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Generative Adversarial Networks
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Abstract— Pathological examination is the gold stan-
dard for the diagnosis of cancer. Common pathological
examinations include hematoxylin-eosin(H&E) staining and
immunohistochemistry (IHC). In some cases, it is hard to
make accurate diagnoses of cancer by referring only to H&E
staining images. Whereas, the IHC examination can further
provide enough evidence for the diagnosis process. Hence,
the generation of virtual IHC images from H&E-stained
images will be a good solution for current IHC examination
hard accessibility issue, especially for some low-resource
regions. However, existing approaches have limitations in
microscopic structural preservation and the consistency of
pathology properties. In addition, pixel-level paired data is
hard available. In our work, we propose a novel adversarial
learning method for effective Ki-67-stained image genera-
tion from corresponding H&E-stained image. Our method
takes fully advantage of structural similarity constraint and
skip connection to improve structural details preservation;
and pathology consistency constraint and pathological
representation network are first proposed to enforce the
generated and source images hold the same pathological
properties in different staining domains. We empirically
demonstrate the effectivenessof our approach on two differ-
ent unpaired histopathological datasets. Extensive experi-
ments indicate the superior performance of our method that
surpasses the state-of-the-art approaches by a significant
margin. In addition, our approach also achieves a stable and
good performance on unbalanced datasets, which shows
our method has strong robustness. We believe that our
method has significant potential in clinical virtual staining
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and advance the progress of computer-aided multi-staining
histology image analysis.

Index Terms— Histopathology, stain transfer, pathology
consistency constraint, Ki-67, hematoxylin-eosin (H&E).

I. INTRODUCTION

THE mortality rate of cancer has ranked second in the
world, which is a great threat to human life. According to

[1], cancer incidence is on the rise. Histopathology has been
regarded as the gold standard for cancer diagnosis. Cancer
examination is usually conducted by experienced pathologists
through observing the examinee’s tissue structure and cyto-
pathic characteristics under a high-power microscopy, which
is more objective and accurate than radiographic examinations.

In clinical practice, hematoxylin and eosin staining (H&E)
is one of the most commonly used staining techniques in
histopathology examination. Hematoxylin principally stains
cell nuclei blue or dark-purple, and eosin stains the extracel-
lular matrix and cytoplasm pink, with other structures taking
on different shades, hues, and combinations of these colors,
such as red blood cells which are stained intensely red [2],
as shown in Fig.1 (a) and (c). Although H&E staining is
available and cost-effective, it does not always provide enough
contrast to differentiate normal cells and cancer cells. In these
cases, more specific stains and methods are required. Immuno-
histochemistry (IHC) is a kind of molecular-level staining
based on the principle of antigen-antibody binding [3]. Chem-
ical reaction can bind the chromogen with labeled antibody to
intracellular antigen. For example, Ki-67 protein is a cellular
marker and is used in IHC examination, which is strictly
associated with the growth fraction of a given cell population.
In this process, Ki-67 positive tumor cells will be stained
to be brown, and Ki-67 negative ones will be colored blue,
as shown in Fig 1 (b) and (d). The fraction of Ki-67 positive
tumor cells is often correlated with the clinical course of
cancer. Hence, Ki-67 IHC examination provides a selective,
high-contrast imaging of cells and tissue components.

As we all know, IHC examination is essential to con-
firm the malignancy type and provide key prognostic factors
that direct the treatment offered. For example, ER, PR, and
HER2 biomarker expression levels are evaluated by IHC
for breast cancer. However, high accuracy IHC examination
usually needs more time and labor than H&E test. Consider of
time-cost of IHC test and the raising of cancer incident cases,
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Fig. 1. Examples of H&E and Ki-67-stained image. (a) and (c) are the
H&E-stained images; (b) and (d) are the corresponding Ki-67-stained
images. (b) shows more Ki-67 negative tumor cells and (d) shows more
Ki-67 positive tumor cells.

the workload of pathologists will increase gradually, which
indeed needs more workforce, more efficient workflow and
more advanced technologies. Meanwhile, both the high cost
and the advanced technical skills required to perform the assay
limit its utility in low- and middle- income countries. Accord-
ing to [4], only 1% of the cancer patients have access to IHC
examination in some low-resource countries, which greatly
hinds the process of global pathology diagnostic services
for cancer. Furthermore, in many low- and middle-income
countries, even when pathology services do exist, they are
often under-resourced with a lack of trained health workforce,
functional equipment and quality supplies, leading to unreli-
able quality and delay in diagnosis [5]. All of these issues
show that developing an effective, efficient and low resource
demanded method for cancer examination is significant.

Recently, researchers try to explore the correlation between
H&E-stained images and Ki-67 IHC stained images, so as to
reduce its cost. Liu et al. [6] developed a data-driven model to
predict the positive or negative representation corresponding to
Ki-67 staining of each cell from H&E-stained images, indicat-
ing a correlation between the two staining images. Therefore,
there must be a way to model the pairwise relationship
between H&E and Ki-67-stained images, achieving the gen-
eration of the one virtual stained image from another stained
image. In histopathological image analysis field, the process
of predicting one from another is called stain transfer, which
aims to provide pathologists with different staining results of
the same section, so as to improve the accuracy of cancer
diagnosis. Meanwhile, compared with the traditional clinical
staining process, the time cost will be reduced by tens or even
hundreds of times, which will greatly improve the efficiency
of cancer diagnosis. Hence, the generation of virtual Ki-67
staining sections from H&E staining images by computer
assisted technology will be a feasible and novel solution for
the existing issues.

In current histopathological practice, the staining process is
almost irreversible, i.e., once the tissue section is treated with
a certain stain, it is hard to be restored to the pre-staining
state by additional process, which makes it impossible to
massive obtain pixel-level paired data. In such cases, the serial
tissue sections are cut by pathologists from the same tissue
block, each between 3μm and 5μm thick, and are stained
with different methods and antibodies. This process introduces
inevitable inter-slide variability in the cell and tissue structures.
While performing serial cuts along the same axis, neighboring
tissue sections are similar but not pixel-wise matching, which
prevents co-location analyses across slides. Therefore, the

pixel-wise unpaired data poses the first challenge for the stain
transfer task.

