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Detection of Prostate Cancer in Whole-Slide
Images Through End-to-End Training With

Image-Level Labels
Hans Pinckaers , Wouter Bulten , Jeroen van der Laak , and Geert Litjens

Abstract— Prostate cancer is the most prevalent cancer
among men in Western countries, with 1.1 million new
diagnoses every year. The gold standard for the diagnosis
of prostate cancer is a pathologists’ evaluation of prostate
tissue.

To potentially assist pathologists deep/̄learning/̄based
cancer detection systems have been developed. Many of
the state-of-the-art models are patch/̄based convolutional
neural networks, as the use of entire scanned slides is
hampered by memory limitations on accelerator cards.
Patch-based systems typically require detailed, pixel-level
annotations for effective training. However, such annota-
tions are seldom readily available, in contrast to the clinical
reports of pathologists, which contain slide-level labels.
As such, developing algorithms which do not require man-
ual pixel-wise annotations, but can learn using only the clin-
ical report would be a significant advancement for the field.

In this paper, we propose to use a streaming imple-
mentation of convolutional layers, to train a modern CNN
(ResNet/̄34) with 21 million parameters end-to-end on
4712 prostate biopsies.The method enables the use of entire
biopsy images at high-resolution directly by reducing the
GPU memory requirements by 2.4 TB. We show that modern
CNNs, trained using our streaming approach, can extract
meaningful features from high-resolution images with-
out additional heuristics, reaching similar performance as
state-of-the-art patch-based and multiple-instance learning
methods. By circumventing the need for manual annota-
tions, this approach can function as a blueprint for other
tasks in histopathological diagnosis.

The source code to reproduce the streaming models
is available at https://github.com/DIAGNijmegen/
pathology-streaming-pipeline.

Index Terms— Deep learning, deep convolutional neural
networks, computational pathology, prostate cancer.
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I. INTRODUCTION

THE current state-of-the-art in computer vision for
image classification tasks are convolutional neural net-

works (CNNs). Commonly, convolutional neural networks
are developed with low/̄resolution labeled images, for exam-
ple 0.001 megapixels for CIFAR-10 [1], and 0.09-0.26
megapixels for ImageNet [2]. These images are evalu-
ated by the network and the parameters are optimized
with stochastic gradient descent by backpropagating the
classification error. Neural networks learn to extract rele-
vant features from their input. To effectively learn relevant
features, optimizing these networks requires relatively large
datasets [3].

In histopathology, due to the gigapixel size of scanned
samples, generally referred to as whole-slide images (WSIs),
the memory limitation of current accelerator cards prohibits
training on the entire image, in contrast to most of the natural
images used in general computer vision tasks. As such, most
networks are trained on tiny patches from the whole/̄slide
image. Acquiring labels for these patches can be expensive.
They are generally based on detailed outlines of the classes
(e.g., tumor regions) by an experienced pathologist. This
outlining is not done in clinical practice, and is a tedious and
time-consuming task. This limits the dataset size for training
models. Also, we will need to create these annotations for
every individual task.

Besides time constraints, the diagnosis also suffers from
substantial inter-observer and intra-observer variability [4].
For prostate cancer, pathologists report the Gleason grading
scheme [5]. Prognostically interesting growth patterns are
categorized, resulting in three levels of aggressiveness. When
cancer is present, the reports will mention a Gleason score,
a combination of the two most informative growth patterns.
These are the most common patterns or the highest pattern.
There is disagreement in the detection of prostate cancer,
as in the grading using the Gleason scheme. Since pathologists
can disagree between therapeutically relevant growth patterns
and the presence of a tumor, there are clinically relevant
consequences per individual case.

However, if we could circumvent labeling on a patch
level, clinically evaluated biopsies could be cheaply labeled
using their clinical reports. These reports contain all relevant
information for clinical decisions, and are thus of large value
for machine learning algorithms.
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In this paper we will focus on prostate cancer detection,
determining whether a biopsy contains cancerous glands or
not. The diagnosis of prostate cancer—the most prevalent
cancer for men in Western countries—is established by
detection on histopathological slides by a pathologist. The
microscopy slides containing cross-sections of biopsies can
exhibit morphological changes to prostate glandular structures.
In low-grade tumors, the epithelial cells still form glandular
structures; however, in the case of high-grade tumors, the
glandular structures are eventually lost [6].

