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Generating Synthetic Labeled Data From
Existing Anatomical Models: An Example With

Echocardiography Segmentation
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and Kristin McLeod

Abstract— Deep learning can bring time savings and
increased reproducibility to medical image analysis. How-
ever, acquiring training data is challenging due to the
time-intensive nature of labeling and high inter-observer
variability in annotations. Rather than labeling images,
in this work we propose an alternative pipeline where
images are generated from existing high-quality annota-
tions using generative adversarial networks (GANs). Anno-
tations are derived automatically from previously built
anatomical models and are transformed into realistic syn-
thetic ultrasound images with paired labels using a Cycle-
GAN. We demonstrate the pipeline by generating synthetic
2D echocardiographyimages to compare with existing deep
learning ultrasound segmentation datasets. A convolutional
neural network is trained to segment the left ventricle and
left atrium using only synthetic images. Networks trained
with synthetic images were extensively tested on four dif-
ferent unseen datasets of real images with median Dice
scores of 91, 90, 88, and 87 for left ventricle segmentation.
These results match or are better than inter-observer results
measured on real ultrasound datasets and are comparable
to a network trained on a separate set of real images. Results
demonstrate the images produced can effectively be used
in place of real data for training. The proposed pipeline
opens the door for automatic generation of training data for
many tasks in medical imaging as the same process can be
applied to other segmentation or landmark detection tasks
in any modality. The source code and anatomical models are
available to other researchers.1

Index Terms— Data generation, echocardiography, gen-
erative adversarial networks, segmentation, synthesis.
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Fig. 1. Using anatomical models as high quality ground truth anno-
tations, we propose a pipeline to generate large synthetic datasets for
training convolutional neural networks.

I. INTRODUCTION

MEDICAL imaging provides a window to capture the
structure and function of internal anatomies. Imaging

modalities such as ultrasound, computed tomography (CT) or
magnetic resonance imaging (MRI) can be used to measure
physical and physiological parameters. Accurate automation
of these measurements would provide significant time-savings
for clinical practitioners.

Convolutional neural networks (CNNs), have become the
candidates of choice for measurement automation because
they can accurately learn complex relevant features. However,
CNNs require large sets of labeled data to learn and they
are limited in accuracy by the quality of labels used in
training. Inter-observer errors can be high in medical imaging
tasks, especially when there is noise or other artifacts in the
image. For example, in cardiovascular ultrasound (echocardio-
graphy or ‘echo’), inter-observer errors for labeling common
measurements can range from 4-22% even for experienced
cardiologists [1], [2]. The variability in measurements is
due to (a) the difficulty of accurately interpreting signals
delineating structures amid image noise, and (b) differences
in implementation between different acquisition machines
and between practitioners in different institutions. A second
problem when building datasets to automate tasks in medical
imaging is labeling is time-consuming and expensive since
quality annotations require experienced medical professionals.
Finally, manual labels are inflexible and adapting them based
on new insights requires a significant amount of time.

While CNNs have been at the forefront of automating
diagnostic measurements, anatomical models are progressing
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the personalization of treatments. Simulations from “digital
twins” (models with patient-specific parameters) are increas-
ingly being used to guide therapies and develop new treat-
ments [3]. As with the revolution in statistical inferencing led
by deep learning, larger computational resources have allowed
the growth in complexity and realism of these anatomical
models [4], [5]. While originally developed for personalized
simulation of mechanics and biophysics, anatomical models
are also a valuable source of high-quality shape information.
We propose a method to solve the labeling challenges for
medical deep learning by harnessing the information contained
in anatomical models. Instead of labeling images, we let these
models represent ground-truth anatomical shapes and generate
task-specific paired realistic images as summarized in Fig. 1.

In particular, we demonstrate the usefulness of this pipeline
for the task of segmenting parts of the left heart in echo images
and thus make use of a set of cardiac models developed for
electromechanical simulations of the heart. Similar anatomical
models have been developed for a wide range of anatomies and
most are free for academic use [4], [6]. The pipeline described
here could readily be applied to those models as well with
some application specific modifications. Section V-E provides
more details on extensions to new anatomies.

A. Contributions

The proposed pipeline shifts the focus from annotating
images to ensuring a CNN trained on synthetic images will
generalize to real images. We test our pipeline by generating
synthetic data for echo segmentation. Our main contributions
are three-fold:

1) We present a pipeline to generate realistic synthetic
images with paired labels using anatomical models and
a CycleGAN [7]. The pipeline can generate datasets
of arbitrary size and include labels from any region
included in the original anatomical models.

2) We demonstrate the utility of the pipeline by build-
ing annotated synthetic 2D echo images from cardiac
models. We show these synthetic images can be used
for training deep learning algorithms, specifically by
demonstrating accurate segmentation without any real
labeled images. We present extensive validation of the
proposed pipeline by testing on multiple datasets of real
images from different clinical sites and annotators that
were completely unseen during development.

3) We present an analysis of the sources of error in the
segmentation including differences in image texture, tis-
sue shape, and annotator style. We show that differences
in the segmentations primarily come from differences in
annotator bias, highlighting the need for standardized
annotations.

B. Related Work

Because there are often only a few accurate anatomical
models available, we first experiment with using shape analysis
techniques to expand the available set of ground truth models.
Shape analysis has previously been used in medical imaging

for improving segmentations as well as for pathology detection
and registration [8]–[11].

