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Multi-Atlas Image Soft Segmentation via
Computation of the Expected Label Value

Iman Aganj and Bruce Fischl

Abstract— The use of multiple atlases is common in med-
ical image segmentation. This typically requires deformable
registration of the atlases (or the average atlas) to the new
image, which is computationally expensive and suscepti-
ble to entrapment in local optima. We propose to instead
consider the probability of all possible atlas-to-image trans-
formations and compute the expected label value (ELV),
thereby not relying merely on the transformation deemed
“optimal” by the registration method. Moreover, we do so
without actually performing deformable registration, thus
avoiding the associated computational costs. We evaluate
our ELV computation approach by applying it to brain,
liver, and pancreas segmentation on datasets of magnetic
resonance and computed tomography images.

Index Terms— Expected label value (ELV), supervised
image segmentation, soft segmentation, atlas, MRI, CT.

I. INTRODUCTION

AUTOMATIC image segmentation is often a central step
in medical imaging studies, enabling the analysis of

specific regions of interest (ROIs). In supervised segmentation,
an algorithm segments a new image using the information
derived from a training dataset of images that are accompanied
with gold-standard (e.g. manually delineated) ROI labels. Two
popular approaches to supervised image segmentation use
multiple atlases [1]–[4] and deep neural networks [5], [6].
In multi-atlas-based segmentation of a new image, atlas images
are (or a mean template image is) deformably registered to
the new (to-be-segmented) image. The manual labels are then
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propagated into the new image space using the computed
transformations, and fused to form the new labels.

Deformable registration of the atlas images to the new
image is computationally very demanding (except for recent
deep-learning based approaches [7]–[10]) and is the bottle-
neck of atlas-based segmentation. To improve computational
efficiency, it has been proposed to use only a subset of
atlases [11], albeit at the price of discarding a portion of the
available training data.

The transformation resulting from registration guides label
propagation from the atlas to the new image. Being an
iterative non-convex optimization, image registration is prone
to becoming trapped in local optima, potentially leading to
inaccurate propagation of the labels. Moreover, different but
equally reasonable transformations may produce similar values
for the registration objective function (within its margin of
error). Thus, even if the global optimum is found, choosing it
as the single correct transformation would disregard valuable
information provided by other potentially valid transforma-
tions. Such a globally optimal solution is also rarely robust,
as it is sensitive to disturbances of or changes to input
images, or variations in acquisition parameters. To alleviate
this issue, uncertainty in registration has been incorporated into
Bayesian segmentation by approximating the marginalization
over registration parameters via Markov Chain Monte Carlo
techniques [12], which, even though efficiently implemented,
would further increase the computational costs. Local mea-
sures of uncertainty in deformable registration have also been
used to improve the sensitivity of the label propagation in
atlas-based segmentation [13], [14].

In this work, we present a new atlas-based method for
soft (i.e., fuzzy or probabilistic) segmentation of images,
which – instead of attempting to determine a single correct
label – produces the expected value of the label at each
voxel of the new image, while considering the probability of
possible atlas-to-image transformations. This is accomplished
without either explicitly sampling from the transformation
distribution (which would be intractable) or running the costly
deformable registration in training or testing stages. We create
a single image from the training data, which we call the key.
Then, for a new image (after affine alignment, if necessary),
we compute the expected label value (ELV) map simply via
a convolution with the key, which is efficiently performed
using the fast Fourier transform (FFT). Our fuzzy ELV map
is therefore a robust combination of labels suggested by
atlas-to-image transformations, weighted by a measure of the
transformation validity. This soft segmentation can be further
used to initiate a subsequent hard-segmentation procedure.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4673-1293


AGANJ AND FISCHL: MULTI-ATLAS IMAGE SOFT SEGMENTATION VIA COMPUTATION OF ELV 1703

We validate our approach through brain, liver, and pancreas
segmentation experiments on magnetic resonance (MR) and
computed tomography (CT) images.

This article extends our preliminary conference version [15].
In particular, we have improved the method as well as
expanded our empirical evaluation by including several new
datasets. Moreover, our Matlab toolbox is now publicly
available (https://www.nitrc.org/projects/elv). In the following,
we describe the proposed method in detail (Section II and
the appendices) and present experimental results (Section III)
along with some concluding remarks (Section IV).

II. METHODS

A. Segmentation From a Single Atlas

Let I : Rd → R be the d-dimensional image to be
segmented, and J : Rd → R an atlas image with the same
contrast as I , for which the manual label of a specific ROI
has been provided as L : Rd → {0, 1}.1 For the new image I ,
we wish to compute the expected value of the ROI label,
E : Rd → [0, 1], which is a measure of likelihood of each
voxel belonging to the ROI.