During the last decade, many researchers are inspired by
the profound ability of deep learning, which makes better
use of contextual information and extracts powerful high-level
features. Based on deep learning, a lot of creative and signif-
icant researches are conducted in many aspects of medical
image analysis, such as X-ray [7], CT [8], PET [9], MRI [10]
and histopathological image [11]. Usually, the performance of
deep learning method is far superior to that of the traditional
modeling method when the number of available samples is
large [12]. However, the acquisition of the annotation is
much more expensive for the training in the most of medical
applications. As for histopathological image analysis, a whole
slide image usually contains more than billions of pixels on the
highest resolution level (e.g., 40x microscope), which poses
great challenges to the pixel-level annotation. Furthermore,
the H&E-stained image and the Ki67 stained image are not
pixel-wise paired and they are hard to be registered completely
by current registration methods.

Recently, Generative Adversarial Networks (GANs), as an
important branch of deep learning, are usually used for data
augmentation and style transfer [13]. However, GAN is mostly
expected to generate various samples, which means that the
network can be more ‘creative’ and ‘freedom’. As for stain
transfer, it is required to be ‘regular’ and ‘rigorous’, rather
than ‘creative’ and ‘freedom’. Then, the second challenge
posed by the stain transfer task is to ensure the preservation of
microscopic structural details and the consistency of pathol-
ogy, which are essential for the correct disease assessment.

In this study, we explore the potential of deep learning
in unpaired image-to-image transformation in the field of
histopathological analysis. To overcome the aforementioned
two challenges in stain transfer task, we propose a novel adver-
sarial learning method named ‘PC-StainGAN’ for effective
stain transfer between H&E domain and Ki-67 domain with
a minimum annotation effort from pathologists. The major
contributions of this article are as follows:

(1) We make a clear argument about the weakness of
Cycle-GAN for pathological image analysis, especially stain
transfer; and we proved the validity of our argument by
experiment.

(2) We develop a novel and robust model to address ‘H&E
to Ki-67’ unpaired stain transfer task, which merely requires
a small number of simple annotations as expert knowledge
to guide the model to learn pathological features, which
significantly saves a lot of labor cost on annotations and
facilitate the high performance.

(3) Pathology consistency constraint is first proposed to
offset the weakness of Cycle-GAN and helps to translate the
source image to target domain correctly. We also take fully
advantage of structural similarity constraint and skip connec-
tion, and we find that structural similarity constraint cannot
gain a great improvement on structural details preservation
without the addition of skip connection.

(4) We demonstrate how we can successfully learn structural
and pathology consistency stain transfer on different unpaired
histopathological datasets, i.e., neuroendocrine dataset and
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breast dataset. Meanwhile, we provide massive qualitative
and quantitative results on virtual Ki-67-stained image gen-
eration, which significantly presents the high performance
and robustness of our method. Our code is available in:
https://github.com/fightingkitty/PC-StainGAN.

II. RELATED WORK

In fact, stain transfer can be regarded as a high demanding
domain transfer or data synthesis task, which also requires that
the generated image should be structurally and pathologically
consistent with the source image. The existing works related to
domain transfer can be divided into three categories: traditional
Generative Adversarial Networks (GANs), conditional Gen-
erative Adversarial Networks (cGANs) and Image-to-image
translation.

A. Generative Adversarial Networks (GANs)

GAN is first introduced by Goodfellow et al. who are
inspired by the “two-gamer zero-sum game” in game the-
ory [13]. A typical framework of GAN is conducted under
the optimization of adversarial loss. At present, extraordinary
success has been made using GANs in natural scene images
processing tasks [14]–[17]. The GAN based model is also
a very promising approach for medical image processing
[18], [19]. Modelling the patterns in the histopathological
images is a particularly complicated task for GANs, because
morphologies of tissue have various texture patterns. In this
circumstance, GANs are often used for data augmentation
to generate more tissue regions. Due to the input of GANs
is random noise, the generated samples are random and
uncontrollable. Despite all that, the idea of adversarial loss
is worth applying to stain transfer task.

B. Conditional GAN

Conditional GAN was proposed by Mirza et al. [20], where
some additional conditions are incorporated into the generator
and discriminator. These conditions can be manual annota-
tion, some statistical information or other prior knowledge,
which can help control the direction of generation results
and improve the truthfulness of generated images. Currently,
the idea of conditional image generation has also been suc-
cessfully applied to pathological image analysis. For instance,
Mahmood et al. proposed a method to overcome the diversity
required in training data using synthetically generated data and
utilized cGAN trained with synthetic and real data to achieve
nuclei segmentation [21]. Bayramoglu et al. utilized cGAN to
generate virtually H&E staining based on hyperspectral lung
histology images [22]. Cho et al. [23] pointed out that perfor-
mance of data-driven network for tumor classification varies
with stain-style of histopathological images, and proposed a
feature-preserving cGAN for stain transfer. As we all know,
the size of histopathological image is pretty big, which makes
it hard to obtain amounts of manual category annotations for
training. Meanwhile, in the inference phase, the requirement
of additional category information makes cGAN inefficient,
which is the bottleneck of cGAN faced in the application of
histopathological image analysis.

C. Image-to-Image Translation
Recent work has achieved impressive results in

image-to-image translation, which can be divided into
two parts according to whether the data is paired. For paired
image-to-image translation, Pix2Pix is a successful variant of
cGAN for high-resolution image-to-image translation, which
is proposed by Isola et al. [16]. To alleviate the demand
of paired data, Cycle-GAN, as an unpaired image-to-image
translation framework, has been proposed by Zhu et al
[24]. Cycle-GAN combines two GANs to learn the mapping
between domain X and domain Y . A cycle consistency loss
function is proposed to chain the two GANs together, which
prompts them to reduce the distance between their possible
mapping functions. Cycle-GAN has gained more and more
attentions in stain normalization, cross modality transfer,
i.e., CT-to-MR [25], MR-to-CT [26], low dose CT denoising
[27]. Gadermayr et al. [28] develop a fully-unsupervised
segmentation approach exploiting Cycle-GAN to convert from
the image to the label domain. Shaban et al. [29] proposed
a StainGAN model based on Cycle-GAN for histopathology
color normalization. Lahiani et al. [30] introduced an
improved Cycle-GAN with the use of perceptual embedding
consistency loss to generate virtual FAP-CK images from real
stained H&E images. However, we find that the constraint
ability of Cycle-GAN is not strong enough to ensure the
consistency of pathology between the generated image and
source image.

III. METHOD

In this part, we first restate the problem for stain transfer
task. Then, we analyze the weakness of Cycle-GAN in this
stain transfer task. Finally, we describe our proposed method
for virtual Ki-67 generation from H&E-stained image, which
can not only reserve important structural information, but
also ensure the consistency of pathology for different staining
methods.