The proposed work translates labels from a source domain
(slices from anatomical models) to a target domain (echo
in the example application). Domain adaptation is a similar
task, but uses labels from a different imaging modality
instead of models. Recently, CycleGANs have facilitated
domain adaptation with unpaired images by using two sets
of generative and discriminative networks, one for each
transformation direction [7]. Kazeminia et al. [12] and
Taghanaki et al. [13] provide overviews of CycleGANs in
medical imaging. So far CycleGANs have primarily been used
for realistic cross-modality translation to CT or MRI images
whereas this work focuses on echo. Generating echo images
is challenging because of the complex noise patterns. These
patterns change dramatically between images and even within
a single image following the acquisition settings of the user
and the stretching/squeezing of the scan-conversion process.
Compared to echo, the well-defined boundaries in MRI or
CT represent a more similar domain to the anatomical model
images. The cone in echo images is also a consistent defining
feature in the image which degrades the translational invari-
ance of convolutional networks. CycleGANs have been applied
in echo for segmentation with image quality improvement
[14] and view conversion [15], but these works used two real
datasets of echo images and thus did not have to address the
above challenges of translating from a different modality to
echo.

Others have developed alternative strategies for surmounting
limited datasets in medical imaging and Tajbakhsh et al.
provide an overview of different strategies for segmentation
with unlabeled or limited data [16]. Specifically relevant
to this work, several groups have proposed strategies using
GANs to generate synthetic data. Eschweiler et al. proposed
a CycleGAN strategy for synthesizing a microscopy cell
image and location dataset [17]. However, their labels are
randomly generated, which loses the key advantage of ground
truth anatomical models and is not applicable to most other
applications in medical imaging where anatomies cannot be
randomly generated from scratch. Huo et al. proposed SynSeg-
Net, a similar pipeline using unpaired labels from MRI to train
networks on CT images using a CycleGAN [18]. While some
of the methodologies are similar, the central difference is that
our ground truth annotations come from 3D anatomical models
rather than unpaired images from another modality. Because
detailed 3D annotations are an intrinsic part of each anatomical
model, our pipeline is applicable to any segmentation or
landmark detection task in any modality with no additional
labeling required. Our approach is focused on image synthesis
rather than domain adaptation.

Previous works generating echocardiography images have
primarily used physics simulators to exactly replicate speckle
creation from a set of reflectors. In general, these approaches
have focused on generating a few specific images rather than
large datasets. For example, Alessandrini et al. demonstrated a
full pipeline for generation of 3D echo video loops that were
realistic enough to trick some human observers [19]. While
useful for providing a ground truth of myocardial motion
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Fig. 2. Overview of proposed pipeline implemented for echocardiography segmentation. a) Extraction: pseudo images and ground truth labels
are built from the 3D anatomical models. First, a larger cohort of shapes is generated by building a statistical shape model from the original anatomies
and sampling new 3D instances using principle component analysis (PCA). Next, 2D slices of the desired view (apical four chamber shown) are
sampled. Finally, pseudo-ultrasound images and the corresponding labels are built. Each step expands the size of the dataset. b) Transformation:
The pseudo images and a dataset of unlabeled real echo images are used to train a CycleGAN to transform the pseudo images into synthetic
ultrasound images. c) Learn: The paired synthetic ultrasound images and model labels are used to train a U-Net segmentation network. d) Test: The
network trained on synthetic images is tested on real images to evaluate the utility of the pipeline. The creation of new shape models as well as the
transformation module are optional extensions. The slicing can be performed on the original models and the segmentation network can be trained
using pseudo images instead. We evaluate the effectiveness of these components in Sec. IV.

for strain estimation, this pipeline and similar approaches
[20]–[22], are ill-suited for generating training data for deep
learning algorithms because it does not scale well to larger
datasets. Each new generated image requires manual initializa-
tion and computationally heavy simulation. Other groups have
used generative adversarial networks (GANs) for echo image
synthesis. For example, Abdi et al. sampled new echo images
from labels after conditioning a GAN on a paired dataset
[23] an approach also demonstrated for skin lesions [24]. The
key drawback is this approach can only be used to augment
existing, already annotated datasets.

II. METHODS

The proposed pipeline consists of two primary steps as
shown in Fig. 2. First, pseudo images and paired labels
are generated from 3D anatomical models as described in
Sec. II-A. Second, the pseudo images are transformed into
realistic synthetic ultrasound images using a CycleGAN and
a set of real images as described in Sec. II-B. Afterwards,
in Sec. II-C, we test the utility of the generated datasets
by comparing segmentation networks trained with synthetic
images to those trained with real images when testing on
real images. The proposed pipeline is general to any med-
ical imaging application, although models for the relevant
anatomy are needed and application specific parameters are
required in the extraction. Sec. III-A describes the models
used for this application and Sec. III-B provides details on
the example application (echo segmentation) and parameters.
We demonstrate the method using several datasets as described
in Sec. III-D.

A. Extraction

The input to the pipeline is a small set of anatomical models
(“Original Models”) which contain labels for the attributes that
will be segmented or detected.

1) New Shape Models: While anatomical models provide
excellent ground truth, there are often few available which
may not provide sufficient anatomical variability to build a
heterogeneous dataset. We experiment with building addi-
tional anatomically realistic models using statistical shape
analysis. The primary modes of variation are deconstructed
from the original models using principle component analysis.
New models are generated by randomly sampling from the
first 9 modes of variation (capturing 90% of the total variation)
within two standard deviations of the mean model. We repeat
this procedure to generate 99 new models in total. Each of the
synthetic models is still an anatomically plausible shape, but
adds a heterogeneous example to our dataset. Full details of
the construction are given in Appendix A.

2) Pseudo Images and Model Labels: A CycleGAN learns
to transform the appearance from one imaging set to another.
To generate the input for the CycleGAN, a “pseudo” database
is generated where the anatomical shapes present in the pseudo
database generally match the shape distribution found in an
equivalent database of real images. Therefore the necessary
functions here are application specific and are discussed in
detail in Sec. III-B. The output of this step is both a pseudo
image and a label image which contains ground truth for the
learning step. Synthetic labels are generated from the original
model to match the chosen task and selecting the task simply
involves choosing the relevant regions in the model.

