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Abstract— Accelerating MRI scans is one of the principal
outstanding problems in the MRI research commu-
nity. Towards this goal, we hosted the second fastMRI
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competition targeted towards reconstructing MR images
with subsampled k-space data. We provided participants
with data from 7,299 clinical brain scans (de-identified via
a HIPAA-compliant procedure by NYU Langone Health),
holding back the fully-sampled data from 894 of these
scans for challenge evaluation purposes. In contrast to the
2019 challenge, we focused our radiologist evaluations on
pathological assessment in brain images. We also debuted
a new Transfer track that required participants to submit
models evaluated on MRI scanners from outside the train-
ing set. We received 19 submissions from eight different
groups. Results showed one team scoring best in both
SSIM scores and qualitative radiologist evaluations. We
also performed analysis on alternative metrics to mitigate
the effects of background noise and collected feedback
from the participants to inform future challenges. Lastly,
we identify common failure modes across the submissions,
highlighting areas of need for future research in the MRI
reconstruction community.

Index Terms— Challenge, public data set, MR image
reconstruction, machine learning, parallel imaging,
compressed sensing, fast imaging, optimization.

I. INTRODUCTION

DUE to advances in algorithms, software platforms [1]–[3]
and compute hardware, over the last five years there has

been a surge of research of MR image reconstruction methods
based on machine learning [4]–[14]. Traditionally, research
in MR image reconstruction methods has been conducted on
small data sets collected by individual research groups with
direct access to MR scanner hardware and research agreements
with the scanner vendors. Data set collection is difficult and
expensive, with many research groups lacking the organiza-
tional infrastructure to collect data at the scale necessary for
machine learning research. Furthermore, data sets collected by
individual groups are often not shared publicly for a variety of
reasons. As a result, research groups lacking large-scale data
collection infrastructure face substantial barriers to reproduc-
ing results and making comparisons to existing methods in the
literature.

Such challenges have been seen before. In the field of
computer vision, the basic principles of convolutional neural
networks (CNNs) were proposed as early as 1980 [15]
and became well-established for character recognition by
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1998 [16]. Following Nvidia’s release of CUDA in 2007,
independent research groups began to use GPUs to train
larger and deeper networks [17], [18]. Nonetheless, univer-
sal acceptance of the utility of CNNs did not occur until
the debut of the large-scale ImageNet data set and com-
petition [19]. The introduction of ImageNet allowed direct
cross-group comparison using this well-recognized data set
of a size beyond what most groups could attain individually.
In 2012 a CNN-based model [20] out-performed all non-CNN
models, spurring a flurry of state-of-the-art results for image
recognition [21]–[24].

Since 2018, the fastMRI project has attempted to advance
community-based scientific synergy in MRI by building on
two pillars. The first consists of the release of a large data
set of raw k-space and DICOM images [25], [26]. This data
set is available to almost any researcher, allowing them to
download it, replicate results, and make comparisons. The sec-
ond pillar consists of hosting public leaderboards [25] and
open competitions, such as the 2019 fastMRI Reconstruction
Challenge on knee data [27]. The dimension of public com-
petitions is not new to the MR community. Other groups have
facilitated challenges around RF pulse design [28], diffusion
tractography reconstruction [29], and ISMRM initiatives for
reconstruction [30], [31].

The 2020 fastMRI Challenge continues this tradition of
open competitions and follows the 2019 challenge with a few
key differences. First, our target anatomy has been changed
to focus on images of the brain rather than knee. Second, for
2020 we updated the radiologist evaluation process, asking
radiologists to rate images based on depiction of pathol-
ogy rather than overall image quality, emphasizing clinical
relevance in competition results. Lastly, we address a core
traditional problem in MR imaging: the capacity of models
to generalize across sites and vendors. We introduce a new
competition track: a “Transfer” track, where participants were
asked to run their models on data from vendors not included
in training. This contrasts with the 2019 challenge, which
only included data from a single vendor for both training and
evaluation.

II. METHODS

This challenge focuses on MRI scan acceleration, a topic
of interest to the MR imaging community for decades. MRI
scanners acquire collections of Fourier frequency “lines”, com-
monly referred to as k-space data. Due to hardware constraints
on how magnetic fields can be manipulated, the rate at which
these lines are acquired is fixed, which results in relatively
long scan times and has negative implications with regard
to image quality, patient discomfort, and accessibility. The
major way to decrease scan acquisition time is to decrease
the amount of data acquired. Sampling theory [32]–[35] states
that a minimum number of lines are required for image recon-
struction. This minimum requirement can be circumvented
by incorporating other techniques such as parallel imaging
[36]–[38] and compressed sensing [39]. More recently,
machine learning methods have demonstrated further accel-
erations over parallel imaging and compressed sensing
methods.

To promote the advancement of methods for accelerated
MRI, we organized a public challenge. We applied retro-
spective downsampling to fully-sampled MRIs and provided
the downsampled data to challenge participants. Challenge
participants ran their models on the downsampled data and
submitted it to the competition website at https://fastmri.org,
where we quantitatively evaluated it using the fully-sampled
data as gold standards. We selected six cases for each of the
top three teams in each track of the challenge (three tracks
total) and presented the cases to a group of six radiologists
for qualitative evaluation. The challenge winner was selected
based on the best depiction of pathology compared to the
ground truth as judged by radiologists.