In the presence of cancer, the percentage of cancerous tissue
in a prostate biopsy can be as low as 1%, the evaluation of the
biopsies can be tedious and error-prone, causing disagreement
in the detection of prostate cancer, as in the grading using the
Gleason scheme [4].

Besides substantial inter-observer and intra-observer vari-
ability, diagnosing prostate cancer is additionally challenging
due to increasing numbers of biopsies as a result of the
introduction of prostate-specific antigen (PSA) testing [7].
This number is likely to increase further due to the aging
population. In the light of a shortage of pathologists [8],
automated methods could alleviate workload.

To reduce potential errors and workload, recent work
[9]–[15], has shown the potential to automatically detect
prostate cancer in biopsies. These studies either use expensive,
pixel-level annotations or train CNNs with slide-level labels
only, using a patch-based approach.

One popular strategy is based on multiple-instance-
learning (MIL) [16]–[18]. In this approach, the whole-slide
image (WSI) is subdivided into a grid of patches. The MIL
assumption states that in a cancerous slide (’positive bag’),
at least one patch will contain tumorous tissue, whereas
negative slides have no patches containing tumour. Under this
assumption, a CNN is trained on a patch-level to find the most
tumorous patch.

However, this approach has several disadvantages [19].
First, this method only works for tasks where the label can be
predicted from one individual patch and a single adversarial
patch can result in a false positive detection. Second, it is
essentially a patch-based approach, therefore, the size of the
patch constrains the field-of-view of the network.

In this paper, we propose a novel method, using streaming
[20], to train a modern CNN (ResNet-34) with 21 million
parameters end-to-end to detect prostate cancer in whole-slide
images of biopsies. We also investigate the use of transfer
learning with this approach. This method does not suffer from
the same disadvantages as the aforementioned approaches
based on MIL: it can use the entire content of the whole-slide
image for its prediction and the field-of-view is not limited to
an arbitrary patch-size. We compare our approach against the
methods by Campanella et al. [10] and Bulten et al. [9]. Since
deep learning algorithm in computational pathology can suffer
from bad generalization towards other scanners [21], we eval-
uated the generalization of the MIL- and streaming-trained
ResNet-34 on additional biopsies acquired with a different
scanner, previously used by Litjens et al. [12].

The streaming implementation allows us to train a con-
volutional neural network directly on entire biopsy images

at high-resolution (268 megapixels) using only slide-level
labels. We show that a state-of-the-art CNN can extract
meaningful features from high-resolution images using labels
from pathology reports without additional heuristics or post-
processing. Subsequently, we show that transfer learning from
ImageNet performs well for images that are 5000x bigger than
the original images used for training (224 × 224), improving
accuracy en decreasing train time.

II. RELATED WORKS

For prostate cancer detection, previous works have used
more traditional machine learning (i.e., feature-engineering)
approaches [22]–[24]. Recently, researchers transitioned to
using deep-learning-based methods for the detection of cancer
[10], [12]. Besides detection, research on prostate cancer
grading has also been published [9], [13], [14].

In this work, we train on labels for individual biopsies.
Since in other work, the memory of the accelerator restricts
the input size of the image, published methods are based on
searching relevant patches of the original slide [10], [25]–[28],
or compressing the slide into a smaller latent space [29].

We explicitly compare against the state-of-the-art method
from Campanella et al. [10]. As mentioned before, their
multiple-instance-learning approach is based on the single
most-informative patch, and thus leads to a small field-of-
view for the network, and potential false positives because
of a few adversarial patches. To circumvent some of these
problems, Campanelle et al. [10], tried to increase the field-
of-view to multiple patches using a recurrent neural net-
works with some improvement. Their system achieved an
area-under-the-receiver-operating curve (AUC) of 0.986. the
aggregation method increased the AUC to 0.991. To make
the comparison fair, we trained a ResNet-34 network archi-
tecture for both methods. However, when training end-to-end,
the context of the whole image is automatically taken into
account.

Campanella et al. showed that performance decreases when
using smaller datasets, concluding that at least 10,000 biopsies
are necessary for a good performance. Since they did not
use data augmentation (probably because of the big dataset at
hand), we investigated if we could reach similar performances
with smaller dataset sizes using data augmentation.