B. Transform

A CycleGAN [7] is trained to transform the pseudo images
into synthetic ultrasound images using an unlabeled set of
real ultrasound images. The default CycleGAN architecture
and hyper-parameters are used except the generator net-
work is replaced with a U-Net with 8 down-sampling levels
[25] because it trains faster and gives equivalent results.
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The CycleGAN is trained for 200 epochs. Network weights
are saved every 5 epochs. We select the best epoch by
manually reviewing a sample result from each epoch (typically
around epoch 180) but the exact epoch chosen did not have a
significant impact on results in preliminary experiments. The
selected network is used to save a synthetic image and paired
label for each pseudo image.

C. Learn

A segmentation network is trained from the set of generated
synthetic images and labels. The same U-Net architecture
from the transform step is used. The network is trained
for 30 epochs using cross-entropy loss. While the segmentation
network can be included within the CycleGAN for end-to-
end training [18], [26], we found the segmentation network
was able to consistently achieve very good results on the syn-
thetic images in preliminary results and did not find value in
including this as a loss term within the transformation process.
Additionally, splitting these two steps allowed us to develop
an equal comparison between the synthetic and real data.

III. EXAMPLE APPLICATION: ECHO SEGMENTATION

The feasibility of the pipeline is proven by building syn-
thetic datasets for 2D echo segmentation. This application was
chosen to enable comparison against existing real datasets.
Two task variants are tested. First, matching all overlapping
constraints of the synthetic and real datasets presented in
Sec. III-D, a network was trained to segment the left ventricle
endocardial border (LVendo) from apical four chamber images
taken from the end diastole phase of the cardiac cycle. Second,
the task was extended to include the left ventricle epicardial
border (LVepi) and left atrium (LA) border from both four
chamber and apical two chamber views and both end diastole
and end systole phases. Fig. 3 shows examples of apical
four/two chamber images extracted from the anatomical model
as well as examples of performing the relevant annotations in
real ultrasound images.

A. Original Models

The original models for this application were a set of
19 3D heart models derived semi-automatically from CT
images. CT images have high contrast and spatial resolution
which enables accurate delineations of structure boundaries.
These models were built for electromechanical simulations
and contain a complete set of tissue labels. Each model
contains labels for both ventricles, both atria, aorta, pulmonary
artery and veins, and both venae cavae. Additional details
on the model creation process are given in Appendix A
and by Rodero et al. [27] (currently under review, the model
construction matches that described in [28]).

B. Task-Specific Data Generation

To generate a dataset for this task, 2D slices were sampled
from the anatomical models and masked to mimic ultrasound
images. A perfect 2D apical four chamber image is defined
as the plane intersecting the apex, mitral valve center, and
aortic valve center [29]. These landmarks were extracted from

Fig. 3. Example application: echo segmentation. a) Apical two
chamber (top) and apical four chamber (bottom) views as shown in
an anatomical model. The right images show example real apical two
chamber (b) and apical four chamber (c, d) echo images with task labels.
(b, c) show the full heart while d) is zoomed to focus on the left ventricle.

each model to define the optimal plane. Apical two chamber
images were extracted by performing a 70 degree rotation
counter-clockwise around the apical long axis from the four
chamber landmarks (see Fig. 3). Although clinical guidelines
suggest rotating the probe 60 degrees [29], using 70 degrees
gave a better cut plane for the models from qualitative
evaluation. To mimic natural variation in acquisition, random
rotations of the cut planes around the long and short axes of
the LV were sampled so that some slices are foreshortened
or off-plane.

The 2D slices were transformed into pseudo images which
mimic the appearance of ultrasound images. One of the
most distinguishing features of an ultrasound image is the
‘cone’ marking the boundaries of imaging data. This is a
consistent strong feature in all images and we found that
the translational invariance of CNNs is degraded because the
network could learn relationships between the cone boundary
and structures. In other words, the CycleGAN discriminators
could find difference between real and synthetic images from
differences in structure location. In response, the generators
would hallucinate structures in random locations. For the
CycleGAN to properly transform structures as well as appear-
ance, it is important that the distributions of locations of
different anatomical structures are equally represented in both
datasets.

To match this constraint, a series of affine transformations
were applied to mimic the different LV orientations found in
real images. This primarily consisted of masking the image
with a cone and randomly cropping to either the entire heart
(‘whole heart’ image) or the LV (‘LV focused’ image). The
different crops are shown in Fig. 3 and match the image types
suggested in clinical guidelines [29]. After cropping, other
affine transforms such as rotations and squeezing were applied
to ensure the region of interest remains inside the cone and
add variance to the dataset (see Appendix A). Hard edges also
decreased the realism of the generated images (see Appendix
F) so random uniform noise and shadowing was added and the
images were blurred by convolving with a Gaussian kernel.
This process is shown in Fig. 4. To introduce additional
variety, the slicing and pseudo extraction processes were
repeated 3 times each for a total of 891 images (99 × 3 × 3).
The entire process is fully automated.

C. Segmentation Evaluation and Network Selection

Several metrics were used to evaluate the accuracy of
the trained segmentation networks. First, the Dice score
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Fig. 4. Extraction details for echocardiography. To extract pseudo
images a) a 2D plane is defined from a set of landmarks, b) the plane
is rotated and cropped to match standard acquisition parameters and
positioned to match standard positioning in real images, c) random noise
and shadows are added and the slice is blurred yielding d) the final
pseudo image. Additional details are given in Appendix A.

was measured where D = 200 ∗ (Spred ∩ Sre f )/(Spred +
Sre f ) and measures the overlap between a predicted seg-
mentation Spred and a reference segmentation Sre f . Second,
following [30], we analyzed the convexity and simplic-
ity of the output as criteria which identify successful
annotations. Because we found these two metrics vary
together, only simplicity is reported. Simplicity is defined as
Sp = √

4 ∗ π ∗ Area(Spred)/Perimeter(Spred) [31]. Note
that simplicity relies only on the segmentation mask output
from the network Spred and not the label mask Sre f .