At a high level we describe the principles of our 2020 chal-
lenge as follows. Using knowledge we gained through the
2019 challenge, we identified a few key alterations for 2020.
These include:

• A new imaging anatomy, the brain, the most
commonly-imaged organ using MRI.

• A focus on an evaluation of pathology depiction rather
than overall image quality impressions to strengthen the
connection between the challenge evaluation and clinical
practice.

• An emphasis on generalization with the introduction of
a new “Transfer” track where participants were asked to
run their models on multi-vendor data.

• We removed the single-coil track and moved to a pure
multi-coil challenge to increase the clinical relevance of
the submitted models.

• Due to easier practical implementation and removal of
the single-coil track, we used pseudo-equispaced subsam-
pling masks (i.e., equispaced masks with a modification
for achieving exact 4X/8X sampling rates) rather than
random. This follows more closely sampling patterns (and
relaxation effects) that are used for parallel imaging in
vendor sequences, facilitating easier clinical deployment.
We maintained the fully-sampled center due to its utility
for autocalibrating parallel imaging methods [36], [38],
[40] and compressed sensing [39].

• In the 2019 challenge our baseline model was a
U-Net [41]; however, winning models [42]–[44] of the
2019 challenge were variational network/cascading mod-
els [27]. For the 2020 challenge, we provided a much
stronger baseline model based on an End-to-End Varia-
tional Network [14].

We kept the following principles from the 2019 challenge:
• We again used a two-stage evaluation, where a quanti-

tative metric was used to select the top 3 submissions.
These finalists were then sent to radiologists to determine
the winners. We used the structural similarity index
(SSIM) [45] as our quantitative image quality index
for ranking submissions prior to submission to clinical
radiologists [27].

• We wanted to maintain realism for a straightforward, 2D
imaging setting, and so all of the competition data was
once again based on fully-sampled 2D raw k-space data.

• For the ground truth reference, we had discussions on
alternatives to the root sum-of-squares (RSS) method
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used for quantitative evaluation in 2019. Although there
was some consensus on the drawbacks of RSS [46], [47],
there was no consensus on a single best alternative. In the
following sections we discuss the impact of this choice
further.

A. Challenge Tracks

In the 2019 challenge we included three submission tracks:
multicoil with four times acceleration (Multi-Coil 4X), mul-
ticoil with eight times acceleration (Multi-Coil 8X), and
single-coil with 4X acceleration (Single-Coil 4X). Among
these tracks, the single-coil track garnered the most engage-
ment, but due to its distance from clinical practice we decided
to remove it from the 2020 challenge, replacing it with
the Transfer track. For the standard multicoil tracks in the
2019 challenge, we observed that although there were many
high-quality submissions at 4X, all of the submissions began
missing pathology at 8X acceleration [27]. Since this time,
4X machine learning methods have been validated for clinical
interchangeability [48]. This suggests that the current upper
limit of 2D machine learning image reconstruction perfor-
mance remains between 4-fold and 8-fold acceleration rates.
In order to provide participants with both an obtainable target
and a “reach” goal, we kept the 4-fold and 8-fold tracks for
the 2020 challenge.

One frequent feedback on the 2019 challenge was on gen-
eralizability: despite the size of the data set, all of the data and
results were from studies performed on MRI scanners from a
single vendor at a single institution. To address this, we created
the new Transfer track at 4-fold acceleration (Transfer 4X). For
the Transfer track, participants were asked to run their models
on data from vendors outside the main fastMRI data set. There
was a caveat: we also restricted participants in the Transfer
track to train their models only using available fastMRI data
to ensure evaluation of transfer capability. At the time of the
2020 challenge announcement, we stated that these data would
come “from another vendor” but did not specify further. At the
challenge launch time, we revealed that the challenge data for
this track was a mix of data from GE and Philips, providing
additional difficulty for participants. As a result, submissions
in the Transfer track exhibited wide deviations in performance
depending on vendor.

B. Data Set

For the 2020 challenge we used brain MRI data. The
neuroimaging subset of the fastMRI data has been described
in an updated version of the arXiv paper [25], with further
information included in the supplemental material for this
paper. It includes 6,970 scans (3,001 at 1.5 T, 3,969 at 3 T)
collected at NYU Langone Health on Siemens scanners using
T1, T1 post-contrast, T2, and FLAIR acquisitions. Unlike
the knee challenge, this data set exhibits a wide variety of
reconstruction matrix sizes. A summary of the data for the two
main track splits is shown in Table I. Of these 6,970 scans,
565 were withheld for evaluation in the challenge. In addition
to standard HIPAA-compliant anonymization practices, all

TABLE I
SUMMARY OF THE CHALLENGE DATA

scans were cropped at the level of the orbital rim, preserving
only the top part of the head.