In traditional atlas-based image segmentation, the label L
is propagated into the space of I as L ◦ T∗ (I, J ), where the
transformation T∗ (I, J ) is computed via registration as T :
Rd → Rd that maximizes the similarity between I and J ◦T .2

Here, instead, we propose to compute the expected value of
the propagated L, while considering a probability for each
possible transformation in T := {

T : Rd → Rd
}
, as follows:

E : = E [L ◦ T |I, J ] =
∫

T

Pr (T | I, J) (L ◦ T) dT . (1)

Equation (1) computes the ELV as an integral over the
space of all transformations, which could be regarded as
multiple (theoretically an infinite number of nested) integrals
over the space of parameters representing T . For free-form
deformation, as considered here, Eq. (1) in fact includes a
d-dimensional integral – with respect to the value of T (x)
– for each x ∈ Rd . In standard atlas-based segmentation,
Pr (T | I, J ) is considered a Dirac delta, δ

(
T − T∗ (I, J )

)
,

whereas here we will consider a full probability distribution
for it.

Using Bayes’ theorem, we can write the probability of the
transformation given both the new and atlas images as:

Pr (T | I, J ) ∝ Pr (I, J | T) Pr (T) , (2)

where the two right-hand-side factors correspond to the image
similarity and the transformation regularity, respectively. For
the former, we opt to use the inner product of the image and
the transformed atlas, since it is expected to be higher when
the two images are well aligned:

Pr (I, J | T) ∝
∫

Rd
I (x) (J ◦ T) (x) dx. (3)

It is, however, well established that the inner product reflects
the degree of alignment more effectively when only the phase
information of the image is included [16], [17], which is

1The gold-standard segmentation may also be a soft label, L : Rd → [0, 1].
2We denote vector-valued variables in bold.

how in practice we will proceed, as described in Section
II-C. A discussion on our choice of the inner product of
phase images as image similarity is provided in Appendix A.
In the following, we first consider the case where T is only a
translation.

1) Translation: For a translation, T (x) = x −�, the inner
product in Eq. (3) becomes the cross-correlation of the
image and the atlas, which is commonly used for image
alignment [16], [17]:

Pr (I, J |�) ∝
∫

Rd
I (x) J (x −�) dx = (

I ∗ J̄
)
(�) , (4)

where ∗ denotes the convolution operator, and J̄ (x) :=
J (−x). By assuming a flat prior for the shift (i.e., a constant
Pr (�)) and combining Eqs. (1), (2), and (4), the ELV at
voxel y will be:

E (y) ∝
∫

Rd

(
I ∗ J̄

)
(�) L (y −�) d�, (5)

or,

E ∝ (
I ∗ J̄

) ∗ L = I ∗ ( J̄ ∗ L
)
. (6)

In the right-hand side, we exploited the associativity prop-
erty of convolution, which leads to the following expression
for the ELV:

E ∝ I ∗ A, (7)

where we define and pre-compute the key, A, from the atlas, as:

A := J̄ ∗ L . (8)

This convolution operation blurs the flipped atlas image and
shifts it in the opposite direction of the ROI, thereby resulting
in a key image, A, with the ROI roughly at its center.

Next, we will incorporate deformations in our transforma-
tion model.

2) Deformation: To generalize the transformation T to
include deformations, we will use the common Tikhonov prior
on the regularity of the deformation field as the probability of
the transformation:

Pr (T) ∝ R (T) := e−
1

2σ2

∫
Rd ‖∂T(z)−I‖2F dz

, (9)

where ∂T is the Jacobian matrix of T , I is the d × d identity
matrix, and the constant parameter σ represents a prior on
the magnitude of the deformations. In Appendix B, we show
that the ELV is still computed following Eq. (7), where
the key, A, is initially computed as in Eq. (8), but then
updated to incorporate the deformation. We show that we can
approximate this update by an inhomogeneous blurring of the
key, as:

A (x)←
[

A (z) ∗ G
(

z | 0, σ 2 ‖x‖2 I

)]
z=x

, (10)

where G (� |μ,�) represents the Gaussian function with the
mean μ and the co-variance matrix �. One can see that
the size of the blurring kernel increases with the square
root of the Euclidean distance from the center of A – i.e.,
the region corresponding to the label ROI (see Section II-A.1).
Blurring a region in A decreases its contribution to soft seg-
mentation by removing its high-frequency components prior
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to the convolution in Eq. (7). This means that Eq. (10) takes
local deformations into account by giving a smaller weighting
to regions in the atlas image that are farther from the ROI,
making the information in such far areas less important.

Note that, even without the inhomogeneous blurring
(i.e., σ = 0), the proposed method still encompasses – not just
a single optimal, but – all possible translations, each partially
contributing to the ELV with a weighting proportional to its
degree of aligning. Given that a deformation field itself can
be construed as many local translations, each of which would
partially contribute to the ELV, one can see that, in some way,
deformations are inherently accounted for.

The proposed model accounts for large translations, as well
as local deformations, even though we do not run any
deformable registration. As for rotation and global scaling,
accounting for local deformations covers a small amount of
them, and to allow for large amounts, we can initially affinely
align the image and the atlas.

B. Multiple Atlases

In case N atlases (affinely aligned in the same space) with
manual labels are available, we will write Eq. (1) in the same
fashion, as:

E := 1

N

N∑
i=1

E [Li ◦ T |I, Ji ], (11)

where Ji and Li are the i th pair of atlas and manual-label
images, respectively. This will yield similar results as in
Eqs. (7) and (10), with the only difference being Eq. (8), now
generalized as:

A := 1

N

N∑
i=1

J̄i ∗ Li . (12)

Note that even in the case of multiple atlases, the key, A,
is a single image that is pre-computed from the training data.