For the task of LVendo segmentation, differences between
annotators are often because of differing placements of the
endocardial border within the myocardial tissue rather than
differing ventricular shapes. According to guidelines [29], the
LVendo border falls at the interface between the non-compacted
and compacted myocardium. If this border cannot be deter-
mined then the border falls at the blood-tissue interface.
In noisy ultrasound images it can be difficult to accurately
label this border, and there may be disagreement about which
criteria should be used. There are no clear guidelines estab-
lished for labeling LVepi and LA borders for segmentation [30]
which can lead to differences between annotators for those
tasks as well.

To capture these potential disagreements, we calculated
several additional metrics: mean distance between the contours
and Bias. Mean distance (dm) is the distance between two
contours Cre f and Cpred averaged across their length. Cx

indicates the border of Sx . Bias is the percentage error between
the segmentation areas and is defined as:

B = 200 ∗ Area(Spred) − Area(Sref )

Area(Spred) + Area(Sref )
(1)

A high average Bias (positive or negative) across a dataset
indicates a systematic difference in the labeling since the pre-
dicted results are consistently larger/smaller than the reference.
Mean distance is calculated in pixels since we do not have
access to image sizes in mm for all datasets. All other metrics
are unit-less.

All networks were able to achieve high Dice scores on
the synthetic data in preliminary experiments so selecting the
network based on best Dice on a synthetic validation set lead
to over-fitting to the synthetic data. Simplicity is a marker of
the annotation quality that relies only on the network output
and does not require a label. Therefore simplicity was tracked
on an unlabeled set of real images (separate from the test

set) through the course of training and the network with the
highest simplicity was selected for final testing. This choice
encouraged networks that generalized well to real data without
requiring labels.

Median metrics were calculated in all cases since the distri-
bution of scores was not normal. Therefore median absolute
deviation was used as a measure of variance where M AD =
Median(|Xi− X̃ |). The Wilcoxon signed-rank test was used to
calculate statistical significance between different results [32].

D. Real Datasets

Validating a dataset on a single source can lead to implicit
bias in the developed methods [33]. For example, Degel et al.
showed a decrease from 0.75 to 0.10 in Dice score for a
CNN trained on one machine and tested on another for 3D
left atrial segmentation. To account for this we validated the
pipeline using a selection of real datasets. The characteristics
of each dataset are described below and full details are listed
in Appendix A.

1) Camus: The Camus dataset was introduced by Leclerc
et al. [30]. It consists of apical four and two chamber images
with segmentation labels for LVendo, LVepi, and LA at end
diastole and end systole time points in the cardiac cycle. The
images also include quality labels, and following the authors
we limit our analysis to images of good or medium quality,
leaving 1,600 images. The images are divided into training,
validation and test splits of 80%, 10%, and 10% respectively,
keeping images from the same patient in the same split.

2) EchoNet: The EchoNet dataset was introduced by
Ouyang et al. [34]. It consists of 10,024 apical four chamber
video loops with LVendo segmentation labels for end diastole
and end systole The images were divided into training, val-
idation and test splits of 80%, 10%, and 10% respectively,
keeping images from the same patient in the same split.

3) Additional Real Datasets: Since EchoNet contains only
LVendo annotations in apical four chamber images, additional
real images were labeled with a full set of annotations, views
and cardiac phases. Mixed apical four and two chamber
videos from two different clinical sites were annotated by two
experienced cardiologists (O1 and O2). Both cardiologists use
echo as a part of their daily practice. To annotate the images
they used the whole loop to check myocardial movement to
find the correct structures and annotated LVendo, LVepi, and
LA labels at end diastole and end systole ensuring that the
labels between phases matched. The datasets were split by
institution, SiteA contains 336 images and was further divided
into training and validation splits of 80% and 20% respectively.
SiteB contains 229 images and was left exclusively as a test
set. SiteA was labeled by O1 and SiteB was labeled by O2.

4) Pathological Dataset: The anatomical models were
derived from asymptomatic patients and the aforementioned
datasets contain no information on patient diagnosis. There-
fore a set of pathological images was also gathered to test
how well the networks trained on real and synthetic images
would be able to adapt to pathological cases. 61 exams were
gathered from patients diagnosed with severe functional mitral
regurgitation, which is correlated with significant changes in
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Fig. 5. Synthetic images closely match real images. Can you guess
which images are synthetic? Answers below.3

LV shape [35], [36]. A severe diagnosis corresponds to a rating
of 4 on a 4 point scale of severity. A random apical four
chamber image was selected for each patient and O2 labeled
LVendo, LVepi, and LA areas at end diastole and end systole
(yielding 122 images total) using the same criteria as above.
All images were used exclusively for testing.

E. Synthetic Datasets

Synthetic versions of the Camus, EchoNet, and SiteA
datasets were generated using the pipeline in Fig. 2. No syn-
thetic dataset was generated for the SiteB or Pathological
datasets since both were used for testing. Extraction and
transformation were performed individually for each dataset
and separately for each view. We predicted that using separate
CycleGANs for each dataset and view would enhance the
quality of the generated views and would allow the learned
image features to be specific to the relevant dataset/view.
Although customization of datasets and views could likely
be combined into a single transformation process (using for
instance an additional conditional input to the network), the
focus of this work was on evaluating the feasibility of the
pipeline rather than optimizing the generation process for
multiple views and datasets. In most use cases all available
datasets could be combined, however they were left separate
here for evaluation purposes. Since SiteA contained fewer
images, the CycleGAN for that dataset was initialized from
the final trained CycleGAN from the Camus dataset and it
was trained for only 100 epochs. The models were built for
only a single time step so the synthetic datasets contain only
end diastole images.