A. Problem Setting

To illustrate our problem, we assume that we are given
a H&E histopathology image dataset DX and a Ki-67
histopathology image dataset DY , which are unpaired. Firstly,
we aim to find a style mapping between domain X and
domain Y. In fact, a tissue section may contain various kinds
of cells and cellular structures, like blood cell, positive tumor
cell, negative tumor cell, stromal cell, nucleus, extracellular
matrix and cytoplasm, which means that the domains X
and Y can be divided into different subdomains. Therefore,
the overall objective of the proposed method is to learn
a mapping function F , which can not only achieve the
low-level mapping (i.e., looking like ‘real’) between the two
domains X and Y , but also achieve a high-level mapping
(i.e., maintaining structural and pathological consistency)
among these subdomains. It means that the desired mapping
function F should meet the following equations,{

F (SX ) = SY

F (SXi ) = SY i ; F (SXi ) �= SY j ; i �= j i, j = 1, 2, · · · N
(1)
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Fig. 2. Visual demonstration of Cycle-GAN’s weakness in domain
transfer. The green dotted-line arrows represent the constraint that
Cycle-GAN lacks. X and Y are two different domains; x1 and y2 are
the source images in corresponding domains;

�
y 1 and

�
x 2 are the target

images of x1 and y2 respectively. G1 : X →Y and G2 : Y → X are
the generators in Cycle-GAN; ỹ1 and x̃2 are the generated images by
corresponding generators; and ẍ1 and ÿ2 are the reconstructed images.

where SX ∈ DX is a H&E staining image sample; SY ∈ DY

is a Ki-67 staining image sample; Xi ∈ X is a subdomain
in domain X ; Yi , Y j ∈ Y are two different subdomains in
domain Y .

B. Weakness of Cycle-GAN
Cycle-GAN achieves style transfer between two differ-

ent domains under the constrains of cycle consistency loss
and adversarial loss. However, for complex texture domain
transfer, Cycle-GAN shows incompetent and weak constraint.
As shown in Fig.2, assuming that

�
y1 ∈ Y and

�
x 2 ∈ X are

the target images of x1 and y2 respectively, which are not
existed in the given datasets DY and DX . Our goal is to build
a generative model which can obtain the target staining image
�
y1 from the image x1. In fact, the cycle consistency loss is
mainly employed to shorten the distance between the recon-
structed image and the source one, i.e., min {dist (x1, ẍ1)}
and min {dist (y2, ÿ2)}, which helps to reserve the structural
content of source image and enforces that different source
images will produce different images in target domain; the
adversarial loss is mainly responsible for reducing the distance
between the generated image and the target domain, i.e.
min {dist (ỹ1, Y )} and min {dist (x̃2, X)}, which just achieves
the low-level style mapping between the two domains X and Y
and is powerless for the abovementioned high-level mapping.
Therefore, Cycle-GAN lacks some constrains between the
generated image and the target one, i.e., min

{
dist

(
ỹ1,

�
y1

)}
and min

{
dist

(
x̃2,

�
x 2

)}
, which are highlighted in Fig.2 by

green dotted-line arrows.

C. Model Definition
1) Network Architecture: Although, it is infeasible to obtain

the other staining results by re-staining sections in clinical
practice. With the help of computer technology, we can model
the stain transfer process into two phases: de-staining phase
and re-staining phase. As shown in Fig.3, each generator is
composed of an encoder-decoder architecture and a patho-
logical representation network, where the feature extraction
part of pathological representation network and the encoder
part correspond to the de-staining phase; and the decoder part

corresponds to the re-staining phase. Hence, the transformation
of G1 : X → Y is modeled as follows,

y = G1 (x) = G1de(G1en
(x) , P �

X (x)) (2)

and the transformation of G2 : Y → X is modeled as follows,

x = G2 (y) = G2de(G2en
(y) , P �

Y (y)) (3)

where G1en , G2en are the encoders of corresponding gen-
erators; G1de, G2de are the decoders of corresponding gen-
erators; P �

X , P �
Y are the feature extractors of pathological

representation networks PX , PY , which are used to extract
pathology-semantic features.

In the de-staining part, the patches with the size of
288 × 288 × 3 is cropped from staining image as the input of
encoder. The encoder then starts by a convolution with a kernel
size of 7 × 7 and stride of 1. In order to maintain the spatial
continuity and reserve more structural details, no pooling
operation is adopted, instead, the convolution with a stride
of 2 is employed. Thus, the input image is down-sampled
from 288 × 288 to 36 × 36 after three convolutions with
the kernel of 3 and stride of 2. The following module is
a high-performance feature extractor which consists of five
residual convolution blocks [31], as shown by orange bold
arrow in Fig.3.

The primary goal of encoder is to extract principal structural
and morphological content from source staining image. As for
the pathological representation network, the purpose is to
provide necessary pathological information so as to drive the
generated image to be consistent with the original image in the
pathological representation. On the basis of encoder, we select
the features in different resolution layers (i.e., 144 × 144,
72×72, 36×36) and adjust the size of these features to 72×72
by B-spline interpolation and down-sampling. Considering
smaller computer memory consumption, a convolution with
the stride of 2 and kernel of 3 is then used to fuse these features
together. Similarly, the following operations are five residual
convolution blocks to extract pathological features efficiently.
Finally, a pathological representation map can be obtained by
a 3 × 3 convolution and a ‘Sigmoid’ activation function.

In the re-staining phase, the extracted features first go
through a five-residual-convolution-blocks module to fully
integrate the features. Next, aiming to recover the resolution
of the feature map from 36 × 36 to 288 × 288, deconvolution
with the kernel of 3 × 3 and stride of 2 is utilized to up-
sample the feature maps. Finally, the virtual staining image is
obtained by a 7 × 7 convolution and a ‘Tanh’ activation func-
tion. Meanwhile, the skip connections are added between the
encoder and decoder under the same resolution. The addition
of skip connections allows us to share low level information
between input and output, which also provides shortcuts for
reserving and reconstructing structural details. It is worth to
note that each convolution layer, as shown in Fig.3, is a series
of operations, i.e., convolution with a kernel of 3×3, instance
normalization, and ‘Leaky ReLU’ activation layer.