Given that the to-be-segmented ROI is roughly at the center
of the key, the regions whose relative positions with respect to
the ROI are consistent across atlases are amplified in the key
through constructive addition in Eq. (12), whereas those with
relative positions varying from atlas to atlas due to inter-atlas
deformations are washed out. Therefore, the relative weighting
of the regions that are most informative for segmenting the
desired ROI is elevated in the key thanks to aggregation of
information from multiple atlases.

C. Implementation

1) Computation in the Fourier Domain: To create the key,
A, we first ensure that the N training images are represented
roughly in the same space; and if not, we affinely align them.
By applying the convolution theorem to Eq. (12), we will then
use FFT to initialize A:

A = F−1

⎧⎨
⎩ 1

N

N∑
i=1

Ĵ ∗i∣∣∣ Ĵi

∣∣∣ L̂i

⎫⎬
⎭ , (13)

where the hat ( ˆ) sign and F−1 represent the Fourier and
inverse Fourier transforms, respectively, and Ĵ ∗ is the complex

conjugate of Ĵ . By only keeping the phase information of
the image (i.e., normalizing Ĵi by its magnitude), we create a
sharper probability distribution for the aligning transformation
in Eq. (3) [16], [17] (see Appendix A). In addition, this has
an intensity normalization effect, preventing A from giving
a different weighting to an atlas image due to its global
intensity scaling. Next, for inhomogeneous blurring of the key
(i.e., if σ > 0), we update A voxel-wise following Eq. (10)
by multiplying and summing it with a varying discretized
Gaussian kernel.

To segment a new image, I , we first make sure that it is
correctly represented in the atlas space (otherwise, affinely
align it to the mean atlas image using any existing affine
registration tool), and then compute the ELV map from Eq. (7)
as follows:

E ∝ F−1

⎧⎨
⎩ Î∣∣∣ Î ∣∣∣ Â

⎫⎬
⎭ . (14)

Note that Â is pre-computed from the atlases and kept
offline. Different keys can be independently created for dif-
ferent organs for the purpose of multi-organ segmentation,
in which case, label overlap can be avoided using the soft-max
operator [6] on the normalized probability maps of different
organs, and via other label-fusion strategies [3], [4] such as
STAPLE [18].

For hard segmentation of the organ (or structure) from the
map, we threshold the map to keep a voxel subset with the
volume 14% larger than that of an average organ (estimated
from the atlases); see Appendix C for the rationale behind
this choice.3 We then refine the mask by keeping the largest
connected component (CC), as well as the CCs with at least
half the volume of the largest CC, and then filling the holes.4

2) Second Pass: Once the initial ELV map is obtained,
it can be refined by recalculating Eq. (14) while this time
prioritizing the initial soft-segmented area. In our experiments,
for instance, we used weighted versions of A (x) and I (x),
as A (x) G

(
x | 0, s2I

)
and I (x)

[
E (y) ∗ G

(
y | 0, s2I

)]
y=x ,

respectively, where the size of the Gaussian window (2s) was
chosen to be roughly that of an average organ.

3) Intensity Prior: Given that using the phase image discards
some image intensity information, one can further augment
the computed ELV volume with image intensities. At a given
voxel, the Bayes formula implies:

Pr (L | I, E)

= Pr (I | L, E) Pr (L | E)

Pr (I | L, E) Pr (L | E)+Pr (I | ¬L, E) Pr (¬L | E)
, (15)

where L indicates that the given voxel belongs to the label,
with ¬ the negation operator, and I and E are the values
of the image intensity and the computed ELV at the voxel,
respectively. Were it known whether the voxel is included in
the label or not, the image intensity would be conditionally

3For data that is not too noisy, the organ size can also be estimated as the
inflection point of the curve obtained by sorting the ELV map in descending
order. Alternatively, the ELV map can be thresholded with a value optimized
from the training data.

4A Markov random field prior on the voxel labels could also be used to
encourage spatial regularity [3], [19].
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independent of the ELV; i.e. Pr (I | L, E) = Pr (I | L) and
Pr (I | ¬L, E) = Pr (I | ¬L). Using the ELV for Pr (L | E)
then leads to:

Pr (L | I, E) = Pr (I | L) E

Pr (I | L) E + Pr (I | ¬L) (1− E)
, (16)

where Pr (I | L) and Pr (I | ¬L) can be approximated by
Gaussian functions of the intensity values of I , with their
parameters estimated from the atlases (or the image itself using
the initial ELV map). We use the acronym ELV+IP to refer
to this ELV map that has been modulated by the intensity
prior (IP). For E to exhibit the properties of a probability,
the ELV map needs to be normalized by its maximum, with
any negative values projected to zero. Note that E was created
using the phase images that had lost some image intensity
information, meaning that the full image (I ) in Pr (L | I, E)
brings about new information not already included in E .