For the challenge, the 565 scans were augmented further
by 329 non-Siemens scans for the Transfer track. GE data
were collected at NYU Langone Health and Philips data were
collected on volunteers by clinical partner sites of Philips
Healthcare of North America. Since the Philips data was
collected on volunteers, this subsplit had no post-contrast
imaging. One difficulty of the Transfer track was the fact
that the GE data did not contain frequency oversampling.
The lack of frequency oversampling was due to automatic
removal during the analog-to-digital conversion process on the
GE scanner.

In total the 2020 challenge had 6,405 scans available for
training and validation (train, val, test) and there were 894 total
scans for evaluation in the final challenge phase. This marked
a substantial increase in scale from the 2019 challenge. For
reference, the multicoil data from the 2019 challenge on
knee data had 1,290 scans for training and validation (train,
val, test) and 104 scans for the challenge, so the data for
training increased by roughly 5-fold and the data for challenge
evaluation increased by roughly 8-fold.

Participants were restricted to only use this data set for
training the weights of their models. We did permit partic-
ipants to use their own data as validation data, but not for
backpropagating gradients.

C. Evaluation Process

Submissions were processed via https://fastmri.org. This site
maintains a submission system for both the challenge and
the public test leaderboard. Currently, there are no plans to
make the challenge split of the data available in order to
maintain the integrity of the results, but research groups may
submit to the public leaderboard using the test set via the
website at any time.

After submission, evaluation followed a two-stage process
of comparisons to the fully-sampled “ground truth” images.
For the ground truth images, we followed the previous con-
vention [27] to use root sum-of-squares images. The advantage
of this approach is that it does not bias to any one method
for coil sensitivity estimation. There are some drawbacks to
RSS, including 1) discarding of the phase information and
2) RSS images can have substantial noise in the background.



MUCKLEY et al.: RESULTS OF 2020 fastMRI CHALLENGE FOR MACHINE LEARNING MR IMAGE RECONSTRUCTION 2309

The phase is not typically used for anatomical evaluation. The
issue with noise is more fundamental as it is treated as ground
truth in our quantitative evaluation, and any deviations from it
influence our ranking. This is counterbalanced by using radiol-
ogist evaluation for declaring the challenge winner. In planning
for the challenge, we were unable to build consensus on an
alternative ground truth calculation technique, but this topic
could be re-examined in future challenges. For the quantitative
evaluation metric, we chose to use SSIM [45], with a script
showing the script used for evaluation in the fastMRI repos-
itory at https://github.com/facebookresearch/fastMRI. SSIM
has several parameters. We investigated adjusting these para-
meters prior to challenge launch, but found that they generally
did not alter the ranking of methods evaluated in our quality
control phase, and so as a result we used the default parameters
in scikit-image [49].

For the qualitative assessment phase, a board-certified neu-
roradiologist selected six (two T1 post-contrast, two T2, and
two FLAIR) cases from the challenge data set in each of the
three tracks. Cases were specifically selected to represent a
broad range of neuroimaging pathologies from intracranial
tumors and strokes to normal and age-related changes. The
selection process favored cases with more subtle patholo-
gies for the 4X track and more obvious pathologies for
the 8X track with the objective that this might yield better
granularity for separating methods in the 4X track. Selected
cases included both intraaxial and extraaxial tumors, strokes,
microvascular ischemia, white matter lesions, edema, surgical
cavities, as well as postsurgical changes and hardware includ-
ing craniotomies and ventricular shunts. The Philips data set
was constructed from images of volunteers. Therefore small
age-related imaging changes were used for ranking in place
of pathology.

Six radiologists with 9-16 years of experience (two of
whom are radiology division chiefs) were asked to evaluate
the 18 selected image volumes for each team, basing their
overall ranking on the quality of the depiction of the pathology
using the ground truth as a reference. Radiologists came from
a wide set of institutions, including the Mayo Clinic, Baylor
College of Medicine, NYU Langone Health, the University
of Pittsburgh Medical Center, Stanford University, and the
University of California, Los Angeles. None of these insti-
tutions had finalist submissions. All radiologists looked at all
images in the selected cases during the qualitative evaluation
phase, and results were averaged. Radiologists were aware of
the overarching goals of the challenge but were blinded as to
which teams submitted the images. In addition, we also asked
radiologists to score each case in terms of artifacts, sharpness
and contrast-to-noise ratio (CNR) using a Likert-type scale.
On the Likert scale, 1 was the best (e.g., no artifacts) and
4 was the worst (e.g., unacceptable artifacts). A Likert score
of 3 would affect diagnostic image quality.

D. Timeline

The 2020 challenge had the following timeline:
• December 19, 2019 - Release of the brain data set and

update to the arXiv reference [25].
• July 9, 2020 - Announcement of the 2020 challenge.

• October 1-15, 2020 - Release of the challenge data set
and submission window.

• October 16-19, 2020 - Calculation of SSIM scores.
We selected the top 3 submissions for each track and
forwarded them to a panel of radiologists for qualitative
evaluation.

• October 19-November 1, 2020 - Radiologists evaluated
submissions. They were asked to complete a score sheet
for each of the 3 tracks which included ranking the
submissions for each individual case in terms of overall
quality of depiction of pathology.

