown in Fig. 6. The U-net, paired CycleGAN, and unpaired
CycleGAN have been trained by the same dataset as shown
in Fig 5. PSNR and SSIM are used as performance metrics
for the evaluation. The performance of the three models are
measured by absolute error maps. The paired CycleGAN has
lower errors than the unpaired. It is important to note that the
phase error maps of the U-net model are smaller as compared
with the CycleGAN models. Although the visual comparison
of the phase images predicted from the three models look
similar at the first glance.

However, the images generated by CycleGAN have more
unwanted phase contrast information, which is absent in the
ground-truth [31]. Two performance evaluation metrics for
U-net and CycleGAN models are shown in Table I.

From the above Table, higher PSNR and SSIM
values clearly show that the U-net model outperformed
the CycleGAN models due to supervised learning
approach. Above results show accuracy of U-net model
is high as compared to other models which make it suitable
for quantitative phase imaging for live cells. In addition, for
better visualization, bar charts of PSNR and SSIM for U-net
and CycleGAN models are shown in Fig. 7. The highest
PSNR value is obtained from the prediction of U-net model
with MSE loss. It denotes the small difference between
the prediction and the ground-truth images which indicates
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Fig. 9. Comparison of re-assembled images. (a) The input of the U-net model is the 1-axis qDPC. (b) Prediction from the U-net model. (c) The
ground-truth of the U-net model from the 12-axis isotropic qDPC. (d-f) 3D profiles corresponding to each ROI (high-lighted in zoomed-in orange
boxes in (a), (b), and (c)) for observation to emphasize differences between input and prediction. The apparent phase valleys in the images are
highlighted by pink arrows. The trained model compensated the apparent phase valley along the vertical direction and enhanced the contrast of
spindle-like structures marked by white arrow.

TABLE I
COMPARISON FOR PREDICTED PHASE IMAGES FROM

DIFFERENT MODELS

the better performance of U-net model compared to others.
The highest SSIM value is obtained from U-net model with
MAE loss which corresponds to high image quality.

For quantitative evaluation of phase images, we calculated
the dry mass in three different ROIs as shown in Fig. 8 (a).
In Fig. 8 (b), the dry mass was calculated by (10), and we used
12-axis isotropic phase values in each ROI as 100% dry mass
recovery and compared to 1-axis phase values and DL-based
phase values. The dry mass recovery of the input image does
not exceed 73% compared to the ground-truth. However, in the
prediction, the dry mass values calculated in each ROI are
all well recovered above 94% compared to the ground-truth.
The cross-sections along in different directions are shown in
Fig. 8 (c). Each colored dash line and solid line corresponds
to the input, prediction and ground-truth in Fig. 8 (d), and
the cross-sections along three different directions show that
the phase values obtained from the model prediction are
well-matched with the ground-truth.

Figure 9 shows the comparison of re-assembled images.
The histogram corresponding to Fig 9 can be found in sup-
plemental information (3). The apparent anisotropic phase
distribution in Fig. 9 (a) indicates that there is missing
information in the phase transfer function of the 1-axis qDPC.

The predicted phase distribution in Fig. 9 (b) provides a
similar phase distribution as from the 12-axis isotropic qDPC
results. Fig. 9 (d-f) shows 3D visualization of phase distrib-
ution corresponding to Fig. 9 (a-c). To enhance observation,
the apparent phase valleys in the images are highlighted by
pink arrows in Fig. 9 (a) and (d). The model compensated the
errors and recovered phase is shown in Fig. 9 (e). In addition,
the spindle-like structures extended from the cells are high-
lighted by white arrows.

V. CONCLUSION

In conclusion, we implemented the U-net model with
qDPC microscopy to generate high-resolution isotropic phase
images of living cells from the least number of experimental
measurements. To train, validate, and test our U-net model,
all the datasets were obtained from the experiment by our
qDPC microscopy. The patch-wise approach helps to acquire
sufficient training data and prevent hardware limitation. After
training, the U-net model significantly enhances acquisition
speed, which may help in monitoring rapid changes in living
cells. The correspondence between the input data and the
ground-truth data enables the recovery of missing detailed
phase features. The trained model accurately predicts quanti-
tative phase images with fine features in cells. With DL-based
methods we can achieve over ten times faster speed for
phase reconstruction. We also compared our U-net model
for qDPC with CycleGAN. Due to the supervised learning
approach, and higher values of PSNR and SSIM, U-net model
offers advantages in qDPC microscopy. The images generated
by the CycleGAN models have more unwanted phase con-
trast information. The U-net model provides high accuracy
for reconstructed quantitative phase images as compared to
CycleGAN. Our model can perform dry mass analysis. The
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accuracy of dry mass recovery is above 94% in all results. The
recovery of accurate dry mass from predicted phase images
can help in monitoring the cell growth progress. Additionally,
the flexibility of our DL-based method can be applied to
other pupil patterns to further enhance the performance of
qDPC imaging. Our DL-based quantitative phase measure-
ment approach has great potentials for important applications,
including cell morphology, cell dynamics, cell tomography,
cell pathophysiology, and neuroscience.
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