Pr (L | I, E) can even substitute for I itself in the com-
putation of the ELV, as – depending on the image contrast
– it may better highlight the organ of interest, which is the
most informative part of the image for segmentation. In that
case, since the ELV map has not yet been computed, we use
a constant E in Eq. (16) equal to the label-to-image volume
ratio estimated from the atlases.

Several other post-processing steps are possible after this
soft segmentation [1]. If binary segmentation is desired,
the ELV map can then be thresholded (see Appendix C
and Section II-C.1) or used as a seed region to sub-
sequently initialize an unsupervised hard segmentation
algorithm [15], [20].

III. RESULTS AND DISCUSSION

We evaluated our ELV computation method on several
medical image databases via leave-one-out cross validation.
We inspected the images in each database to make sure
that they were represented with the correct orientation in the
same space, i.e. they were not misaligned due to dimension
permutation or mirroring. Since we did not subsequently see
any remaining global scaling and rotation that exceeded the
inherent inter-subject variability, we did not affinely register
the images.5 For each test image in a database, we created the
key from the remainder of the images (i.e., labeled atlases) in
the database following Eq. (12), computed the label for the
test image, and report the Dice overlap coefficient between
the computed label and the known label. Since optimizing
for σ in Eq. (10) improved the Dice scores only negligibly
(< 1%) in our initial benchmarking, we report our results in
this section for the simple case with σ = 0.

As described in Section II-C, we computed the ELV map
in two passes, modulated the ELV with the intensity prior in
Eq. (15), where we used the atlases to estimate the means
(except for the liver; see Section III-B) and standard devia-
tions, and then hard-thresholded the probability maps to create
masks. The algorithm chose a single CC from the mask in
all experiments, except for 3% and 0.4% of the pancreas and
hippocampus segmentation cases, respectively, where two CCs
were chosen.

5In our preliminary experiments, initial affine registration did not improve
the results.

TABLE I
DICE COEFFICIENTS BETWEEN ELV+IP AND

FREESURFER LABELS IN BRAIN

For data homogeneity in the abdominal segmentation
experiments, we devised some inclusion criteria for each
dataset, which were roughly chosen to minimize the number
of excluded subjects (see below). Additional steps to pre-
process the abdominal CT images included: smoothing the
borders of each image, automatically removing the patient
table (via thresholding the image and removing the lower-
most one or two CCs), and using the intensity-prior image
(Section II-C.3) instead of the abdominal image itself for ELV
computation (thereby highlighting the organ amongst all other
parts of the image).

A. Brain

We first assessed the ability of our method to imitate
FreeSurfer [21] in segmenting brain subcortical structures.
We used T1-weighted MR images of 1224 subjects from the
third release in the Open Access Series of Imaging Studies
(OASIS-3) [22], normalized to the size 256 × 256 × 256
with 1 mm3 isotropic resolution. We considered the
FreeSurfer-generated labels for 12 subcortical structures (left
and right thalamus, caudate, putamen, pallidum, hippocampus,
and amygdala) as “silver” standard and tried to reproduce
the segmentation for each image via the proposed ELV
approach. The median, mean, and standard error of the mean
(SEM) of the resulting cross-validation Dice scores between
the labels generated by ELV+IP and FreeSurfer are shown
in Table I. Overall, the Dice score had a median of 0.782 and
a mean of 0.766± (SEM) 0.001 across subjects and structures.
(For the raw ELV, the median was 0.740 and the mean was
0.721± 0.001.) Since no manually delineated labels were used
as the gold standard in this experiment, the results merely
reveal how faithful the proposed approach is in reproducing
FreeSurfer labels, rather than comparing the two methods.

We then externally evaluated our approach by apply-
ing the key generated from the OASIS-3 images and
FreeSurfer labels to segment two previously-unseen datasets of
T1-weighted brain MR images with manual labels. The first
dataset, the Internet Brain Segmentation Repository (IBSR)
[23], included images from 18 subjects with the slice thickness
of 1.5 mm and in-plane pixel sizes ranging from 0.84 mm
to 1 mm, which we resampled to 1 mm3 isotropic voxel
size. The second dataset [24] included 1 mm3 isotropic-voxel
images from 39 subjects (28 healthy and 11 with dementia).
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Fig. 1. CT image (blue) of the representative subject (i.e., with median segmentation Dice score) in the LiTS dataset. The slice with the largest
cross section with the manual label is shown. Left : The ELV map of the liver (red; occasional negative values in green). Middle: The ELV+IP map
(red). Right : The resulting binary segmentation (red), the manual label (green), and their overlap (yellow). Intensities have been scaled for better
visualization. A 3D video of this figure is available in the supplementary materials.