• December 5, 2020 - Publication of the challenge leader-
board with results.

• December 12, 2020 - Official announcement of the win-
ners of the three tracks with presentations at the Medical
Imaging Meets NeurIPS Workshop.

E. Overview of Submission Methodologies

Here we share a brief description of the methodologies
behind each of the submissions that made it to the finalist
round for radiologist evaluation. The developers of these
submissions are included as co-authors on this paper.

A summary of finalist model properties is shown in
Table II. (Team names: “AIRS” is AIRS Medical, “ATB” is
ATB, “MRR” is MRRecon, “Nspin” is Neurospin, “Res” is
ResoNNance.) The number of model parameters ranged from
841,000 in the case of ResoNNance to 200 million in the
case of AIRS. Teams applied GRAPPA [38], ESPIRiT [40],
or simple zero-filled initializations. For coil estimation, teams
used either ESPIRiT [40] or a simple center-based estimation
with U-Net refinement similar to that in the End-to-End
Variational Network [14]. Teams used 1-8 GPUs for training,
and training time was between 7 and 21 days.

AIRS Medical: The AIRS Medical model used a com-
bination of image- and k-space-domain processing in a
fashion analogous (but distinct) from that used in KIKI-
Net [8]. The model included a data consistency cascade with
4 U-Net stages. At each convolutional layer of the U-Net [41],
the multi-domain processing split the channels into one group
that operated in image space and one group that operated in
k-space [8]. Data consistency was enforced at each layer. The
network was initialized with a GRAPPA estimate [28] (pre-
processed into reconstruction + residual), and coil sensitivities
were estimated using ESPIRiT [40]. Since the sampling pattern
was pseudo-equispaced, multiple GRAPPA kernels were used
to calculate the GRAPPA images. AIRS optimized their model
using Adam [50] over 20 epochs using a batch size of 4 at a
learning rate of 10−3 (decayed to 10−4 after 15 epochs) with
SSIM as the loss function. Optimization took approximately
7 days on four NVIDIA V100 GPUs. Code is not publicly
available.

ATB: The ATB model, called “Joint-ICNet” [51], was a
10-iteration unrolled algorithm with CNNs replacing regular-
ization terms in a fashion similar to other recent methods [5],
[8], [14]. Joint-ICNet used the U-Net [41] at each convo-
lutional layer with the dual-domain processing previously
introduced in KIKI-net [8]. Joint-ICNet used a zero-filled
reconstruction as the initial estimate and and coil sensitivities
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TABLE II
FINALIST MODEL PROPERTIES

were calculated by refining a rough central k-space estimate
with a U-Net [14], [41]. ATB optimized Joint-ICNet using
Adam [50] over 50 epochs using a batch size of one at a
learning rate of 10−4 with SSIM as the loss function. Training
took approximately 10 days using 8 NVIDIA TITAN GPUs.
Code is not publicly available.

MRRecon: The MRRecon model, called “Momen-
tum_DIHN,” unrolled the Nesterov momentum algorithm with
CNN-based regularization for 12 cascades, 6 pre-cascades, and
0 or 1 post-cascade. The CNN module is a “Deep, Iterative,
Hierarchical Network” (DIHN) that extends the Down-Up
network [52] with a hierarchical block design, facilitating
memory efficiency over a standard U-Net [41]. Momen-
tum_DIHN used a zero-filled image as the initial estimate and
ESPIRiT for calculating coil sensitivities. To improve transfer
track performance, models with several hyperparameters were
ensembled to generate the final images. MRRecon optimized
Momentum_DIHN using Adam [50] for less than 5 epochs
using a batch size of one at a learning rate of 10−4 with
a compound L1/MS-SSIM loss function [42]. Training took
approximately 14 days on an NVIDIA V100 GPU. Code is
not publicly available.

Neurospin: The Neurospin model, called XPDNet
[53], [54], is a modular neural network unrolling the
Chambolle-Pock algorithm [55] for 25 iterations. The model
was inspired by the primal-only version of the Primal-Dual
net [56], replacing the vanilla CNN with a multi-level
wavelet CNN [57]. XPDNet used a zero-filled image
as the initial estimate and calculated coil sensitivities
using a rough central k-space estimate refined by a
U-Net [14], [41]. Neurospin optimized XPDNet using Rec-
tified Adam [58] over 100 epochs using a batch size of one
at a learning rate of 10−4 with a compound L1/MS-SSIM
loss function [42] (98% MS-SSIM weight). Training
took approximately 7 days on an NVIDIA V100 GPU.
Code is available at https://github.com/zaccharieramzi/fastmri-
reproducible-benchmark.