Since the mentioned implementation of multiple-instance-
learning only considers one patch, which may be less efficient,
others [26], [27] improved the method by using multiple reso-
lution patches and attention mechanisms. Li et al. trained two
models on low and high resolution patches, only patches that
were predicted as suspicious by the lower resolution model
were used to train the higher resolution model. Additionally,
to calculate the attention mechanisms, all patches need to be
kept in memory, limiting the size of the patches. Lu et al. [26]
showed that, additionally to attention mechanisms, a frozen
model pretrained on ImageNet decreases training time and
improves data efficiency. We also use ImageNet weights, but
by using the streaming-implementation of convolutions, can
unfreeze the model and train the whole network end-to-end.
However, in both papers, no comparison to the original method
of Campanella et al. was performed.
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Fig. 1. Example biopsies of our dataset. The left two biopsies are benign, the others cancerous. The zoomed regions show tumorous tissue when
present. They are rendered in same resolution (1.0µm/px, region is 328 × 328 pixels) on which the models are trained. Best viewed digitally and at
a high magnification.

III. MATERIALS

We used the same dataset as Bulten et al. [9], we will briefly
reiterate the collection of the dataset here. We built our dataset
by retrospectively collecting biopsies and associated pathology
reports of patients. Subsequently, we divided the patients
between training, validation, and test set. As standard practice,
we optimized the model using the training set and assessed
generalization using the validation set during development.
After development, we evaluated the model on the test set. The
dataset, except for the test set, is publicly available as a Kaggle
challenge at https://www.kaggle.com/c/prostate-cancer-grade-
assessment. An additional set, termed Olympus set, was used
for evaluation with a different scanner, originally extracted by
Litjens et al. [12].

A. Data Collection

We retrieved pathologists reports of prostate biopsies for
patients with a suspicion of prostate cancer, dated between
Jan 1, 2012, and Dec 31, 2017, from digital patient records
at the Radboud University Medical Center, excluding patients
who underwent neoadjuvant or adjuvant therapy. The local
ethics review board waived the need for informed consent (IRB
approval 2016–2275).

After anonymization, we performed a text search on
the anonymized pathology reports to divide the biopsies
into positive and negative cases. Afterward, we divided the
patient reports randomly into training, validation, and test set.
By stratifying the biopsies on the primary Gleason score,
we retrieved a comparable grade distribution in all sets. From
the multiple cross-sections which were available per patient,
we selected the standard hematoxylin-and-eosin-stained glass
slide containing the most aggressive or prevalent part of
malignant tissue for scanning.

We digitized the selected glass slides using a 3DHistech
Pannoramic Flash II 250 (3DHistech, Hungary) scanner at a
pixel resolution of 0.24µm. Since each slide could contain
one to six unique biopsies, commonly with two consecutive
sections of the biopsies per slide, trained non-experts coarsely
outlined each biopsy, assigning each with either the reported
Gleason score, or labeling negative, based on the individual
biopsy descriptions in the pathology report.

We collected 1243 glass slides, containing 5759 biop-
sies sections. After division, the training set consisted
of 4712 biopsies, the validation set of 497 biopsies, and the
test set of 550 biopsies (Table I, Fig. 1). We extracted the

TABLE I
DISTRIBUTION OF DATASETS USED IN THE EXPERIMENTS,

STRATISFIED ON PRIMARY GLEASON PATTERN

individual biopsies from the scanned slides at a pixel resolution
of 0.96µm, visually approximately equivalent to 100x total
magnification (i.e., 10x microscope objective with a standard
10x ocular lens). Subsequently, we trimmed the whitespace
around the tissue using a tissue-segmentation neural
network [30].

B. Reference Standard Test Set

To determine a strong reference standard, three specialized
pathologists reviewed the slides in three rounds. In the first
round, each pathologist graded the biopsies independently.
In the second round, each biopsy for which no consensus
was reached in the first round, consensus was regraded by
the pathologist whose score differed from the other two, with
the help of the pathologist’s first score and the two anonymous
Gleason scores of the other pathologists. In the third round,
the pathologists discussed the biopsies without consensus after
round two. In total 15 biopsies were discarded by the panel
as they could not be reliably graded, resulting in a total test
set size of 535 biopsies. See [9] for a complete overview of
the grading protocol.