2) Objective: The overall objective function of our model
includes four loss types. Except for the adversarial loss and the
cycle consistency loss described in [24], we add cycle struc-
tural consistency loss, pathological consistency loss Lpathology
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Fig. 3. The overview of the proposed method, which include two generators. Each generator is composed of an encoder-decoder architecture and
a pathological representation network. The pathological representation network is co-trained by expert knowledge database and training dataset.
The expert knowledge dataset is annotated by experienced pathologists, where blue areas are cancer lesion areas and white areas are the normal
tissue areas. And the objective function includes: adversarial loss, cycle consistency loss, pathological consistency loss and base space aligned
loss, where cycle consistency loss includes L1 loss and structural similarity constraint SSIM loss.

and base space aligned loss Lbase.

L (G1, G2, DX , DY , PX , PY )

= Ladv (G1, DY ) + Ladv (G2, DX )

+ λLcycle (G1, G2) + βLpathology (PX , PY )

+γLbase (G1, G2) (4)

where λ, β, γ are hyper-parameters that set the importance of
each term in the optimization problem; G1 : X → Y, G2 :
Y → X are the two generators, DX is the discriminator for
X data, and DY is the discriminator for Y data; PX is the
pathological representation network with the input of X data,
and PY is the pathological representation network with the
input of Y data. Formally, we aim to solve the following
optimization problem:
G∗

1, G∗
2 =arg min

G1,G2,PX ,PY
max

DX ,DY
L (G1, G2, DX , DY , PX , PY )

(5)

The whole process involves playing a minimax game among
these networks. Below, each term of the objective function is
elaborated.

3) Transferring Stain Style: Instead of matching RGB values,
the network aims to generate images with staining properties
of the target domain. It means matching the distribution of
the generated image to that of the target domain. Therefore,
we adopt adversarial losses for the two mapping functions
between the two domains X and Y . For the mapping function
G1 : X → Y and its corresponding discriminator DY , the
adversarial loss is defined as:
Ladv (G1, DY ) = Ey

[
log DY (y)

]
+Ex

[
log (1 − DY (G1 (x)))

]
(6)

where G1 tries to generate an image G1 (x) with the input
of source image x that looks similar to one from domain Y ,

while DY aims to distinguish between the generated sample
G1 (x) and real sample y. G1 aims to minimize this objective,
while DY tries to maximize it. Similarly, the objective for
the mapping function G2 : Y → X and its corresponding
discriminator DX is defined as:
Ladv (G2, DX ) = Ex

[
log DX (x)

]
+ Ey

[
log (1 − DX (G2 (y)))

]
(7)

4) Enhancing Structural Information Reservation: As men-
tioned in [13], adversarial loss alone is hard to ensure that
the mapping function can accurately translate a specific input
x to a desired output y. To further reduce the space of
possible mapping functions, they introduced the cycle con-
sistency loss, which implies that image transformation cycle
should bring input image x back to the original image space.
In fact, the controllability and specificity of the image trans-
formation network are greatly improved by the addition of
pathology-semantic features in our method, as mentioned in
formula (2). Meanwhile, in addition to the abovementioned
advantage of cycle consistency loss, we pay more attention
to its structural preservation ability. To further enforce the
generated image preserving more tissue structural details,
a cycle structural consistency loss function is defined based on
structural similarity (SSIM) [32] and introduced to the original
cycle consistency loss. In many related studies, SSIM has been
used to evaluate image quality, and it mainly evaluates three
measures, i.e., luminance, contrast and structure. For each
pixel in the image, the SSIM is defined as:

ssim (a, b) = (2μaμb + c1) (2σab + c2)(
μ2

a + μ2
b + c1

) (
σ 2

a + σ 2
b + c2

) (8)

where μa, μb are the mean of a sliding window (N × N)
centered as the pixel, σa, σb are the standard derivations, σab

is the covariance. c1 and c2 are stabilizing factors variables to
stabilize the division with weak denominator.
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Hence, our defined cycle consistency loss can be formulated
as:

Lcycle = {
Ex

[�G2 (G1 (x)) − x�1
]

+ Ey
[�G1 (G2 (y)) − y�1

]}
+ {Ex [1 − ssim (G2 (G1 (x)) , x)]

+ Ey [1 − ssim (G1 (G2 (y)) , y)]
}

(9)

5) Enforcing Pathological-ConsistencyTransformation: In our
work, we model the stain transfer process into two phases: de-
staining phase and re-staining phase, and we force the image
x and corresponding image y mapping to same base space
after de-staining phase, i.e., G1en (x) = o; G2en (y) = o, which
facilitate the image x and image y holding the same condensed
anatomical information and pathological feature expression.
Thus, we introduce a base space aligned loss function between
the encoders of generators G1,G2. The addition of the base
space aligned loss Lbase based on L1-norm allows to mini-
mize the distance between the base-space features in the two
generators, which is defined as:
Lbase = Ex

[∥∥G2en (G1 (x)) − G1en (x)
∥∥

1

]
+ Ey

[∥∥G1en (G2 (y)) − G2en (y)
∥∥

1

]
(10)

where G1 and G2 correspond to the generators in the model,
G1en and G2en correspond to the encoders of the
first and second generator respectively and ��1 is the
L1 distance.

For multi staining histopathological image analysis,
the most important thing is ensuring the consistency of pathol-
ogy. In each generator, a pathological representation network
is added, which is used to dig the pathological representation
heatmap of the input image. In order to further improve
the pathological consistency between the input image and
generated image, we introduce an additional loss function
to reduce the difference between the pathological represen-
tation heatmaps from input image x and generated image
y respectively. Meanwhile, since the learned pathological
heatmap is expected to be accordance with the diagnosis
of the clinicians, the pathological representation networks
PX , PY are also trained by the expert knowledge databases
K X , KY respectively. And pathological consistency loss is
finally defined as:

Lpathology = Ex
[�PX (x) − PY (G1 (x))�1

]
+ Ey

[�PY (y) − PX (G2 (y))�1
]

+ w1 ∗ Ek_x
[�PX (k_x) − label(k_x)�1

]
+ w2 ∗ Ek_y

[�PY (k_y) − label(k_y)�1
]

(11)

where PX , PY are the pathological representation networks for
domains X, Y respectively; kx , ky are the samples from expert
knowledge databases K X , KY respectively, and label (∗) is
the expert annotation of the sample ∗; w1, w2 are the
weights for supervised learning process, which are set
to 2.0.

D. Model Implementation

Our model is implemented with Python based on the
open-source deep learning library Pytorch on a computer

with Intel Core i7-6850k CPU, 128 GB RAM, and three
NVidia GTX 1080-Ti GPUs. In the training phase, the patch
size is set to 288 × 288 × 3. While in the inference phase,
a bigger input size of 576 × 576 is used to overcome the
tiling artifact problem by using overlapping tiles. In addi-
tion, two data augmentation strategies are employed dur-
ing training phase, including random cropping and random
flipping.