ResoNNance: ResoNNance used a Recurrent Inference
Machine (RIM) that has been previously described [31],
[44], [59], [60]. Coil sensitivities were calculating using the
center of k-spaced followed by U-Net refinement [41]. RIM
used ESPIRiT as the model input calculated from the BART
toolbox [61]. ResoNNance optimized RIM using Adam [50]
over 90 epochs using a batch size of one at a learning rate
of 10−3 with an SSIM loss function. Separate models were
trained for every field strength (1.5 T, 3 T) and contrast
(FLAIR, T1/T1PRE/T1POST, and T2). Code for the RIM, data

Fig. 1. Examples of 4X submissions evaluated by radiologists with
slice-level SSIM scores. All methods reasonably reconstructed T2 and
FLAIR images. The ATB and Neurospin methods struggled with a sus-
ceptibility region, exaggerating the focus of susceptibility and introducing
a few false vessels between the susceptibility and the lateral ventricular
wall. In other cases, radiologists observed mild smoothing of white matter
regions on T1POST images.

loaders, and documentation can be found through the DIRECT
repository at https://github.com/directgroup/direct.

III. RESULTS

A. Submission Overview

For the 2020 challenge we received a total of 19 submissions
from eight different groups. Seven groups submitted to the
Multi-Coil 4X and Multi-Coil 8X tracks. One of these groups
chose not to submit to the Transfer track, while an eighth
group submitted only to the Transfer track. As previously,
we encourage all submitting groups to publish papers and code
used to generate their results.

Figure 1 shows an overview of images submitted to the 4X
track of the challenge with Siemens data that were forwarded
to radiologists. All three top performing submissions were able
to successfully reconstruct the T2 and FLAIR images with
minimal artifact presentation. For some images in this track’s
evaluation, radiologists had difficulty perceiving substantive
differences between the three top performing reconstructions
in terms of their overall ability to depict the pathology.
Overall, the results were better on the high signal-to-noise
T2 and FLAIR contrasts compared with those on the T1POST.
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Fig. 2. Examples of 8X submissions evaluated by radiologists with
slice-level SSIM scores. At this level of acceleration fine details are
smoothed and obscured for all contrasts. On T1POST images, AIRS
Medical was relatively more successful than ATB and Neurospin in
showing fine details of the mass, particularly in its periphery. Noticeable
on the FLAIR images are horizontal “banding” effects that arise from how
neural networks interact with anisotropic sampling patterns.

In the case in Figure 1, the ATB and Neurospin methods
struggled with a strong susceptibility effect, introducing false
vessels between the susceptibility and the lateral ventricular
wall.

Figure 2 shows example images for radiologist evaluation
from the 8X track with Siemens data. In this track, artifacts
are seen to be more severe and pronounced. For some cases
radiologists stated that they were hesitant to accept any of
the submissions at 8X. Over-smoothing is readily apparent in
T1POST reconstructions from all three of the top performers.
We noticed at this acceleration level that so-called horizontal
“banding” effects [62] could be appreciated in the FLAIR
images due to the extreme acceleration and the anisotropic
sampling pattern.

Example images from the 4X Transfer track are shown
in Figure 3. For this track, we observed the lowest SSIM
values (Section III-B). Of note, there is a divergence between
performance of methods on GE versus Philips data. This can
be seen the image submitted by ResoNNance in Figure 3,
which introduces artifacts in its reconstructions of the GE
images (T1POST and T2 in Figure 3), but less so in its
Philips reconstruction (FLAIR in Figure 3). Most participant

Fig. 3. Examples of 4X Transfer submissions evaluated by radiologists
with slice-level SSIM scores. The T1POST and T2 examples are from
GE scanners, whereas the FLAIR example is from a Philips scanner. All
methods introduced blurring to the images. Several methods had trouble
adapting to the GE data while performing relatively well on the Philips
data, as seen in the form of aliasing artifacts in one of the T1POST
images.

models (trained on Siemens data) were able to reconstruct
Philips data with higher fidelity than GE, likely due to the
fact that Philips and Siemens followed the same protocol for
writing frequency-oversampled data to their raw data files. An
additional factor is that GE uses a T1-based FLAIR, whereas
Philips and Siemens use a T2-based FLAIR.

B. Quantitative Results

Figure 4 shows an overview of SSIM scores across group
rankings. SSIM values were highly clustered in the 4X track,
with all top 4 participants scoring between 0.955 and 0.965.
We observed greater variation between submissions in the 8X
track, with the top participant scoring 0.952 and the others
scoring below 0.944. The greatest variation occurred in the
Transfer track. Many participants struggled to adapt their
models to GE data. These data did not include frequency
oversampling in the raw k-space data, which we have observed
can decrease SSIMs for models by as much as 0.1-0.4 if no
other adjustments are made. On the other hand, the Philips
data did include frequency oversampling, so adaptation here
was more straightforward.
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TABLE III
SUMMARY OF AVERAGE SSIM SCORES WITH 95% CONFIDENCE INTERVALS

Fig. 4. Summary of SSIM values across contestants. (top) Model
perfomance for teams submitting to the main 4X and 8X Siemens
competition tracks. (bottom) Model performance for teams submitting to
the Transfer track (combination of GE and Philips data). The “AVG” model
score for the Transfer track was a simple average across all volumes in
the Transfer track.