C. Smaller Subsampled Training Set

To test our method with smaller datasets, we sampled 250
(5%) and 500 (10%) biopsies from the training set. Half of
the cases in the new sets were negatives. For the positive
biopsies, we stratified on primary Gleason grade and sampled
equal amounts of each. Thus, we kept the distribution of
the positive biopsies equal over all the datasets. We used
the 5% (250 biopsies) and 10% (500 biopsies) datasets for
training. The validation- and test-sets were equal to the
ones used in the development of the model on the whole
set.
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Fig. 2. Example biopsies of Olympus set digitized on another scanner.
The left biopsy is benign, the right cancerous. Best viewed digitally and
at a high magnification.

D. Olympus Set

For the Olympus set, we used the slides of Litjens et al. [12].
That set contained 255 glass slides, scanned using an Olympus
VS120-S5 system (Olympus, Japan). In comparison to the
original paper, we used all biopsies on a negative slide, instead
of only one, resulting in 291 biopsies (Fig. 2). Since patients in
this set were biopsied in 2012, there was a small overlap with
the primary dataset used in this paper. We excluded 86 biopsies
from 53 duplicate patients, resulting in a set of 205 biopsies.

IV. METHODS

A. End-to-End Streaming Model

We trained a ResNet-34 [31] convolutional neural network.
Since the individual biopsy images differ in size, we padded
or center/cropped them to 16384 × 16384 input. 99% of our
dataset biopsies fitted within this input size. Since padding
small biopsies results in a lot of whitespace, we changed the
final pooling layer of ResNet-34 to a global max-pool layer.

For regularization, we used extensive data augmentation.
To make augmentation of these images feasible with reason-
able memory usage and speed, we used the open-source library
VIPS [32]. Elastic random transformation, color augmentation
(hue, saturation, and brightness), random horizontal and ver-
tical flipping, and rotations were applied. We normalized the
images based on training dataset statistics.

We initialized the networks using ImageNet-trained weights.
As an optimizer, we used standard SGD (learning rate of
2e − 4) with momentum (0.9) and a mini-batch size
of 16 images. Because when using streaming, we do not have
a full image on the GPU, we cannot use batch normalization,
thus we froze the batch normalization mean and variance,
using the transfer-learned ImageNet running mean and vari-
ance. We randomly oversampled negative cases to counter the
imbalance in the dataset [33].

For the experiments with random weights, we initialized the
networks using He et al. [34]. We also used mixed precision
training [35] to speed up training since these networks needed
more epochs to convergence.

1) Streaming CNN: Most convolutional neural network
architectures trained for a classification task require more
memory in the first layers than in the latter because of the
large feature maps. Our previously published method termed
‘streaming’ [20] circumvents these high memory require-
ments in the first layers by performing the operations on a
tile-by-tile basis. This method is possible because CNNs use

small kernels; hence the result at any given location is only
defined by a small area of the input. This area is called the
field-of-view. Since the field-of-view at the beginning of a
network is vastly smaller than the full input image, we can
use tiles (which have to be bigger than the field-of-view) to
perform the convolutions serially. Thereby only requiring the
amount of memory for the calculation on a single tile instead
of the whole input image. After streaming, we concatenate
the tile outputs to retrieve the complete intermediate feature
map of the last streamed layer. This complete feature map is
equal to the feature map we would get when training on a
infinite-memory GPU.

During the forward pass of these memory-heavy first layers,
we keep the final layer output and remove the output of the
other intermediate layers, to save memory. We stream as many
layers as needed until the last streamed layer’s output can fit
into GPU memory. This feature map can subsequently be fed
through the rest of the neural network at once, resulting in the
final output.

For the backward pass, we can use a similar implementation.
The last layers, until the last streamed layer, can be backprop-
agated as usual. Then, we correctly tile the gradient of the
last streamed layer’s output. We use these gradient tiles for
tile-by-tile backpropagation of the streamed layers. Leveraging
the input tile, we recalculate the first layers’ intermediate
feature maps with a forward pass (this is commonly called
gradient checkpointing [36]. With the recalculated features
and the gradient tile, we can finish the backpropagation for
the respective tile. We perform this for every tile. This way,
we can recover the gradients of all parameters, as would be
the case if training with the original input image. See Figure 3
for a graphical representation of the methods.

To train the ResNet-34, we streamed with a tile size of
2800 × 2800 (Fig. 8) over the first 28 layers of the network.
After these layers, the whole feature map (with dimensions
512 × 512×512) could fit into GPU memory. It is possible
to use the streaming implementation for more layers of the
network, however, to improve speed it is better to stream until
the feature map is just small enough. Finally, we fed the map
through the remaining six layers to calculate the final output.