We ran our ELV segmentation pipeline on each dataset once
(without any further finetuning), resulting in median Dice
scores of 0.69 (mean: 0.68 ± 0.01) and 0.677 (mean: 0.668 ±
0.004) for the two datasets, respectively. Note that the segmen-
tation error in these results is the aggregate error from both the
silver-standard labels used in training and the subsequent ELV
segmentation. Further modulation with the intensity prior here
deteriorated the results (median ELV+IP Dice: 0.56 and 0.624,
respectively); this was not surprising, as the parameters of the
image intensity prior had been estimated from another dataset
(OASIS-3) with different image acquisition protocols, and the
new images were not intensity-harmonized. The ELV itself,
however, uses the phase images and is thus not so sensitive to
inter-dataset variation in image intensity.

For comparison, in a similar experiment [25], a U-Net
type convolutional neural network (CNN) was trained on 581
FreeSurfer-segmented T1-weighted brain images. The authors’
trained model produced mean Dice scores of 0.74 and 0.71 on
two manually labeled test datasets. (The authors, however, did
not compare the labels that they computed with FreeSurfer-
generated labels.)

B. Liver

Next, we used the training dataset of the public Liver
Tumor Segmentation (LiTS) Challenge [26], which includes
abdominal CT images with manually delineated labels for the
normal tissue and lesions in the liver, provided by various
clinical sites. Although the subjects were scanned with con-
trast enhancement for liver lesions, we considered the entire
(healthy and lesion) organ label in our experiments. 85 subjects
passed our inclusion criteria, mainly the slice thickness being
included in the header and no larger than 2 mm. The images
were resampled in the space of the first image (where the Dice
scores are reported) to (1.6mm)3 isotropic resolution, so they
were all of the size 248× 248× 323.6

6Resampling to a different resolution is only needed if the dimensions of
the imaged object (in pixels) and their relative ratios substantially vary across
subjects due to varying voxel size.

We computed the ELV map for each subject, an example
of which is illustrated in Fig. 1 (left) for the representative
subject (corresponding to the median final Dice score; see
below). To create the ELV+IP map, we estimated the standard
deviation of the intensities of the liver and the background
from the 84 atlas subjects, using the manual labels and their
dilated versions (by a sphere of radius 50), respectively. For
stability, we estimated the mean intensity using the initial ELV
mask of the test subject, given that lesion size and intensity
varied from subject to subject. Next, we modulated the ELV
with the intensity prior (Fig. 1, middle), created a new mask,
and further refined it with an updated intensity mean estimated
from this mask. For mask preparation, we also performed
morphological opening with a spherical structuring element
with the radius of 2 voxels while keeping the largest CC
(i.e., eroding + keeping + dilating), which removed unwanted
smaller structures attached to this relatively large ROI.

The cross-validation Dice coefficients between the masks
computed from ELV+IP and manual labels (Fig. 1, right)
had a median of 0.92 across subjects (mean: 0.91 ± 0.01).
Dice scores, false positive rates (FPR), and false negative
rates (FNR) are shown in Table II for the ELV and ELV+IP
approaches, and a volumetric video of Fig. 1, as well as
a video of ELV slices for all subjects are available in the
supplementary materials. Among those results with lower
(entire-organ) Dice scores, lesion regions were frequently the
culprit, as the intensity prior, although generally improving
the segmentation, partially excluded some of those regions.
The relative portion of the lesion in the liver was significantly
negatively correlated with the Dice score generated by the
ELV+IP (r = − 0.48, p < 10−5), but not the ELV (r =
− 0.01, p = 0.93). Repeating this experiment with σ = 0.1
resulted in a negligible change (< 0.0001) in the mean Dice
score, which was not statistically significant (paired t-test
p = 0.16).

To compare our method with state-of-the-art multi-
atlas based image segmentation, we then used the
antsJointLabelFusion function of the Advanced
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TABLE II
OVERLAP OF THE AUTOMATIC AND MANUAL LIVER LABELS

Normalization Tools (ANTs) [27] to segment the liver using
both majority voting and joint label fusion [4]. For each test
subject, the remaining 84 atlas images were registered to the
test image, into whose space labels were then propagated and
fused. We chose the rigid + affine + deformable SyN as the
transformation type. As shown in Table II, joint label fusion
(the best of the two) achieved a median Dice score of 0.88
(mean: 0.82 ± 0.02).

Next, we trained a 3D CNN with the U-Net architecture [6]
for liver segmentation, which had 2 downsampling layers and
16 initial filters (at the first convolutional layer), and used
the Dice coefficient as the objective function. We trained
the network for 5 epochs using 3D sample patches of size
132 × 132 × 132 with a mini-batch size of 8. Through
10-fold cross-validation, each subject’s label was predicted by
averaging the label scores of overlapping patches (10 voxels
apart), binarizing the label, and keeping the largest CCs as
we did for the ELV (which improved the results). As shown
in Table II, the median Dice coefficient was 0.90 (mean: 0.90
± 0.01). Increasing the number of initial filters to 32 at the
price of a smaller patch size (100× 100 × 100) lowered the
Dice values.

For comparison, at the time of the submission of this article,
the LiTS challenge website [26] reported mean Dice values
for the liver on their test data ranging from 0.84 to 0.97
(disregarding the outlier results with mean Dice ≤ 0.35), with
many of the methods applying deep learning.