To test the impact of the new shape models, a synthetic
EchoNet dataset was created without using the additional mod-
els generated in the shape extension described in Sec. II-A.1.
To maintain dataset size, the extraction part was modified to
extract 5 2D slices per anatomical model and 9 pseudo images
per slice (for a total of 855 images). This set is denoted with
an ∗ in the experiments in Sec. IV.

3a) Real SiteA b) Real Camus c) Synthetic Camus d) Synthetic SiteA e)
Real EchoNet f) Synthetic EchoNet.

F. Inter-Observer Study

To analyze label variability, an inter-observer study was
conducted for a subset of each dataset. 20 random images
were selected from the test set (or validation if no test set
was created) for the Camus, EchoNet, SiteA, Synthetic Camus,
Synthetic EchoNet and Synthetic SiteA datasets. To minimize
the possible sources of variability, and match the overlapping
constraints of the datasets, only apical four chamber end
diastole images were selected. O1 and O2 annotated all images
(except only O1 labeled the EchoNet sets) with LVendo, LVepi
and LA labels. The second round of labeling was conducted
at least 2 months after the first round for SiteA.

G. Implementation Details

Hyperparameters for the segmentation such as the learning
rate and loss function were tuned on the synthetic validation
sets. All approaches were evaluated on the Camus validation
set to ensure proper convergence and several different valida-
tion runs were run in the course of building the extraction and
transformation steps. In general, the goal of this work was
to evaluate the synthetic dataset construction using standard
segmentation approaches rather than tuning an optimal seg-
mentation network for the given application. The unlabeled
EchoNet and SiteA validation datasets were used only for
network selection (see II-C) so the labels and metrics for
these sets were never seen (and thus cannot influence design
choices). This allows us to detect implicit bias in the design
choices or training datasets. The test sets (Camus, EchoNet,
and SiteB) were used only once during final testing for the
results presented below. Additional details on implementa-
tion and hyperparameters can be found in the supplementary
material.

IV. RESULTS

The pipeline is evaluated first in Sec. IV-A by comparing
expert cardiologist’s annotations to those produced by the
proposed pipeline. Next, since the aim of this pipeline is
primarily to generate image/label pairs that are suitable for
deep learning training, we check if a CNN can effectively learn
from synthetic images in Sec. IV-B and compare to networks
trained on real data. Finally, various versions of the synthetic
dataset are analyzed in Sec. IV-C to determine which factors
contributed to accurate segmentations.

A. Generated Images and Annotations

Images from the randomly selected inter-observer set are
shown in Fig. 5 to demonstrate the realistic output of the gen-
eration pipeline. The synthetic images closely match their real
counterparts in appearance. The GAN generates this appear-
ance while maintaining the ground truth cardiac structures
from the anatomical models. Generating a single ultrasound
image from the prepared slice takes 81 ms.

Next, we checked if experts agreed with the
pipeline-generated annotations. Metrics from the
inter-observer study are shown at the top of Table I.
O2 had higher Dice scores on synthetic images than real
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TABLE I
SYNTHETIC DATA CAN EFFECTIVELY BE USED IN PLACE OF REAL DATA: MEDIAN METRICS COMPARING TRAINING WITH REAL DATASETS TO

TRAINING WITH SYNTHETIC DATASETS. THE FIRST SECTION COMPARES INTER-OBSERVER RESULTS FOR O2 ON REAL AND SYNTHETIC DATA.
THE NEXT SECTION SHOWS NETWORKS TRAINED ON REAL AND SYNTHETIC DATA FOR LVENDO SEGMENTATION IN A4C ED IMAGES AND TESTED

ON ECHONET. THE FINAL SECTION COMPARES NETWORKS TRAINED ON REAL AND SYNTHETIC DATA FOR ALL ANNOTATIONS/VIEWS/PHASES.
ALL DICE RESULTS ARE STATISTICALLY DIFFERENT WITH A P-VALUE < 0.05 (COMPUTED WITH A WILCOXON SIGNED-RANK TEST) EXCEPT FOR

THE MARKED COMPARISON (†). RESULTS ARE ORDERED BY DICE SCORE AND BOLD SHOWS THE BEST RESULT IN EACH SECTION

images on LVendo segmentations, was comparable for LVepi
and had higher scores on real images on LA segmentations.
The median image in LVendo Dice score between O2 and the
original annotator is shown in Fig. 6. Overall, O2 closely
matched the pipeline-generated labels although there was
some disagreement in the apical region. Fig. 6 also shows
that while structure consistency between pseudo and synthetic
images was not explicitly forced in the CycleGAN, the
synthetic structures remain true to the original annotation
mask. Only the results from O2 are used for comparison here
for simplicity and because there was a large intra-observer
bias in the results for O1. The results from O1 are presented
in Appendix C and showed the same patterns as O2 between
synthetic and real. Finally, Fig. 5 and Fig. 6 shows the
difference in appearance between the different datasets for
both synthetic and real images. The Camus images are
typically cloudier in appearance while the EchoNet/SiteA
images usually have a higher gain setting and are thus clearer.

B. Learning From Synthetic Data

Networks were trained on Camus, EchoNet, SiteA, and each
of the synthetic datasets for the task of LVendo segmentation
in apical four chamber end diastole images. Networks were
then tested on the EchoNet, Camus, SiteB, and Pathological
test sets. Results for EchoNet are shown in Table I and for the
other three sets in Appendix D. On the EchoNet test set the
networks trained on real EchoNet data unsurprisingly achieved
the best results, but the network trained on synthetic data
was comparable to both the networks trained on separate real
datasets (Camus and SiteA).