For the experiments with random weights in mixed preci-
sion, due to the decrease in memory usage, we could use a
tile size of 3136 × 3136 to increase speed, and decrease the
number of streamed layers to the first 27.

2) Training Schedule: In transfer learning, often the first
layers are treated as a feature extraction algorithm. After
the feature extraction part, the second part is trained for the
specific task [37]. Since the domain of histopathology differs
significantly from the natural images in ImageNet, we froze
the first three (of the four) residual blocks of the network
(the first 27 layers) as feature extractor, only training the last
block for our task. This also has the benefit of training faster,
since we do not need to calculate gradients for the first layers.
After 25 epochs, all the networks were stabilized and stopped
improving the validation loss, showing slightly lower train
losses.

From these epochs, we picked a checkpoint with a low
validation loss to resume fine-tuning the whole network,
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Fig. 3. Using the streaming implementation of convolutional operations we can train a residual neural network end-to-end on whole-slide images
(left). Streaming combines precise tiling with gradient checkpointing to reduce memory requirements. We can then receive gradient signal over the
whole input image. Multiple-instance-learning (MIL) (right) divides the images into a grid of smaller patches with the assumption that an individual
patch could determine the image-level label. The network is then only optimized using the patch with the highest probability.

unfreezing the weights of the first three residual blocks. Due
to the relatively small validation set, the loss curve was less
smooth than the training loss curve. To account for a sporadic
checkpoint with a low loss, we calculated a moving average
over five epochs. From these averages, we picked the window
with the lowest loss, taking the middle checkpoint of the
averaging window.

Starting from this checkpoint, we fine-tuned the whole
network with a learning rate of 6e − 5. After approximately
50 epochs, all the networks stopped improving. For inference,
we choose the checkpoints based on a moving average of five
epochs with the lowest validation set loss. We averaged the
weights of these checkpoints to improve generalization [38].

For the streaming experiments with random weights,
we used the exact same training schedule except for the
learning rate. The loss would go to infinity in the first few
batches. When training from scratch, we could not use the first
layers as feature extractor. We fine-tuned the whole network
with a learning rate of 1e − 5 requiring 100 epochs until the
validation loss did stabilized. We subsequently lowered the
learning rate to 3e−6 for 200 epochs after which the validation
loss stopped improving.

The optimization and training procedure was fully con-
ducted using the validation set, the test set, and the Olympus
set were untouched during the development of the model.

3) Gradient Accumulation and Parallelization: Gradient accu-
mulation is a technique to do a forward and backward pass
on multiple images in series on the accelerator card, and
averaging the parameter gradients over those images. Only
after averaging, we perform a gradient descent step. Averaging
the gradients over multiple images in series results in effec-
tively training a mini-batch of these multiple images, while
only requiring the memory for one image at a time. We used
gradient accumulation over multiple biopsies to achieve an
effective mini-batch size of 16 images.

We trained over multiple GPUs by splitting the mini-
batch. For the streaming experiments, we used four GPUs
(either NVIDIA RTX 2080ti or GTX 1080ti).

B. Multiple-Instance-Learning Model

As a baseline, we implemented the multiple-instance-
learning method as described in [10].

This method divides the images into a grid of smaller
patches with the assumption that an individual patch could
determine the image-level label. The task is to find the most
informative patch. In our binary detection task, the most
informative patch is determined by the patch with the highest
probability of tumor. If there is a patch with a high probability
of tumorous tissue, the whole biopsy is labeled tumorous.

We train such a model, per epoch, in two phases. The
first phase is the inference phase, where we process all the
patches of a biopsy, thereby finding the patch with the highest
probability. This patch gets assigned the image-level label.
Then, in the training phase, using only patches with the
highest probability (the top-1 patch), the model parameters
are optimized with a loss calculated on the patch probability
and the label.

We followed the implementation from Campanella et al.
[10], but tweaked it for our dataset sizes. We used standard
SGD (learning rate of 1e − 5) with momentum (0.9) with a
mini-batch size of 16 images. We froze the BatchNormaliza-
tion mean and variance, due to the smaller mini-batch size and
to keep the features equal between the inference phase and
the training phase. Equally, we oversampled negative cases to
counter the imbalance in the dataset, instead of weighting [33].