To evaluate the runtimes, we ran the atlas-based methods on
a compute cluster, allocating 4 CPU cores, 48GB of memory,
and no graphics processing unit (GPU) to each computational
job. The ELV method exploited the available 4 cores through
Matlab’s internal parallelization of FFT, and ANTs did so
via parallelization of atlas-to-image registrations (due to our
use of the -c 2 -j 4 options). Each U-Net experiment was
run on an Nvidia RTX8000 GPU with 48GB of memory.
The runtimes of all methods are shown in Table II. For
the ELV+IP, the mean entire-experiment runtime for a test
subject was 32.8 ± 0.2 min, of which 31.7 ± 0.2 min were
spent in the training step (key creation). Soft segmentation
from the key and subsequent hard segmentation, on the other
hand, took only 0.86 ± 0.01 min and 0.229 ± 0.001 min,
respectively. In contrast, the majority voting and joint label
fusion methods of ANTs took 300 ± 4 min and 375 ±
4 min per test subject, respectively. The U-Net took 131.0
± 0.2 min for training and 12.05 ± 0.01 min to segment
a test subject. Given that the U-Net experiment was accel-
erated via a GPU, its runtime is not meant to be directly
compared to those of the atlas-based methods that did not
use GPUs.

C. Pancreas

Lastly, we took a similar approach as in the previous
subsection to segment the pancreas in two experiments, using
two CT databases from The Cancer Imaging Archive (TCIA)
acquired at the National Institutes of Health (NIH) Clinical
Center [28], [29] (82 subjects) and from the Memorial Sloan
Kettering Cancer Center [30] (225 subjects; those with slice
thickness of 2∼3 mm). The labels created from the ELV+IP
map in cross-validation had a median Dice score of 0.59
(mean: 0.56 ± 0.02) for the former database and a median
Dice score of 0.50 (mean: 0.48 ± 0.01) for the latter database.
(For the raw ELV, the median was 0.57 and 0.49, respectively.)
Note that the pancreas in the second dataset included lesions
(although no significant correlation between Dice and relative
lesion load was observed).

The pancreas’ anatomical flexibility and variability in
shape, size, and location make it a more challenging organ
for segmentation than the liver and the brain subcortical
structures, which could explain the lower accuracy of the
results by our atlas-based method for this organ. For com-
parison, recent works on pancreas segmentation applying
CNNs to the first (TCIA) dataset report Dice scores as high
as 0.83 [29], [31], [32].

Note that, in contrast to mainstream supervised segmenta-
tion methods that employ deformable registration or sophisti-
cated trained neural networks, we compute the ELV map via
a simple linear convolution operation on the (phase) image.
Combining the signal-processing (ELV) and deep-learning (U-
Net) approaches into a single neural network that receives both
the image and the ELV map may improve the segmentation
beyond each of the two approaches, which we propose as part
of the future work.

IV. CONCLUSION

We have introduced a new approach to supervised soft
segmentation, which computes the expected label value (ELV)
of a region of interest from an image using a training dataset
of annotated atlases. The proposed method does not perform
costly deformable registration, thereby also avoiding entrap-
ment in local optima. We have evaluated the performance of
our ELV computation technique in segmentation of the brain,
the liver, and the pancreas. Future work consists of: using
the ELV map to augment the input to a convolutional neural
network beyond the image itself, expecting to increase the
segmentation accuracy of the better-informed model; inherent
inclusion of large rotation and scaling in ELV; and thorough
evaluation with metrics other than Dice, such as region volume
and surface distances.
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APPENDICES

A. Inner Product as the Image Similarity Metric

The inner product of the new image I and the transformed
atlas image J ◦ T , which we have proposed as the image
similarity metric in Eq. (3), is closely related to the sum-of-
squared-differences (SSD) cost function that is commonly used
in image registration:

SSD : =
∫

Rd
(I (x)− (J ◦ T) (x))2 dx

=
∫

Rd

(
I 2 (x)+ (J ◦ T)2 (x)

)
dx

− 2
∫

Rd
I (x) (J ◦ T) (x) dx. (17)

In order to establish an equivalence between maximizing
our inner-product similarity function and minimizing SSD,
it would seem necessary to include in Eq. (3) the term
−1/2

∫
Rd

(
I 2 (x)+ (J ◦ T)2 (x)

)
dx, which is not necessarily

constant with respect to T due to local volume changes in the
transformation. The extra terms that such an addition would
introduce in Pr (T | I, J ) of Eq. (2), however, can be seen to be
independent of the global-translation component of T . Then,
since an integral with respect to T can be taken separately with
respect to a global translation value and a translation-free dis-
placement field, as in Eqs. (23)–(25), the extra terms in E (y)
of Eq. (1) (resulting from the new translation-independent
terms in Pr (T | I, J )) would be constant (independent of y),
and therefore unnecessary in the computation of the ELV.
Consequently, quantifying the similarity between two images
as their inner product, as adopted here, corresponds to the
common use of the SSD cost function in deformable image
registration.