Fig. 6. Expert annotations on synthetic images match the anatomi-
cal model annotations at a level equal to inter-observer error on real
images: A sample image with included labels from the Camus and SiteA
images used for the inter-observer study, chosen by taking the median
Dice score between O2 and the original labeler. For the real datasets
the original labeler was [30] and O1 for Camus and SiteA respectively.
For the synthetic datasets the original label comes from the anatomical
models.

Qualitative results are shown in Fig. 7. In some cases
the networks trained on synthetic data performed poorly. For
example, in the worst case for Camus the network did not find
the correct mitral valve cut-off plane. In the worst case for
EchoNet the network found the wrong chamber, likely fooled
by the strong reflective signal just beneath that resembles a
valve. This image is also poor quality. In the worst case for
SiteB the network misread the bulging septum (yellow arrow)
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Fig. 7. Networks trained on synthetic data produce accurate
segmentations in most cases: Worst, median, and best LVendo seg-
mentation results on the Camus, EchoNet, SiteB, and Pathological test
sets for the network trained on the baseline real data and the synthetic
data. The task for all networks was LVendo segmentation in apical four
chamber end diastole images. Images were ranked by Dice score for the
network trained on synthetic data. The baseline and synthetic networks
are always specific to the dataset (so for Camus the baseline network
was trained on Camus and the synthetic network was trained on synthetic
Camus). The yellow arrow points to a bulging septum in that image (see
text). The baseline for SiteB and Pathological was SiteA.

as the mitral valve and cut off the segmentation there. The
anatomical models were originally built from CT scans of
asymptomatic patients and thus the segmentation network from
synthetic images was not exposed to pathological cases (such
as those with a bulging septum) during training. This was
shown explicitly on the Pathological test set where the network
failed to identify the LV given an enlarged LA (although
the baseline network also failed in this case). However, these
results were outliers. In most cases the network trained on
synthetic data performed well with annotations that are similar
to the manual labels and baseline.

Next, the robustness of the synthetic data was tested by
extending the task to all annotations, phases, and views.
We evaluated end diastole and end systole although the
synthetic datasets do not contain end systole images. Results
testing on the Camus, SiteB, and Pathological test sets are
shown in Table I. The network trained on the synthetic data
performed worse in both cases on LA segmentation and for
LVendo segmentation in the Camus dataset. However, on SiteB
the synthetic network outperformed all real datasets in LVendo

TABLE II
EVALUATING DATA GENERATION VARIABILITY: MEDIAN RESULTS ON

THE ECHONET TEST SET FOR LVENDO SEGMENTATION WHILE

CHANGING VARIOUS PARTS OF THE GENERATION PIPELINE. ALL DICE

RESULTS EXCEPT PSEUDO VS. PSEUDO∗ ARE STATISTICALLY

DIFFERENT WITH A P-VALUE < 0.05 (COMPUTED WITH A WILCOXON

SIGNED-RANK TEST). RESULTS ARE ORDERED BY DICE SCORE AND

BOLD SHOWS THE BEST RESULT

Dice and distance scores. There was a high positive Bias for
the synthetically trained networks on Camus and a strong neg-
ative Bias for SiteA and Camus on SiteB. The network trained
on synthetic data was able to achieve similar performance
to the networks trained on real datasets on the Pathological
dataset for LVendo segmentation, although LVepi and LA Dice
scores were slightly lower.

C. Variability Analysis

To test the impact of parameters in the pipeline, synthetic
datasets with tweaked parameters were generated and a seg-
mentation network was trained for each. To test the effect of
the transformation process, the pseudo dataset (before trans-
formation with the CycleGAN) was compared to the synthetic
dataset (after transformation with the CycleGAN). The Camus
pseudo and synthetic datasets were compared to the EchoNet
pseudo and synthetic dataset to analyze the effect of different
parameters in the extraction process and different real datasets
in the transformation process respectively. To test whether
including additional variability helped, datasets extracted from
just the 19 original anatomical models (Pseudo EchoNet* and
Synth EchoNet*) were compared to datasets extracted from
the set of 99 new shape models (Pseudo EchoNet and Synth
EchoNet). To simplify results, all networks were trained for
LVendo segmentation only and were tested on the EchoNet test
set since it was the largest.

Results are shown in Table II. Using the pseudo images pro-
vided a good baseline result even without the transformation
process. Extending the anatomical model set as well as using
dataset specific extraction processes slightly helped, but did
not make a large difference. The transformation process did
increase performance in the case that the correct dataset or a
similar dataset was used (EchoNet/SiteA). However, using the
Camus dataset actually significantly degraded the results.

V. DISCUSSION

We developed a fully automated4 pipeline for generating
large annotated datasets for training CNNs from anatomical

4Other than the manual step of selecting the CycleGAN epoch, which does
not significantly impact results.
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models. The generated synthetic images look realistic and
expert annotations on the synthetic images closely matched
those from the pipeline. Moreover, segmentation networks
trained from the synthetic datasets produced accurate segmen-
tations on real images in most cases. Dice scores from the syn-
thetically trained networks were comparable to inter-observer
errors and networks trained on a separate set of real data.

A. Generated Images and Annotations

We found that the expert annotations on synthetic images
closely matched the ones generated by the pipeline. This
indicates the paired synthetic images and labels are accurately
delineating the LV in a manner consistent with expert expecta-
tions. Dice scores between experts and the anatomical model
were lower (although still comparable) for the LA. To explain
this, Fig. 8 shows samples from the first several modes of the
shape analysis described in Sec. II-A.1. The anatomical models
show complex LA shapes as well high variability in shapes
between different models. However, the LA is typically still
annotated as a half-ellipsoid shape by the annotators (similar
to the LV - see Fig. 3) in images and we hypothesize the lower
scores were due to this difference in annotation complexity.
Apical images are typically optimized for image quality in the
LV rather than the LA, which may hinder accurate labeling of
detailed LA shapes.