We updated the whole model for 100 epochs when transfer
learning, and 200 epochs when training from random weights.
From these epochs, we picked the checkpoint with the lowest
loss using the same scheme as the streaming model. Afterward,
we trained for another 100 epochs with a learning rate of
3e − 6. The networks trained from random initialization on
the 10% and 5% required 300 epochs. We again choose the
checkpoint based on the lowest validation set loss, using a
moving average of 5 epochs. We also used weight averaging
for these checkpoints.

For regularization, we used the same data augmentation as
the streaming model. We made sure that the same augmented
patch was used in the inferencing and training phase. We used
ImageNet statistics to normalize the patches.

C. Quantitative Evaluation

The quantitative evaluation of both methods is performed
using receiver-operating characteristic (ROC) analysis. Specif-
ically, we look at the area under the ROC curve. To calculate
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Fig. 4. On the left, receiver-operating curves of streaming and MIL models, for all dataset sizes, trained with transfer learning. On the right,
comparison of receiver-operating curves of the two methods trained on the whole dataset tested on the test set and Olympus set (digitized biopsies
using different scanner).

a confidence interval, we used bootstrapping. We sampled
the number of the biopsies in the set, with replacement, and
calculated the area under the receiver-operating-curve based
on the new sample. Repeating this procedure 10.000 times
resulted in a distribution from which we calculated the 95%
confidence interval (2.5 and 97.5 percentile)

D. Qualitative Evaluation

To assess the correlation of certain regions to the cancerous
label, we created heatmaps for both techniques. For MIL,
we used the patch probabilities. For streaming, we used
sensitivity maps using SmoothGrad [39]. As implementation
of SmoothGrad, we averaged 25 sensitivity maps on Gaussian-
noise-augmented versions of a biopsy. We used a standard
deviation of 5% of the image-wide standard deviation for
the Gaussian noise. As a comparison, we show pixel-level
segmentations from the model published in Bulten et al. [9]
as well.

In addition, we did a thorough analysis of the false positives
and negatives of both the MIL and the streaming methods.

V. EXPERIMENTS

We performed three experiments for both methods using
three datasets. One experiment on all the data, and two on
subsampled training sets, the 10% (500 biopsies) and 5%
(250 biopsies) datasets.

On the whole dataset, the streaming model achieved an AUC
of 0.992 (0.985–0.997) and the MIL model an AUC of 0.990
(0.984–0.995). Interestingly, our models trained on the whole
dataset reached similar performance to previous work on this
dataset [9], which utilized a segmentation network trained
using dense annotations obtained in a semi-supervised fashion.

For streaming, the performance on the smaller dataset
sizes are similar between the two. 5% dataset has an AUC
of 0.971 (0.960–0.982) for 5% and 0.982 (0.972–0.990) for
10% (Table II). The models trained with more data generalize
better (Fig. 4).

Also for multiple-instance learning there is a clear improve-
ment going from a model trained on the smallest dataset size,
with an AUC of 0.965 (0.949–0.978), increasing to 0.981
(0.970–0.990) on the 10% dataset.

There seems to be a trend that the MIL model performs
slightly worse (Fig. 4), however, this difference falls within
the confidence intervals.

TABLE II
AREA UNDER THE RECEIVER-OPERATING-CURVE COMPARISON

BETWEEN THE METHODS ON THE TEST SET, Trained Using
Transfer Learning

TABLE III
AREA UNDER THE RECEIVER-OPERATING-CURVE COMPARISON

BETWEEN THE METHODS ON THE TEST SET, Trained From
Random Initialization

In the experiments trained from random weights, there is
a larger separation between the methods, without overlap of
the confidence intervals. Streaming achieves an AUC of 0.967
(0.952–0.980) when using the whole set (Table III) in compar-
ison to MIL with 0.918 (0.894–0.941). For the 10% set using
streaming also results in higher metrics 0.924 (0.900–0.945)
versus 0.899 (0.871–0.924). Finally, the 5% set gets an AUC
of 0.915 (0.889–0.939) for streaming and 0.862 (0.831–0.892)
for MIL.