Table III summarizes results by contrast for the finalists
in each competition track with means and 95% confidence
intervals based on 2.5% and 97.5% quantiles. The strongest
SSIM scores were usually recorded on T1 post-contrast images
(T1POST), while the weakest scores were typically on FLAIR
images. The same participant recorded the top average SSIM
score for every contrast in every track except the Transfer track
for T1 contrast. In this case, two other participants posted
higher SSIM scores.

One team, HungryGrads, submitted to all tracks and
received a very low SSIM score between 0.4 and 0.5. This
team set the background air to nearly 0s, which led to
a clinically irrelevant SSIM loss of approximately 0.3 for
their submissions. The HungryGrads submission prompted our
team to perform a post-hoc analysis where we masked both
the submission and the reference RSS ground truth before
calculating SSIM, with results plotted in Figure S1 in the sup-
plementary material. Applying this mask markedly improved
the SSIM scores of HungryGrads, although it would not have
made this team a finalist. Applying the mask would have
enabled ATB to enter the finalist round for the Transfer track.
Our custom mask would not have changed finalist rankings
otherwise.

C. Radiologist Evaluation Results

Radiologist rankings based on quality of pathology depic-
tion were concordant with SSIM scores for the top submissions
as shown in Figure 5. The second and third place performers
for both 4X and 8X tracks were flipped between the quan-
titative ranking based on SSIM and the qualitative ranking
based on radiologists. The SSIM difference between these
two reconstruction methods was relatively small, out to the
third decimal place. In the Transfer track, radiologist rankings
matched rankings based on SSIM.

A summary of the ranks and Likert scores with
means and standard deviations is shown in Table IV
(AIRS = AIRS Medical, Nspin = Neurospin,
MRR = MRRecon, and Res. = ResoNNance). We applied
standard deviations for Table IV (instead of quantiles as used
in Table III) to show more information on the variability.
Across all metrics AIRS Medical separated itself from the
other submissions with the highest SSIM and best image
quality. Aside from this single team, differentiation among
the other teams was not strong. Of note, both the Neurospin
and ATB teams had nearly identical average SSIM scores for
the quantitative evaluation, with ATB presenting a slightly
higher score (0.960 vs. 0.959 in 4X, 0.944 vs. 0.942 in 8X).
In the radiologist evaluation phase, these ranks flipped, with
Neurospin receiving slightly higher ranks (1.94 vs. 2.22 in
4X, 2.25 vs. 2.28 in 8X).
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TABLE IV
SUMMARY OF QUALITY RANKS AND LIKERT SCORES

Fig. 5. Scatter plot of mean radiologist rank across cases. The horizontal
axis has a separate tick for each case evaluated by the radiologist cohort.
The scatter plot markers indicate whether that method was from the team
with the highest, middle, or lowest SSIM scores. We generally observed
radiologists awarding the best ranks to models with the best SSIM score.

A case-wise breakdown of the ranks for all 3 finalists
and all rated cases is shown in Figure 5. For second and
third-place metrics as rated by SSIM, radiologist assessment
was discordant between the two methods. However, in 16 out
of 18 cases the highest SSIM score within the finalists’ batches
also received the highest radiologists’ rating. A similar relation
- not shown here - was found for the other used metrics such
as normalized mean-squared error (NMSE) and peak signal-
to-noise ratio (PSNR).

Radiologist agreement according to Kendall’s coefficient of
concordance generally improved as SSIM scores diverged. We
calculated the concordance using radiologist rankings of teams
for quality of depiction of pathology vs. the ground truth. For
each case in the radiologist evaluation phase, we evaluated
Kendall’s coefficient of concordance with tie correction, and
then aggregated over all cases by averaging. This resulted in
values of 0.457 for the 4X track, 0.386 for the 8X track,
and 0.781 for the 4X Transfer track (where 0 indicates
complete disagreement and 1 indicates complete agreement).

Fig. 6. Examples of reconstruction hallucinations among challenge sub-
missions with SSIM scores over residual plots (residuals magnified by 5).
(top) A 4X submission from Neurospin generated a false vessel, possibly
related to susceptibilities introduced by surgical staples. (middle) An
8X submission from ATB introduced a linear bright signal mimicking a
cleft of cerebrospinal fluid, as well as blurring of the boundaries of the
extra-axial mass. (bottom) A submission from ResoNNance introduced
a false sulcus or prominent vessel.

In the 4X and 8X tracks, discordance was primarily driven
by two submissions (Neurospin and ATB) that were very
close in SSIM score. For the Transfer track, separation among
the teams was more clear, and we observed corresponding
increases in concordance.

Radiologists did take note of hallucinatory effects intro-
duced by the submission models. Figure 6 shows hallucination
examples from all three tracks. In some cases methods created
artifact-mimics. In other examples, models morphed an abnor-
mality into a more normal brain structure, such as a sulcus or
vessel. Finally, we observed at least one example combining
these two where an artifact was created at some intermediate
layer of a model and then processed by the remaining portions
of the network into a normal structure mimic.