As mentioned in Section II-A, we use only the phase
information of the images in Eq. (3), and measure the image
similarity with the following inner product:

Pr (I, J | T) =
∫

Rd

Î (ω) Ĵ ◦ T (ω)∗∣∣∣ Î (ω) Ĵ ◦ T (ω)∗
∣∣∣dω. (18)

Using only the phase of the images, as in Eq. (18), is more
suitable for the estimation of Pr (I, J | T), as it produces
sharper probability distributions [16], [17]. To demonstrate
this via an example, let us model the transformation as a
simple translation, T (x) = x+�. The inner product therefore
becomes the cross-correlation of the phase images, similar
to Eq. (4), with Eq. (18) exhibiting the anticipated normality
property,

∫
Rd Pr (I, J |�) d� = 1 (although Pr (I, J |�) can

occasionally become negative). Subsequently, in the simplistic
case where J is a shifted version of I , i.e. J (x) = I (x −�0),
Eq. (18) will lead to Pr (I, J |�) = δ (�−�0), which is the
exact desired distribution here.

Lastly, the inner product is zero for non-overlapping I and
J ◦ T , which is a crucial property for the image similarity
metric in ELV computation.

B. Incorporation of Deformation

In this appendix, we derive the ELV while accounting for
deformations in the transformation (Section II-A.2). By com-
bining Eqs. (1), (2), (3), and (9), the ELV at voxel y

will be:

E (y)∝
∫

Rd
I (x) dx

∫
T

(J ◦ T) (x) (L ◦ T) (y) R (T) dT .

(19)

Since x and y are fixed in the inner integral, we make
the change of variables T (z) = S (z − x). Note that such
a global shift will not change either the regularization, i.e.
R (T) = R (S), or the domain of the inner integral, T.
Consequently:

E (y) ∝
∫

Rd
I (x) dx

∫
T

(J ◦ S) (0) (L ◦ S) (y − x) R (S) dS

=
∫

Rd
I (x) A (y − x) dx, (20)

or:

E ∝ I ∗ A, (21)

where we define the key, A, as:

A (x) :=
∫

T

(J ◦ S) (0) (L ◦ S) (x) R (S) dS. (22)

Next, we write the transformation S as the sum of a
global translation � ∈ Rd and a deformation (displacement)
field u ∈ U :

S (x) = x +�+ u (x) , (23)

where U := {
u : Rd → Rd | ∫

Rd u (x) dx = 0
}

is the set of
translation-free displacement fields. The regularity prior is
now:

R (S) = R̃ (u) := e
− 1

2σ2

∫
Rd ‖∂u(z)‖2F dz

. (24)

We combine the above three equations, and separate the
integral over the space of all transformations into an integral
over possible translation-free deformations and an integral over
possible translations:

A (x)∝
∫

U
R̃ (u) du

∫
Rd

J (�+ u (0)) L (x+�+u (x)) d�.

(25)

Note that this is a linear and invertible change of coor-
dinates, hence dS ∝ dud� (with the ratio independent
of S). With u and x being constant in the inner integral,
we make the change of variables � = �̃ − u (x) − x,
leading to:

A (x) ∝
∫

U
R̃ (u) du

∫
Rd

J
(
�̃−u (x)+u (0)−x

)
L
(
�̃
)

d�̃

=
∫

U
R̃ (u) A0 (u (x)− u (0)+ x) du, (26)

where A0 is the key for the translation-only case, introduced
in Eq. (8):

A0 := J̄ ∗ L . (27)

It can be verified that:

lim
σ→0

A ∝ A0. (28)
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We now analytically estimate the key, A, as a function of
A0 for σ > 0. Combining Eqs. (24) and (26) leads to:

A (x) ∝
∫

U
A0 (u (x)− u (0)+ x) e−

1
2σ2

∫
Rd ‖∂u(z)‖2F dzdu.

(29)

For simplicity, let us for now assume that x lies on the
positive half of the first Cartesian coordinate axis, i.e., x =
xv1, where v1 is the unit vector in the direction of the first
axis, and x ≥ 0. We also define the line segment Qx :=
{tv1 | 0 ≤ t ≤ x}. Accordingly:

u (x)− u (0) =
∫

Qx

∂u
(
x′
)

dx′ =
∫ x

0
∂1u (tv1) dt, (30)

where ∂1u is the partial derivative of u in the direction of v1.
Therefore:

A (xv1) ∝
∫

∂U
A0

(
xv1 +

∫ x

0
∂1u (tv1) dt

)
× e
− 1

2σ2

∫
Rd ‖∂u(z)‖2F dzd (∂u) . (31)

Note that we made further simplifying approximation by
integrating over the space of the Jacobian of the deformation,
∂U , instead of the space of the deformation, U , itself.7

In Eq. (31), the only values of ∂u on which A0 depends
are ∂1u (z) for z ∈ Qx . Thus, we separate the integral into the
product of three integals, the first one being:

A (xv1) ∝
∫

∂1{u:Qx→Rd}
A0

(
xv1 +

∫ x

0
∂1u (tv1) dt

)

× e−
1

2σ2

∫ x
0 ‖∂1u(tv1)‖22dt d (∂1u) , (32)

and the second and third integrals are:∫
∂1{u:Rd\Qx→Rd}

e
− 1

2σ2

∫
Rd\Qx

‖∂1u(z)‖22dzd (∂1u)

×
∫

∂2,...,d U

e
− 1

2σ2

∫
Rd ‖∂2,...,d u(z)‖2

F dzd
(
∂2,...,d u

)
, (33)

which are integrals of normal distributions and therefore
constant, hence not included in the expression for A (xv1)
in Eq. (32).