In our model, all the parameters in the convolutional layers
are initialized according to [33]. The hyper-parameters in the
overall loss are chosen similarly to [30] and fixed as: λ =
10, β = 5, γ = 5. Adam optimizer [34] is utilized to minimize
the overall loss. The whole model is trained end-to-end using
backpropagation. The batch size of training dataset is set to 2,
the batch size of expert knowledge database is set to be 8, and
the learning rate is set as 0.0002 initially and decreases using
exponential decay with the decay rate of 0.9 and the decay
epoch of 2.

IV. EXPERIMENTS AND RESULTS

In this paper, two datasets are utilized to evaluate the
performance of the proposed method. The relevant information
and the corresponding results are as follows.

A. Experimental Datasets

For neuroendocrine tumor dataset, 150 pieces of H&E
staining images with the size of 3000 × 3000 were collected
and the same quantity of Ki-67 staining images were sampled,
which were unpaired and used as the training sets. For the
expert knowledge database, 15 images were selected from
H&E training set and Ki-67 training set respectively. And
the expert knowledge dataset is annotated by experienced
pathologists, where cancer lesion areas are labelled as ‘1’
and the normal tissue areas are labelled as ‘0’, as shown
in Fig.3. In addition, we collected 42 pairs H&E and Ki-
67 staining images with the size of 3000 × 3000, which were
basically similar in tissue structure but not pixel-level matched.
In order to evaluate our method properly, the 42 pairs H&E
and Ki-67 staining images are registered to each other using
an alignment technique, and then the sizes of paired images
were cropped to 1500 × 1500. It is worth to note that the
intersection of training set and testing set are empty.

Similarly, in breast dataset, there are 160 H&E staining
images and 160 Ki-67 staining images are collected as training
sets with the size of 3000 × 3000. Then, 20 images were
selected as expert knowledge database from H&E training
set and Ki-67 training set respectively, which are annotated
by pathologists. As for the testing set, 54 pairs H&E and
Ki-67 staining images with the size of 1500 × 1500 were
collected, and these paired images were coarsely aligned using
registration technology.

Due to memory limitations, all the training images in the
both datasets were split into 288 × 288 tiles with 144 overlap.
After tiling, our neuroendocrine training dataset contains about
54000 H&E 288 × 288 RGB tiles and 54000 Ki-67 288
× 288 RGB tiles; our breast training dataset contains about
57000 H&E 288 × 288 RGB tiles and 57000 Ki-67 288 ×
288 RGB tiles.
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B. Experimental Design and Baseline Method

In this paper, due to the unavailability of pixel-level paired
data, a commonly used unpaired image-to-image translation
method ‘Cycle-GAN’ is regarded as the baseline method.
In order to better understand our work, we show a series
of experiments on neuroendocrine dataset, where you can
learn the model evolution process and the superiority of our
proposed method. For example, (i) through the study of skip
connection and cycle structural consistency loss on image
details reservation, you can know why they are employed;
(ii) through the study of pathological consistency constraint on
the performance of virtual Ki-67 generation, you can learn why
our proposed pathological consistency constraint is important
for stain transfer task; (iii) through the experiment on unbal-
anced training sets and the experiment of expert knowledge
degradation, you can further confirm the superiority of our
proposed method. Furthermore, we explore the generality of
the proposed method by evaluating its performance on another
histopathology dataset, i.e., breast dataset.

C. Evaluation Metrics

Actually, for the stain transfer task of X → Y , there are
four types of images, i.e., source image X , generated image
Ỹ , reconstructed image Ẍ and referenced image Y .

1) For X ↔ Ẍ : According to [35], they have summarized
various evaluation metrics for different medical image tasks
using GAN, including domain transfer. In this work, four
metrics are selected from their review work as our quantitative
evaluation metrics, i.e., SSIM, multi-scale SSIM (MS-SSIM),
mean absolute error (MAE) and peak signal to noise ratio
(PSNR).

2) For X ↔ Ỹ : Due to inherent distance between two
different stain domains X and Y, it is unjustified to use these
metrics mentioned in section IV.C.1. Therefore, based on
the definition on SSIM, Contrast-Structure Similarity (CSS)
is proposed to evaluate how much structural information is
preserved from the source image. CSS can be regarded as
a variant of SSIM, which mainly evaluates the similarity of
samples on contrast and structure, rather than intensity. The
definition of CSS is as follow:

C SS (a, b) = (2σab + c)(
σ 2

a + σ 2
b + c

) (12)

where σa, σb are the standard derivations, σab is the covari-

ance. c is a stabilizing factor variables to stabilize the division
with weak denominator. The meanings of all the variables are
same as these in SSIM.

3) For Ỹ ↔ Y: In order to evaluate the relationship of the
generated Ki-67-stained images and referenced Ki-67-stained
image, the positive and negative Ki-67-stained areas of each
image are calculated after color deconvolution and threshold
segmentation, which is shown in Fig.4. Then, Pearson correla-
tion coefficient (Pearson-R) is used to evaluate the pathological
correlation between the generated and the referenced.

In addition, a channel-level evaluation metric named ‘Per-
ceptual Hash Value’ (PHV) is designed to thoroughly evaluate
the similarity of the generated image and the referenced one.

Fig. 4. Ki-67 positive and negative stained area segmentation results.
(a), (b), (c) and (d) are the Ki67 stained images; (e), (f), (g) and (h)
are the corresponding segmentation masks. Red: Ki-67 positive stained
area; Green: Ki-67 negative stained area.

This metric is inspired by perceptual loss [36]. The feature
maps of the generated images are extracted using a pre-trained
Resnet-101 network. Similarly, the feature maps of referenced
images are also extracted. Hence, the PHV is defined as
follows,

P H V = 1

N

∑
H [|avg (Fi (ỹ)) − avg (Fi (y))| − T ] (13)

where N is total channel number of the extracted features.
Fi (·) represents the feature maps extracted from the ith layer
of Resnet-101. ỹ and y are the generated stained image and
refereced image respectively. avg (·) is the average pooling
operation which is used to turn the 3-D features to a 1-D
vector, and H [·] is the unit step function and T is a preset
threshold.