IV. DISCUSSION

A. Submission Overview

In the 2019 challenge all three tracks were very closely
contested, with little separation between teams either in the
quantitative or the radiologist evaluation phases. We observed
this pattern to be reversed in the 2020 challenge, with one
team assertively scoring the best in all evaluation phases. For
some images in the 4X track, multiple radiologists said that
they did not observe major differentiating aspects affecting
the depiction of pathology in the submissions. However, when
averaging the radiologists’ rankings, radiologists preferred the
method that had the highest-scoring on SSIM from AIRS
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Medical. We further observed that the AIRS model scored
highest on Likert-type ratings of artifacts, sharpness, and
CNR. This model also provided improvement over the base-
line [14], which had previously been demonstrated for clinical
interchangeability at 4X for knee imaging [48]. Outside of
the AIRS model, in the 4X and 8X tracks the second and
third-place models scored very close together in both the
quantitative and the qualitative evaluation phase. In some cases
the SSIM scores for these two models were identical out to
three decimal places.

We observed decreases in performance in the Transfer track.
Many participants struggled to adapt their models to the GE
data with its lack of disk-written frequency oversampling.
Although technically the GE scanner did not operate in any
majorly different way than Philips and Siemens scanners
(all use frequency oversampling), this simple aspect ren-
dered many models useless in this track without modification.
Another factor was a divergence in FLAIR methodology: our
Philips and Siemens data used T2 FLAIR images, whereas
the GE data had T1 FLAIR images. Modifications for cor-
recting these effects seem not to be straightforward. We note
that as designed the Transfer track primarily evaluated one
type of transfer: generalization across vendors. This was the
most commonly-cited type of transfer in feedback from the
2019 challenge, but future challenges may investigate other
types of transfer.

In terms of radiologist evaluations, despite the drawbacks
of SSIM and RSS ground truths, we observed a correlation
between radiologist scores and SSIM scores for large SSIM
separations. Multiple radiologists found images at 4X to
be similar in terms of depiction of the pathology, although
artifacts tended to be more problematic in T1POST images.
When it came to the 8X and Transfer tracks, radiologist
sentiment became more negative. Multiple radiologists in both
of these tracks offered feedback that none of the submitted
images would be acceptable, indicating that these two tasks
may remain open problems going into 2021.

We note that the results of this paper were observed
within the regime of retrospective undersampling. Retrospec-
tive undersampling does not consider potential differences
in signal relaxation along the echo trains. Even though
echo trains can be designed for most sequences in such
a manner that undersampling does not lead to a change
in overall relaxation weighting along the phase dimension,
we have not shown equivalency in our work. We would
recommend that researchers confirm the results of the methods
in this paper with prospective sampling prior to clinical
use.

The results of the challenge suggests a few conclusions on
approaches. The first: cascaded models with a data fidelity
term and CNN regularization continue to dominate the submis-
sion field, as occurred in the previous challenge [11]. Second:
AIRS, the team that won all three tracks, had the largest
model. However, large models were not always better, with
ATB having a model with similar performance to Neurospin
despite having 87% less parameters. Lastly, we note the AIRS
model used a normalization routine to get the data into a
consistent format for all coil configurations, as well as being

the only team to use a GRAPPA [38] reconstruction as the
initialization.

B. Quantitative Evaluation Process

Discussions around the quantitative evaluation process pri-
marily concerned the presence of background noise during
both the planning and execution stage of the challenge. The
influence of background noise on SSIM scores is substantial.
One participant in the 2019 challenge had a dedicated style
transfer model in order to add this noise back into the recon-
structed images [63]. Despite the drawbacks to SSIM, we were
unable to agree on an alternative for the 2020 challenge.

In the 2020 challenge, the HungryGrads team submitted
images with backgrounds of nearly zeroes, which penalized
their scores. Prompted by this submission we investigated the
effect a masked metric might have had on their scores in details
in Supplementary Material. We opted for a masking algorithm
that removes most background pixels and altered the algorithm
parameters for low-SNR edge cases where it did not perform
well. Due to the relatively small size of the challenge data
set visual inspection of the validity of the masks was feasible.
The ranking of the challenge did not change dramatically due
to masking, but masking made metrics less prone to a specific
reconstruction method’s impact on the background.

Another intriguing alternative would be to use alterna-
tive reconstruction techniques such as adaptive combine that
implicitly suppress background noise [47]. We considered
using adaptive combine reconstructions in our evaluation, but
concluded that the results were not particularly meaningful as
most models had been trained with RSS backgrounds. Another
alternative to adaptive combine would be to use other metrics
that are more aware of the noise properties, such as Stein’s
Unbiased Risk Estimate (SURE).

One area lacking in our quantitative analysis was hallu-
cination detection. This is an area of great interest to the
community, but as of the end of our challenge we were
unaware of automated, quantitative methods for detecting
lesions or characterizing stability (although some methods
can demonstrate instability qualitatively [64]). Detection of
automated stability/hallucination analysis remains a topic of
great interest for future challenges.

C. Qualitative Radiologist Evaluation

For the 2020 challenge, we altered the radiologist question-
naire to focus their ranking on the depiction of pathologies
rather than general image quality. Some radiologists found
the focus helpful, commenting specifically that the images at
8X and in the 4X Transfer track might not be acceptable for
clinical use. As this task aligns more closely with the normal
clinical workflow, we would encourage future competition
organizers to use this approach for their radiologist evaluation
procedures.