The inter-observer LVendo Dice scores for real images pre-
sented here are lower than those presented by Leclerc et al. on
the same tasks [30]. There are two likely contributors to this.
First, as discussed in Sec. III-C, a lack of explicit guidelines
can cause differences in standard practice at different clinics
and our results measure experts practicing in different sites.
Second, in our inter-observer study the annotators were only
given access to a single frame during the second round. This
was necessary since the current pipeline only generates a
single frame, but the lack of myocardial movement inhibits
accurate detection of the compacted myocardium and other
features. While more difficult, it also matches the task of the
segmentation network, which is given a single frame only, and
thus represents a better comparison for the pipeline.

B. Learning From Synthetic Data

We evaluated segmentation networks trained from synthetic
data. First, we tested LVendo segmentation in apical four
chamber end diastole images and then extended the task
to LVepi and LA segmentation in apical four chamber and
two chamber views and end diastole and end systole phases.
Since there are numerous examples of deep learning methods
failing once deployed due to implicit bias in the training
dataset, we extensively validated our approach using five
different datasets from various institutions and annotators. All
hyperparameter tuning and initial tests were conducted using
only a single dataset (Camus) and we then tested the same
pipeline on additional unseen datasets. In some cases implicit
bias towards the Camus dataset in the pseudo generation step
were observed (see Appendix G), but the pipeline is still
able to adapt and produce good results across datasets. This
robustness is a strength of our work.

The network was able to achieve comparable results to a
network trained on a separate real dataset. In a review of
the results, failure cases primarily occurred when the network
struggled to properly identify the mitral valve plane in real
images (such as the worst case in SiteB of Fig. 7). Since
the valve is included in the anatomical models as a flat
disk, the synthetic images do not contain the same variation
of valve appearances of real datasets. Including a variety
of valve structures in the synthetic images is one way the
proposed pipeline could be improved. The network trained on
synthetic data was generally able to segment images from the
Pathological dataset well, but could not properly identify the
LV in cases with an enlarged LA (shown in Fig. 7 and in
supplementary material). However, networks trained on real
data also struggled on these images indicating that these cases
would likely require expert review and adjustments regardless
of the dataset used. If a known pathology should be handled,
the models could also be adjusted to include this by including
a single anatomical model exhibiting this pathology and using
the PCA shape analysis to generate variations compared to a
healthy normal model.

C. Clinical Applicability

LVendo segmentation is used clinically for an estimation of
volumes and ejection fraction which are important measures
of the efficiency of heart function. Clinical measures are not
presented here because metric pixel sizes are not given for
the datasets. However, previous studies have shown a strong
correlation between the accuracy of Dice scores and the accu-
racy of predictions of clinical parameters across multiple algo-
rithms and inter-/intra-observer studies (correlation coefficient
of -0.92 between Dice scores at end-diastole/end-systole and
ejection fraction mean average error across 12 experiments)
[30]. Thus, the small decrease in accuracy of Dice scores
presented here would likely result in a small decrease in
accuracy of clinical metrics. The Dice scores obtained with
the synthetically trained networks are still within the range of
inter-observer error, indicating the same would likely be true
for clinical metrics. Annotators rely on visually tracking the
same point across the cycle to ensure consistency between pre-
dictions at end-diastole and end-systole and ejection fraction
prediction could also be improved by including this temporal
coherence between the predictions at different phases in the
segmentation networks (using recursive neural networks for
example).

D. Variability Analysis

We also analyzed potential sources of error for the networks.
When testing images trained on one dataset on a different
dataset there are two primary elements that cause decreased
performance:

1) Texture differences: In echo these are linked to acqui-
sition changes such as varying ultrasound machines,
gain, focus, resolution, and other imaging parameters.
In the proposed pipeline, texture primarily comes from
the transformation step.

2) Shape differences: Due to a) differences in the
width/depth of the acquisition which change tissue shape
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Fig. 8. Shape variations are mainly seen in the LA, not the LV: Four
chamber slices showing ± 2 standard deviations from the mean model
for the first three modes calculated using principal component analysis
(see Sec. II-A.1). LV = left ventricle, LA = left atrium, RV = right ventricle,
RA = right atrium, and Myo = myocardium.

in the produced image, b) changes in the underlying
tissue shape, or c) differences in annotation style. In the
proposed pipeline, shape changes comes from the extrac-
tion step. Annotation style is linked to the original
anatomical models.

Texture and shape differences were previously explored
in object recognition where Geirhos et al., who showed
that CNNs trained on ImageNet for classification were more
biased towards changes in texture than shape [37]. We tested
these differences in echo segmentation in Table II, using the
generation pipeline to isolate the impact of each component.

Changes in shape due to imaging parameters were iso-
lated by varying the width/depth/percentage of LV focused
images in the two pseudo datasets and had a very small
effect. Changes in underlying tissue shape were isolated by
comparing the datasets built from the original models (Pseudo
EchoNet*/Synth EchoNet*) to the set of models containing
additional variability from the shape extension in Sec. II-A.1
(Pseudo EchoNet/Synth EchoNet). Changes in results were
small and reversed between the pseudo and synthetic sets. This
is likely because there were minimal variations in LV shape.
As shown in Fig. 8, the largest changes in the LV are variations
in size and width. Modifications to these parameters are
already included in the pseudo image generation process, thus
the shape extension did not add significant new variations of
LV shape to the dataset. Pathological changes in the underlying
shape (such as the bulging septum or enlarged left atrium in
Fig. 7) do seem to reduce segmentation accuracy. To include
these elements in the pipeline, new models could be built from
pathological cases as discussed above.