In general, the areas identified by MIL and streaming in
the heatmaps correspond well to the pixel-level segmentations
from Bulten et al., showing that both methods pick up the
relevant regions for cancer identification (Figure 7). Most
errors of the models seem to be due to normal epithelium
mimicking tumorous glands in the case for false positives, and
the small size of some tumorous regions as a possible reason
for the false negatives. (Table IV)
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TABLE IV
POSSIBLE SOURCES OF ERRORS FOR BOTH MODELS

TRAINED USING TRANSFER LEARNING

For the Olympus set, existing of biopsies scanned by the
Olympus VS-system, there is a larger separation between the
methods. Streaming reaches an AUC of 0.909 (0.863–0.949),
with MIL scoring 0.799 (0.732–0.861). For this dataset, MIL
has 36 false negatives versus 20 for streaming, and 8 false
positive versus 5 from streaming.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed using streaming [20] con-
volution neural networks to directly train a state-of-the-
art ResNet/̄34 architecture on whole prostate biopsies with
slide-level labels from pathology reports. We are the first to
train such high-resolution (268 megapixels) images end-to-
end, without further heuristics. Accomplishing this without
the streaming implementation would require a accelerator card
with 2.4 terabyte of memory.

We showed it is possible to train a residual neural network
with biopsy level labels and reach similar performance to
a popular multiple-instance-learning (MIL) based method.
Our models trained on the whole dataset reached an AUC
of 0.992 for streaming training, and 0.990 for MIL. In addi-
tion, we achieved equal performance to a method trained on
patch-based labels, with an AUC of 0.990 [9] on the same
dataset. Although, it should be noted that Bulten et al. used
weakly-supervised labels, they used a cascade of models to
go from epithelium antibody-staining to semi-automatic pixel-
level annotations, to generate a model trained at the patch
level.

Looking at the failure cases (Table IV), multiple-instance-
learning suffers from interpreting normal glands as tumorous
(Fig. 5 and 6). We hypothesize this is due to the lack of
context, in all but three cases the misclassification was due
to one patch. For false negatives, both models fail when there
is a small amount of tumor, however the streaming model
seems to suffer more from this. A possible solution would be
to incorporate attention mechanisms into the network, allowing
it to focus to smaller parts of the biopsy.

To study the benefits of transfer learning, we trained the
networks from randomly initialized weights according to
He et al. [34]. These networks took longer to converge
(approximately 3-4x more iterations needed) and reached

Fig. 5. Examples of false positive predictions of test set biopsies, both
small areas of normal epithelium that may resemble low-grade cancer.
Showing patch probabilities for MIL (a), and SmoothGrad saliency for
the streaming model (b), both overlayed on the overview biopsy. The
zoomed-in region for MIL is exactly one patch.

Fig. 6. Examples of false negative predictions of test set biopsies with
potential reasons for misclassification.

lower performances. In this case, MIL is less capable of
extracting relevant information from the patches and scores
worse than networks trained with streaming, scoring an AUC
of 0.918 versus 0.959, respectively. We think training from ran-
dom weights introduced additional noise in the MIL-training
process. Since some biopsies contain cancerous tissue that
only falls within a few patches, ImageNet weights can provide
a better starting point to find these relevant patches during
training. However, when training from random initialization,
the noise of the benign patches in a cancerous biopsy may
make it harder to learn. When possible, we advise the usage
of pretrained network to increase convergence speed and final
performance.

MIL performs weaker than the streaming network on the
Olympus set, with the main error being misclassifying 36 biop-
sies with tumor as negative. The external dataset has other
color characteristics due to the different scanner used. Since
both network have been trained with the same data augmen-
tation, MIL seems to benefit less from this augmentation thus
generalizing worse. The improvement seen in generalization
on the Olympus set and the trend of higher performance over-
all suggest that streaming extracts more meaningful features
from the same dataset.

In this paper, we compared against a MIL implementation
of Campanella et al. In their MIL implementation, only the
top-1 patch is used for training per epoch. The method’s data
efficiency is reliant on how often different patches are selected
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Fig. 7. Heatmaps of the models trained on the whole dataset, for correctly predicted examples. The first biopsy shows a sensitivity map
calculated using SmoothGrad. The second biopsy shows the probability per patch for the multiple-instance-learning model. The third biopsy shows
a segmentation map from Bulten et al., 2020; healthy glands are denoted in green.

in the first phase. Our results on the smallest dataset sample
(5%, 250 slides) hint towards reduced data efficiency for MIL.
However, the performance on the smaller datasets was already
close to optimal, suggesting effective use of the transferred
ImageNet-weights. Even though it is not the same test set as in
their original paper, this seems to suggest a better performance
for smaller datasets than Campanella et al. reported. Hypothet-
ically, this could be due to data augmentation, which they did
not use, and increased randomness with smaller mini-batch
size in our study.