In the 4X track, there were specific cases where the
radiologist rankings were concordant and others where the
rankings were discordant. Discordant cases tended, upon
review, to show that the main abnormalities were similarly
well depicted across the top 3 reconstructions, though there
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were oftentimes concordant estimations of differences between
reconstructions in terms of artifacts, sharpness and CNR.

Radiologist sentiment was affected by hallucinations such
as those in Figure 6. Such hallucinatory features are not
acceptable and especially problematic if they mimic normal
structures that are either not present or actually abnormal.
These images had high SSIM scores, indicating that even
though these images are considered well-optimized according
to this metric, they are not optimized regarding hallucination
features. Neural network models can be unstable as demon-
strated via adversarial perturbation studies [64]. Despite the
lack of realism in some of these perturbations, our results
indicate that hallucination and artifacts remain a real concern,
particularly at higher accelerations. This topic is in major need
for further development.

We note that we did not perform intensity correction
for either the participant submissions or the ground truth
reconstructions. None of the radiologists commented on inten-
sity inhomogeneity in either the initial testing phase or the
final evaluation phase. However, intensity correction is rou-
tinely done by vendor scanners and could have affected the
evaluation, as some pathologies manifest via varying tissue
intensities.

D. Feedback From Participants

We asked participants for feedback regarding chal-
lenge organization. Participants were generally enthu-
siastic about being able to participate in the chal-
lenge. We received positive feedback on our commu-
nication via the fastMRI GitHub repository at https://
github.com/facebookresearch/fastMRI and the forum associ-
ated with the web site at https://fastmri.org. We also received
positive feedback around the challenge’s realism in focusing
on multi-coil data, as well as the challenge’s generalizability
initiative in focusing on the Transfer track.

Still, participants felt the realism could be improved in
other areas. In particular, the sampling mask used for the
challenge used pseudo-regular sampling in order to achieve
exact 4X and 8X sampling rates. This sampling pattern is
not equivalent to the perfectly equidistant sampling pattern
used on MRI systems, which gives acceleration rates slightly
less than the target rate due to the densely-sampled center.
As a result, challenge models are likely to require further
fine-tuning training before application to clinical data.

Another point of feedback centered on the storage and
compute resources necessary to participate in the challenge.
In the 2019 challenge, the storage aspect was mitigated by
the inclusion of the single-coil track (which had a smaller
download size). The single-coil track attracted a lot of engage-
ment, with 25 out of 33 groups submitting to it [27]. From
the compute angle, the trend towards larger models requires
costly hardware. Training the baseline End-to-End Variational
Network [14] requires 32 GPUs, each with 32 GB of memory,
for about 3.5 days. This level of compute power is not
available at many academic centers. By comparison, multiple
participants submitted models trained on only a single GPU.
This was also a topic of feedback from non-participants, with

some telling us informally that they did not participate due to
compute or storage requirements. For the future, researchers
felt it would be helpful for the barriers to entry were lower,
particularly for academic groups that might have innovative
methods but less compute or storage.

As always, the selection of best quantitative evaluation
metrics to use is extremely difficult and there are potential
drawbacks to many or all. Participants did provide feedback
concerning the use of SSIM and the use of RSS for ground
truth images. Although groups acknowledged efforts to seek
superior metrics, they felt that settling for this particular metric
was disappointing. Some participants felt there was a tradeoff
between optimizing for SSIM (which promotes smoothing)
vs. radiologist interpretation. Most vendors have variations in
their post-processing pipelines for precisely this reason. Some
vendor post-processing methods even allow for radiologists
to adjust the strength of the regularization. We did not allow
secondary submissions from participants that might enhance
the images for human perception, such as those based on
noise dithering or inspired by stochastic resonance [48], [65].
Allowing secondary submissions for radiologist interpretation
may be beneficial for future challenges, provided ground
truth images are also included to allow radiologists to watch
for hallucination. In compiling the results for this challenge
we have attempted to investigate some other options that
would at least mitigate the effects of background noise and
feel that this is an important topic for further investigation.
Consensus around evaluations–for ground truth calculations,
metrics, and radiologist presentation–would substantially aid
the organization of future challenges.

V. CONCLUSION

The 2020 fastMRI reconstruction challenge featured two
core modifications from its 2019 predecessor: 1) a new com-
petition Transfer track to evaluate model generalization and
2) adjusting the radiologist evaluation to focus on pathology
depiction. In addition to these, we extended our competition
to a new anatomy with much larger data sets for both training
and competition evaluation. The competition resulted in a
new state-of-the-art model. Our challenge confirmed areas
in need of research, particularly those along the lines of
evaluation metrics, error characterization, and AI-generated
hallucinations. Radiologist sentiment was mixed for images
submitted to the 8X and the Transfer tracks; these may
remain open research frontiers going into 2021. We hope that
researchers and future challenge organizers find the results of
the 2020 fastMRI challenge helpful in their future endeavors.
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