Texture changes were isolated by comparing different
synthetic datasets using CycleGANs tuned to different real
datasets since the same underlying shape was used in all
cases. Results showed that image appearance could make
a significant difference as the Synth Camus network per-
formed significantly worse than Synth EchoNet/Synth SiteA.
This matches the qualitative appearance difference between
EchoNet/SiteA and Camus in Fig. 7. Results here also showed

Fig. 9. Annotation bias can yield large differences: Violin plot
showing the amount of LVepi area comprised of the LVendo area for the
labels in each dataset. A lower value indicates a thicker myocardium.
EchoNet does not have LVepi labels.

that solid performance could be obtained with only the pseudo
network. This is an encouraging result indicating that applica-
tions without high accuracy needs could further simplify the
pipeline by removing the transformation step.

Assuming that human observers are adept at adapting to
differences in texture and shape, differences in annotator style
can be isolated from the inter-observer study presented in
Table I. Differences between observers were substantial both
in terms of Dice score and Bias, indicating a systematic
difference between annotators. Although there were various
constraints in this study (as discussed above), this difference
was also clearly present in the original datasets without those
constraints. Fig. 9 shows the ratio of LVendo area to LVepi
area for the labels of each dataset which generally corresponds
to the thickness of the labeled myocardium. This percentage
is much higher (indicating a thinner myocardium) for the
synthetic datasets than all the other datasets excluding SiteB.
While this difference could instead indicate the prevalence of
pathologies (e.g. hypertension) in the dataset, we present addi-
tional validation in Appendix E that the differences in Fig. 9
are primarily due to changes in annotation style. Results also
match previous studies showing echo measurements typically
overestimate the thickness of the myocardium [38]–[40].

Our segmentation results also point towards annotation style
as the critical factor in determining accuracy. Bias was high
for LVendo results for networks trained on synthetic data on
all other datasets than SiteB. On the other hand, networks
trained on real datasets had a high negative Bias when tested
on SiteB. The increase in Bias was correlated with lower
Dice sores and higher mean distances, but not with simplicity,
showing that the segmentations were still well-formed. This
Bias was not observed for LVepi in Table I indicating that the
variation comes purely from the differences in LVendo anno-
tation style. The high performance of the synthetic network
on SiteB matches both Fig. 9 and the low bias with O2 in the
inter-observer study since O2 labeled SiteB.

Therefore, the primary reason for decreased performance
in our experiments (for networks trained on both synthetic
and real data) was differences in annotation style, with texture
differences playing a secondary role. Other than several outlier
cases, the networks trained on synthetic data performed well
and produced well-formed segmentations. One of the advan-
tages of the pipeline proposed in this work is that the same
annotation style can be applied to images from any dataset
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which will bring consistent performance for a network imple-
mented in clinical practice. Given that the synthetic images
are built from anatomical models derived from CT images,
the synthetic images generated can be used to standardize
annotation style.

E. Extensions and Future Applications

An abundance of augmentation techniques exist specifically
for improving segmentation performance on limited datasets.
For example, several authors introduced method based on
statistical models to modify images following the decon-
structed natural shape variation [8], [9]. Methods such as
Jafari et al. [41] or Shin et al. [42] use GANs to expand
the dataset with new natural images. This work focuses on
the performance of the standard pipeline rather than one
with augmentations tuned for a specific application, but these
techniques, as well as any other task-specific augmentation
techniques (or loss functions), could readily be applied here
to improve results.

While we implemented the pipeline for 2D LV/LA echo seg-
mentation to enable comparison against existing techniques,
one of the strengths of our method is that the anatomical
models are 3D and contain annotations for a variety of tissue
types. Moreover, our method is not limited to ultrasound and a
paired database of CT or MRI images could also be generated
using this method. The pipeline is theoretically extensible
to any segmentation or landmark detection task. Extension
requires a) a small set of anatomical shape models similar to
those described in Section III-A, b) a real dataset of unlabeled
images from the relevant modality and view, and c) code
to extract a slice from the anatomical models matching real
images. Part c) can be accomplished through an analysis of
important landmarks present in the relevant images that are
also defined in the model. Additional unforeseen challenges
likely exist for adapting to new anatomies and modalities, but
we anticipate the ability to overcome these.

In addition to testing the pipeline on novel applications,
future work will focus on adapting the pipeline to 3D, which
is increasingly being used in clinical practice, but where
manual labeling is even more difficult. The difficulty of manual
labeling has thus far limited the development of benchmark
datasets which is why the focus of this validation work is
limited to 2D images. While challenging, other groups have
previously shown the ability to adapt generative networks for
3D medical image synthesis (for example [42] and [43]).
Due to GPU memory constraints these works required use
of lower resolution volumes, a challenge for adapting the
existing pipeline as well. The anatomical models could also
be used as context for generation and/or segmentation as was
proposed in [44]. Additionally, one of the strengths of echo is
the high temporal resolution. Future work will also focus on
extending image generation techniques to include labels and
images across the cardiac cycle.

VI. CONCLUSION

Building large annotated datasets can be difficult and time-
consuming. For cases where a small percentage of outliers are
acceptable, or a confidence metric can be designed to catch

outliers, we present a method to train a cardiac segmentation
network with zero manual labeling required. The generated
labels represent an accurate ground truth, can be rapidly built,
and grant additional flexibility since the anatomical models
providing the ground truth can be automatically adjusted as
required. By eliminating or reducing labeling requirements,
the proposed pipeline enables greatly accelerated deep learning
algorithm development in cardiac imaging.
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