For MIL, selecting different patches per image, every
epoch, is important to circumvent overfitting. We used lower
minibatch-sizes, 16 vs 512, and learning rates, 1e−5 vs 1e−4
as the original implementation [10]. We saw increased stability
in training using smaller mini-batch sizes and learning rates,
especially for the smaller datasets, where the whole dataset
would otherwise fit in one mini-batch. Lower mini-batch sizes
increased some noise, thereby picking different patches per
epoch.

The streaming implementation of convolutional neural net-
works is computationally slower than our baseline. Mainly
due to the number (121) and overlap (∼ 650 pixels) of the
tiles during backpropagation. For inference new slides, taking
into account the preprocessing that needs to happen (roughly
8 seconds for extracting patches or extracting the whole
biopsy), MIL takes half the time (8.25 seconds) compared
to streaming (16.5 seconds) (Table IV). The most significant
difference lies in the train speed, where for full precision,
streaming is ∼ 65 times slower than MIL (Table V). Streaming
did require half the number of epochs needed to converge, but

TABLE V
TRAINING, FINE-TUNING AND INFERENCING TIMES PER BIOPSY ON A

NVIDIA RTX 2080TI GPU

the gap is still large. However, an algorithm only needs to be
trained once, and the inference speed for both streaming and
MIL is fast enough for use in clinical practice.

Improving the speed of the streaming implementation
of convolutional operations is of interest. In this work,
we improved training speed by first freezing the first layers of
the neural network, not having to calculate gradients. Using
this training scheme in the multiple-instance-learning baseline
resulted in unstable training and worse performance. Further
research could focus on decreasing the number of calculations
needed by using variable input sizes1 or lower-level implemen-
tations that ignore whitespace, such as sparse implementations
of convolutions [40].

Streaming training with high-resolution images opens up
the possibility to quickly gather large datasets with labels

1An example implementation of this can be found in the open source
repository.
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Fig. 8. Memory requirements for different tile sizes for the streamed part
of the network. There is a linear relationship between tile size area and
memory used. Measured on a RTX2080ti, average of 5 runs.

from pathology reports to train convolutional neural networks.
Although linking individual biopsies to the pathology report
is still a manual task, it is more efficient than annotating
the individual slides. However, some pathology labs will
manufacture one slide per biopsy and report systematically on
these individual biopsies. Training from a whole slide, with
multiple biopsies, is left for future research.

Since multiple-instance-learning, in the end, predicts the
final label on a single patch, tasks that require information
from different sites of the biopsy could be hard to engineer in
this framework. For example, in the Gleason grading scheme,
the two most informative growth patterns are reported. These
patterns could lie on different parts of the biopsy, outside of
the field-of-view of a single patch. Also, additional growth
patterns could be present. The first reported growth pattern of
Gleason grading is the most prevalent. Since multiple-instance-
learning works patch-based, volumes that span larger than
one patch are not used for the prediction. Streaming allows
for training complex tasks, such as cancer grading, even with
slide-level labels.

Our heatmaps show that indeed the streaming model uses
information from multiple regions in the biopsy (Fig. 7). Even
though our model is not trained on a patch-level, the sensitivity
maps highlight similar regions as the MIL method and the
segmentation algorithm from Bulten et al. Thus, interestingly,
a modern convolutional neural network, originally developed
for tiny input sizes, can extract useful information from
268 megapixel images.

Besides allowing the entire slide to inform predictions,
streaming training also has the advantage of being able to
learn with hard or impossible to annotate global information.
For example, in the medical domain, survival prediction can be
of great interest. Future work could be to predict survival from
histopathology tissue directly. Reliably annotating for this task
can be difficult. Since streaming can find patterns and features
from the whole image using just the retrospective patient
prognosis, this method can be beneficial in automatically
finding new relevant biomarkers.

We provide source code of the streaming pipeline at
GitHub.2 We tried to make it easy to use with other datasets.
Additionally to methods used in this paper, we added mixed

2https://github.com/DIAGNijmegen/pathology-streaming-pipeline

precision support for even more memory efficient and faster
training.
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