D. Experimental Results on Neuroendocrine Dataset

1) Importance of SSIM Constraint and Skip Connection:
Based on the analysis of cycle-consistency loss in Cycle-GAN
[24], we speculate that the addition of skip connection
and SSIM constraint (i.e., cycle structural consistency loss)
could further improve structural details preservation. There-
fore, in order to study the importance of SSIM constraint
and skip connection for stain transfer, ‘Cycle-GAN’, ‘Cycle-
GAN+skip-connection’, ‘Cycle-GAN+SSIM Constraint’ and
‘Cycle-GAN+skip-connection+SSIM Constraint’ are trained
with same training set. Table I shows their averaged struc-
ture preservation performances by the comparison of source
image and reconstructed image X ↔ Ẍ . Comparing with
Cycle-GAN, the performance of Cycle-GAN+SSIM Con-
straint on SSIM and MS-SSIM metrics has a slight rise,
but the performances on MAE and PSNR metrics are
worse than that of Cycle-GAN, which means the addi-
tion of SSIM constraint indeed guide the network to pay
more attention on structural similarity but the improvement
on structural details preservation is negligible. Under the
same constraint condition as Cycle-GAN, we can find that
the performance of Cycle-GAN+skip-connection gains an
improvement on each metric, which indicates that the short
paths offered by the skip connection facilitate the broadcast
of structural information. From Table I, it is obvious that
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TABLE I
QUANTITATIVE EVALUATION RESULTS FOR STRUCTURAL INFORMATION

PRESERVATION, X ↔ Ẍ : BETWEEN SOURCE IMAGES AND

RECONSTRUCTED IMAGE AND X ↔ Ỹ : BETWEEN SOURCE

IMAGE AND GENERATED IMAGE

Fig. 5. The distance maps of different methods between the recon-
structed image and the source image. The columns from left to right
correspond to (a) original image and distance maps of (b) Cycle-GAN,
(c) Cycle-GAN+skip-connection, (d) Cycle-GAN+SSIM constraint , and
(e) Cycle-GAN+skip-connection+SSIM constraint .

Cycle-GAN+skip-connection+SSIM Constraint makes an
arresting improvement, which confirms the structural per-
severation ability of skip connection and SSIM constraint.
Meanwhile, comparing Cycle-GAN+SSIM Constraint and
Cycle-GAN+skip-connection+SSIM Constraint, we can con-
clude that SSIM constraint will be powerless to structural
details preservation if without the addition of skip connection.
More intuitive results are shown in Fig.5, which shows the
distance maps of different methods between the reconstructed
images and the source images. The darker the color blue,
the smaller distance value between the reconstructed image
and the source image it has. Observing Fig.5, It can be further
confirmed that the reconstructed images are closer to the
source images with the addition of the skip connection and
SSIM constraint.

Meanwhile, we use the metric ‘CSS’ to evaluate how much
structural information has been preserved by the generated Ki-
67-stained image from the source H&E-stained image. And the
quantitative evaluation results are shown in the column X ↔Ỹ
of Tab.I. It is obvious that the addition of skip connection and
SSIM constraint gains a significant improvement on structural
information preservation (e.g., the rise of CSS from 78.99 to
87.43). In a word, all the experimental results indicate that the

addition of SSIM constraint and skip connection is important
for the structural preservation. Hence, skip connection and
SSIM constraint are employed in our work.

2) Importance of Pathology Consistency Constraint: Cur-
rently, many unpaired stain transfer works are based on
Cycle-GAN, but they ignore the serious weakness of Cycle-
GAN in pathological image analysis. In our work, pathology
consistence constraint is proposed to address this issue. Before
studying the importance of pathology consistence constraint,
we would like to mention the work of Lahiani et al. According
to their work, they did massive experiments and found that
base space aligned loss is conducive to reducing the tiling
artifact [30]. Hence, we adapt their work as base space aligned
loss in our work, and the difference is that we use L1-norm
rather than L2-norm.

In order to study the importance of pathology consistence
constraint, Cycle-GAN with the addition of skip connec-
tion, SSIM constraint and base space aligned loss Lbase is
regarded as the main comparison method, i.e., PC-StainGAN
without pathology consistence constraint. Meanwhile, some
other unpaired stain transfer frameworks are trained using
the same training sets and hardware device. The virtual
Ki-67-stained images generated by different methods are
presented in Fig.6 for a visual comparison. We can intu-
itively observe that, with the constraint of pathology consis-
tency, virtual Ki-67-stained images generated by our proposed
PC-StainGAN are more similar to the referenced Ki-67-stained
images, while the results of other methods present obvious
mistakes in pathological representation.

In addition, the Ki-67 positive and negative stained areas
are calculated under a sliding window with the size of
750 × 750 and the step of 375. Generally, for Ki-67-stained
image analysis, the pathologists pay more attention to the
Ki-67-stained positive cells. Therefore, the correlation between
the generated images and referenced ones is studied via scatter
diagram, which is presented in Fig.7. The red dotted line
represents the distribution trend of scattered blue points, and
the regression equation and the square of the correlation
coefficient are also shown in Fig.7. It is clearly observed that
our methods show stronger correlation between the generated
images and referenced images. Meanwhile, the quantitative
evaluation results are shown in Table II. For Ki-67-stained
positive area, the Pearson-R of our proposed PC-StainGAN
gains 0.9755, which are much higher than comparison methods
(e.g., 0.6974 of Cycle-GAN and 0.6381 of PC-StainGAN
without pathology consistence constraint). In addition, observ-
ing the scores of PHV calculated from different layers, our
method also significantly outperforms the comparison methods
(e.g., PC-StainGAN with the PHV-II score of 91.32 vs.
86.36 of PC-StainGAN without pathology consistence con-
straint). All the experimental results validate that the patholog-
ical consistency constraint plays an important role in virtual
Ki-67-stained image generation, which helps the generated
virtual Ki-67-stained image have highly similar pathological
representation with the real Ki-67-stained image.

3) Against Unbalanced Training Dataset: In order to study
the robustness of our proposed PC-StainGAN on unbalanced
datasets, we divided our training set into three subsets with



LIU et al.: UNPAIRED STAIN TRANSFER USING PATHOLOGY-CONSISTENT CONSTRAINED GANs 1985

Fig. 6. Virtual Ki-67-stained image results of different methods on neuroendocrine dataset. These columns from left to right are: (a) referenced
Ki-67-stained images, (b) source H&E-stained image, and generated Ki-67-stained images by (c) Cycle-GAN [25], [30] , (d) Lahiani et al’s method
[31] , (e) Cycle-GAN+skip-connection+SSIM constraint , (f) PC-StainGAN without pathology consistence constraint , (g) PC-StainGAN and (h)
PC-StainGAN-loose.