Calculation of A (xv1) can be made notationally easier by
approximating the inner integrals in Eq. (32) as Riemann
sums. We divide [0, x] into n equal intervals (n →∞), with
dt ≈ x /n, and define:

qk :=
x

n
∂1u

(
k

n
xv1

)
. (34)

7This change of variables (integrating with respect to ∂u instead of u) is
linear due to the linearity of the differential operator ∂, as well as invertible
due to the translation-free constraint on u. We continue with the relaxing
assumption that ∂u has independent elements. Nevertheless, for d ≥ 2,
the variable set ∂u is redundant and has a larger dimension than u does, with
elements that are interdependent given the linear relationship ∇ × ∂u = 0.
As a result, for an exact solution, the integral must be taken with respect to
an independent subset of the elements of ∂u that includes the (independent)
set ∂1u (Qx ).

The integral is now approximated as:

A (xv1) ∝
∫

Rnd
A0

(
xv1 +

∑n

k=1
qk

)

× e
− 1

2σ2x
/

n

∑n
k=1‖qk‖2

2
dq1 . . . dqn . (35)

This is, in fact, n consecutive convolutions of A0 with a
d-dimensional Gaussian,

A (xv1)

∝
⎡
⎢⎣A0 (z) ∗

n︷ ︸︸ ︷
G

(
z|0, σ 2 x

n
I

)
∗ . . . ∗ G

(
z|0, σ 2 x

n
I

)⎤⎥⎦
z=xv1

.

(36)

Given that convolution of n identical Gaussians results in a
Gaussian with n times the variance, we have:

A (xv1) ∝
[

A0 (z) ∗ G
(

z | 0, σ 2xI

)]
z=xv1

. (37)

We now exploit the rotational invariance of the Gaussian in
Eq. (37) and that of the Frobenius norm of the Jacobian in
Eq. (29), to generalize Eq. (37) for any x ∈ Rd :

A (x) ∝
[

A0 (z) ∗ G
(

z | 0, σ 2 ‖x‖2 I

)]
z=x

. (38)

Equation (38) is indeed the update presented in Eq. (10).
Despite our use of the convolution notation in Eq. (38),
A is not computed via an actual convolution, because the
co-variance matrix of the Gaussian kernel varies depending
on x, where the result of the convolution is evaluated.

C. Volume Threshold

To threshold the computed probability map of the organ,
such as the ELV, we sort the values of the map and keep the
top v∗ voxels, where the optimal v∗ needs to be determined.
Assuming that the ground-truth label has vg voxels, we define
l (η) as the value of the ground-truth label at the top v th voxel,
where v := ηvg . An ideal probability map, whose top vg
voxels are the ground-truth label, is expected to produce the
following boxcar function:

l0 (η) :=
{

1, η ∈
[

0 1
]

0, o.w.
. (39)

In practice, however, the transition to zero at η = 1 is
less sharp due to inaccurately classified voxels, which we
approximate with the following inverted sigmoid function:

lγ (η) := 1+ γ

1+ γ
(

1+ 1
γ

)(1+γ )η
, (40)

where γ is a nonnegative constant. Note that limγ→0 lγ is
the l0 defined in Eq. (39) for the ideal probability map, and
that limγ→∞ lγ (η) = e−η. Furthermore, the normality of lγ ,
i.e.

∫∞
0 lγ (η) dη = 1, guarantees the expected property of∫∞

0 lγ
(
v
/
vg

)
dv = vg .
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Keeping the top v voxels results in a mask that overlaps
with the ground-truth label with the following Dice similarity
coefficient:

DSC = 2
∫ v

0 lγ
(
v ′
/
vg

)
dv ′

v + vg
= 2

∫ η
0 lγ

(
η′
)

dη′

1+ η

=
2 log

(
γ+1

γ+
(

γ
γ+1

)(1+γ )η

)

log
(

1+ 1
γ

)
(1+ η)

. (41)

One can verify that, depending on the value of γ , the η∗γ
that maximizes the above Dice score ranges from η∗0 = 1 to
η∗∞ = −W−1

(−e−2
)−2 = 1.146, where Wk is the branch k of

the Lambert W function. Therefore, according to this model,
the optimal number of top voxels of the probability map to
keep (to maximize Dice) is v∗ = η∗γ vg . Choosing the nominal
value of γ = 1 results in η∗1 = 1.141, which led us to keep
the top subset of voxels with a volume 14% larger than that
of an average organ (Section II-C.1).8 Note that subsequent
keeping of only the largest CCs in the resulting mask reduces
the number of false-positive voxels, which, in our experiments,
outweighed the newly introduced false-negative voxels, further
increasing the Dice score.
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