Fig. 7. Scatter diagrams of different methods of the Ki-67 positive stained area between the generated and the reference images. (a) Cycle-GAN [25],
[30] , (b) Lahiani et al’s method [31] , (c) Cycle-GAN+skip-connection+SSIM constraint , (d) PC-StainGAN without pathology consistence constraint ,
(e) PC-StainGAN and (f) PC-StainGAN-loose.

different Ki-67-stained positive/negative area ratios, i.e., subset
I with ratio of 1:1, subset II with ratio of 1:3 and subset
III with ratio of 3:1. Each training subset contains about 72
H&E-stained images and 72 Ki-67-stained images both with
the size of 3000 × 3000. Then, our proposed PC-StainGAN,
Cycle-GAN [24], [29] and Lahiani et al’s method [30]. are
trained with the three predesigned training subsets respectively.
A visual comparison is presented in Fig.8. It is obvious that

PC-StainGAN achieves a stable and correct performance on
both unbalanced and balanced training datasets, which fully
verifies the robustness of our method. From Fig.8, we also find
that the referenced Ki-67-stained image shows more negative
cells and the results produced by both Cycle-GAN and Lahiani
et al’s method are similar to the referenced image only when
the training set contains more negative samples. Whereas,
when there are more positive samples in the training set, their
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TABLE II
QUANTITATIVE EVALUATION RESULTS OF VIRTUAL KI-67-STAINED

IMAGE GENERATION ON NEUROENDOCRINE DATASET

Fig. 8. Experiment results of our method and Cycle-GAN on unbalanced
datasets. Referenced Ki-67-stained images (a), original input H&E-
stained image (b), generated Ki-67-stained images by Cycle-GAN trained
on Subset I (c1), Subset II (c2) and Subset III (c3), generated Ki-67-
stained images by Lahiani et al’s method [31] trained on Subset I (e1),
Subset II (e2) and Subset III (e3), generated Ki-67-stained images by
our method trained on Subset I (f1), Subset II (f2) and Subset III (f3).

results turn to be positive property, which means Cycle-GAN
and Lahiani et al’s method are volatile and pretty sensitive to
the imbalance of training dataset. Meanwhile, the quantitative
evaluation results are listed in Table III. Under the attack of
unbalanced training set, the performance of our PC-StainGAN
just shows a slight fluctuation, (e.g., the standard deviations are
0.0042 for positive part and 0.0088 for negative part), while the
standard deviations of Cycle-GAN reach to 0.0845 for positive
part and 0.0402 for negative part, and the standard deviations
of Lahiani et al’s method reach to 0.0957 for positive part and
0.0386 for negative part. All the experimental results indicate
the superiority of PC-StainGAN.

4) Learn With Degraded Expert Knowledge: Under the
pathology consistence constraint, the pathological representa-
tion networks are also trained by expert knowledge, which
helps the learned pathological features are accordant with the
diagnosis of the clinicians. Hence, we are also interested in
the impact of expert knowledge on the performance of PC-
StainGAN. We degrade the annotations in the expert knowl-
edge by converting the pixel-level annotation to image-level
annotation. If the cancer lesion area is bigger than the normal

TABLE III
QUANTITATIVE EVALUATION RESULTS ON

UNBALANCED TRAINING DATASETS

Fig. 9. Experiment results of different methods on breast dataset.
These columns from left to right are: (a) referenced Ki-67-stained images,
(b) source H&E-stained image, and generated Ki-67-stained images by
(c) Cycle-GAN [25], [30], (d) Lahiani et al’s method [31], (e) Cycle-
GAN+skip-connection+SSIM constraint and (f) PC-StainGAN.

tissue area, we will label the image as a positive sample, other-
wise, we will label it as a negative sample. And PC-StainGAN-
loose is trained, where the pathological representation network
is adjusted as pathological classification network to tell the
pathological property of given image, i.e., ‘positive’ or ‘neg-
ative’. Observing Fig. 6, it is obvious that the virtual
Ki-67-stained images generated by PC-StainGAN-loose are
also pretty close to the referenced Ki-67-stained images. From
Table II, we can find that the performance of PC-StainGAN-
loose is also better than the other comparison method except
PC-StainGAN, which indicates that the performance of our
method has not decreased significantly with the degradation
of supervised information. Compared with PC-StainGAN,
PC-StainGAN-loose also gains comparable performance, only
has a slight decrease in performance, e.g., PC-StainGAN
with positive the Pearson-R score of 0.9755 vs. 0.9707 of
PC-StainGAN-loose.

E. Experimental Results on Breast Dataset

To verify the generalization of the proposed method,
we also evaluate our method on breast dataset. The virtual
Ki-67-stained images generated by different methods are
shown in Fig.9. It is clearly observed that the Ki-67-stained
images generated by PC-StainGAN are more similar to the ref-
erenced ones and present consistent pathological information.
However, the comparison methods lead to absolutely opposite
results in pathological representation, which can be confirmed
by comparing the column (a) with the columns (c-e) in Fig.9.
In addition, Table IV presents some quantitative evaluation
results between the generated Ki-67-stained images and the
referenced ones. Observing the results of comparison methods
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF VIRTUAL KI-67-STAINED

IMAGE GENERATION ON BREAST DATASET

TABLE V
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT SETTINGS OF

HYPERPARAMETER β

in the Table V, we find that their results have an extremely
weak correlation with the referenced images, even a negative
correlation. For example, the Pearson-R for Ki-67-stained pos-
itive area of Cycle-GAN gains -0.2752 and -0.1929 for negative
area. As for PC-StainGAN, the generated Ki-67-stained images
are strongly associated with the referenced images in both
the positive and negative area (e.g., 0.9578 for positive part
and 0.8146 for negative part). In addition, all the quantitative
results of our method are vastly superior to the comparison
methods. Through the experiments on breast dataset, we fur-
ther validate the efficiency and generalization of our proposed
method.

F. The Selection of Hyper-Parameter β Setting

In our work, the proposed pathology consistency constraint
plays an important role in stain transfer. Hence, we conduct
an additional experiment to study the weight setting of patho-
logical consistency loss. We set the choice space of β to be
[0,5,10,15]. The experimental results are presented in Table V.
From Table V, it is obvious that our method always achieves
satisfied results when β > 0, which verifies the high-efficacy
of pathology consistency constraint again. Meanwhile, it seems
that with the increasing of β, the ability of pathological
representation consistency gets some slight improvement but
the ability of structural information preservation has declined
slightly. Hence, based on final clinical requirements, we can
make a trade-off between the performances of structural
information preservation and pathological representation con-
sistency. Here, we set β to be 5, and according to current
experimental results, current hyper-parameter settings have
achieved the satisfactory results.

V. DISCUSSION AND FUTURE WORK

In this section, we want to discuss some issues: first,
the choice of unpaired stain transfer; then, the unreliability of
Cycle-GAN in clinical stain transfer; and finally, the clinical
value of PC-StainGAN. Meanwhile, we also want to state the

imperfection of our current work and provide some insightful
thinking in future work.

A. The Choice of Unpaired Stain Transfer

Histopathology plays an essential role in cancer diagnosis
and regards as the gold standard in many medical proto-
cols. In clinical practice, H&E staining is most commonly used
staining techniques, which can distinguish various tissue and
lesions in different colors. However, H&E staining is always
hard to provide enough contrast to differentiate normal cells
and diseased cells. Ki-67 staining is an excellent marker to
study the clinical course of cancer, which is used in IHC
examination. However, the Ki-67-IHC examination is very
time-consuming and expensive, which is current bottleneck
for the process of global pathology diagnostic services for
cancer. In many low- and middle-income countries, cancer
patients do not have the chance to access to IHC examination
service, and the supply of pathologists severely falls short
of demand. Hence, stain transfer will be highly welcome to
ease the workload and address the issue of medical manpower
shortage on underserved areas.

Many studies have stated image-to-image translation is able
to covert between different stains. Furthermore, we want to
discuss that successful stain transfer techniques should have
the following properties: (1) they should ensure the preser-
vation of fine details and microscopic structural information;
(2) they should not change pathological properties of the
tissue or cell.

In addition, unlike paired stain transfer or segmentation
tasks where a large number of pixel-wise annotations are
provided to design fully supervised learning algorithms,
so accurately unpaired stain transfer will be more challeng-
ing. Meanwhile, serial tissue sections are cut by pathologists
from the same tissue block, but they usually have significant
structural differences, and deformation is inevitable during
making slices in clinical practice. Hence, massive unpaired
medical data is undeveloped and easily available, and unpaired
stain transfer will be more competitive in many application
scenarios.

B. The Unreliability of Cycle-GAN

Based on the intuitive results, we notice that the virtual
stained images generated by Cycle-GAN look highly like
the real ones, and the underlying image content remains
unchanged. But there is still a big difference between the
generated image and reference one, which is caused by the
inherent weakness of Cycle-GAN. In section III.B, a clear
argument about the weakness of Cycle-GAN for stain transfer
is presented. In fact, many current related works do not
realize this weakness and mainly focus on the structural
consistency. As for successful stain transfer, the constraints
of most Cycle-GAN-based work are not strong enough to
ensure the consistency of pathological representation between
the generated image and source image, where the adversarial
loss just enforces the generated images look like a real
image in target domain. According to quantitative results,
we find that Cycle-GAN is volatile and its results can be easily
misguided by the distribution of training dataset. Hence, both
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qualitative analysis and quantitative evaluation demonstrate
that the low clinical reliability of Cycle-GAN in virtual stain
generation.

C. The Clinical Reliability of PC-StainGAN

In order to offset the weakness of Cycle-GAN, the pathol-
ogy consistency constraint is introduced in PC-StainGAN.
According to the unbalanced dataset experiment, compared
with Cycle-GAN, our proposed PC-StainGAN always achieves
a stable and correct performance on both unbalanced and
balanced training datasets, which fully verifies the robustness
of our method. Meanwhile, according to the study on degraded
expert knowledge, when only the image-level annotation is
available, our method still can achieve a high performance,
which further verifies the superior of our model. Last but not
least, an experiment is conducted to study the importance
of pathology consistency constraint, where our evaluation
scores are much higher than those of comparison methods.
It can be confirmed that our proposed PC-StainGAN shows
strong correlation between the generated images and refer-
enced images, and our results have highly similar pathological
representation with the referenced Ki-67-stained image. All of
these experimental results demonstrate that our approach sig-
nificantly outperforms state-of-the-art techniques and closely
matches the performance of real Ki-67 examination results.
As you can see, our massive experiments are enough to
prove that our model has a high-level performance in clinical
reliability.

D. Imperfection and Future Work

Although our method has achieved satisfactory results in
the experiments, there are still some imperfections and a
big space for further improvement. In our work, instead of
adjusting the architecture of our model according to the dataset
used in this study, we used high-level intuition based on the
expected properties of the model; Due to the limitation of
computation ability, the value of hyperparameters is deter-
mined through simple manual tuning rather than some hyper-
parameter optimization algorithms. Hence, if the framework
is tailored into different architectures according to specific
tasks and datasets, or the hyperparameters are searched by
hyper-parameter optimization algorithm, the performance of
our method will be further improved. As for our future work,
we will strive for the early application of the proposed method
to clinical practice. First, we will further explore the potential
of the proposed method with other efficient architectures, for
instance, EfficientNet [37], Non-local-Block [38]; optimize the
hyper-parameters of the objective and teste the applicability
of our method in variant clinical datasets. Second, we will
extend our method into multi-domain transfer, which is still a
challenge and very important in practice. Third, data privacy
remains a major barrier to access, and federated learning offers
a way to counteract this data dilemma and its associated gover-
nance and privacy concerns by enabling collaborative learning
without centralizing the data. Hence, we will change current
local training manner and train our method with federated
learning mode, which can distill and share the knowledge
among AI agents in a robust and privacy-preserved fashion.

VI. CONCLUSION

In conclusion, we proposed a novel adversarial learning
method based on unpaired data for effective stain transfer
between H&E domain and Ki-67 domain. Most of the afore-
mentioned issues and demands have been well tackled in this
paper. First, two pathological representation networks are first
proposed to learn the pathological features from Ki-67-stained
images and H&E-stained images. Also, the pathological con-
sistency loss function is designed to constrain stained images
with the same pathological properties in both H&E and Ki-67
straining domain. Meanwhile, just about 10% training data
is annotated by pathologists as expert knowledge to ensure
the features learned by pathological representation networks
are correct, which significantly saves a lot of labor cost on
annotations. Finally, we employ skip connection and structural
consistency loss to further improve the preservation of struc-
tural details. In order to validate the efficacy of the proposed
method, we first evaluated our method on a neuroendocrine
cancer dataset for comprehensive analysis, and then we tested
our method on a breast cancer dataset. Extensive experiments
validated the superiority of the proposed method which sig-
nificantly outperformed the state-of-the-art methods on two
datasets.
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