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A Novel Adaptive Parameter Search Elastic Net
Method for Fluorescent Molecular Tomography

Hanfan Wang , Chang Bian , Lingxin Kong, Yu An, Yang Du, and Jie Tian , Fellow, IEEE

Abstract— Fluorescence molecular tomography (FMT) is
a new type of medical imaging technology that can quantita-
tively reconstruct the three-dimensional distribution of flu-
orescent probes in vivo. Traditional Lp norm regularization
techniques used in FMT reconstruction often face problems
such as over-sparseness,over-smoothness, spatial discon-
tinuity, and poor robustness. To address these problems,
this paper proposes an adaptive parameter search elastic
net (APSEN) method that is based on elastic net regular-
ization, using weight parameters to combine the L1 and
L2 norms. For the selection of elastic net weight parameters,
this approach introduces the L0 norm of valid reconstruc-
tion results and the L2 norm of the residual vector, which are
used to adjust the weight parameters adaptively. To verify
the proposed method, a series of numerical simulation
experiments were performed using digital mice with tumors
as experimental subjects, and in vivo experiments of liver
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tumors were also conducted. The results showed that,
compared with the state-of-the-art methods with different
light source sizes or distances, Gaussian noise of 5%–25%,
and the brute-force parameter search method, the APSEN
method has better location accuracy, spatial resolution, flu-
orescence yield recovery ability, morphological characteris-
tics, and robustness. Furthermore, the in vivo experiments
demonstrated the applicability of APSEN for FMT.

Index Terms— Fluorescence molecular tomography,
adaptive parameter search, elastic net.

I. INTRODUCTION

FLUORESCENCE molecular tomography (FMT) is a new
type of medical imaging technology that can quantita-

tively reconstruct the three-dimensional (3-D) distributions
of fluorescent probes in vivo. It also addresses the prob-
lem of insufficient depth resolution, which is caused by the
lack of depth information in traditional fluorescence imaging
methods [1]–[4]. FMT has been applied to preclinical and
preliminarily clinical applications in cancer diagnosis and
treatment [5], [6].

In recent years, research on FMT has mainly been focused
on improving the 3-D reconstruction quality, especially the
location accuracy and morphological recovery ability [7], [8].
Generally, FMT reconstruction requires the establishment of a
correspondence between the known surface fluorescence dis-
tribution of the imaged object and the unknown distribution of
the fluorescent probes inside it; then, the unknown information
is obtained using a specific solution method. However, FMT
reconstruction is highly ill-posed due to the high scattering
effect of fluorescence in biological tissues [9]–[11]. To solve
this problem, researchers have developed many optimization
methods, such as Lp norm regularization (p = (0, 2]), in
which the Lp norm of the unknown fluorescent probe is
used to constrain the FMT reconstruction [12]–[14]. How-
ever, different p-values suit different reconstruction situations.
A large p-value (for example, p = 2) is more appropriate for
morphological reconstruction; in this case, the reconstructed
region includes most of the ground truth but also introduces
many reconstructed artifacts, causing over-smoothness [15].
Small p-values (p ≤ 1) are usable for an accurate recon-
struction of part of the ground truth without the reconstructed
artifacts. However, there are some difficulties, such as over-
sparseness, incomplete reconstruction of the fluorescent probe,
and the lack of detailed information on the boundary [16].
Other available regularization methods are total variation norm
regularization [17], group sparse norm regularization [18], etc.
These methods add other prior information to the original Lp
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norm regularization method, such as the aggregation of fluo-
rescent probe distribution and connectivity within subregions.
These methods have achieved relatively satisfied results, but
they have high computational complexity and are not very
accurate.

On the other hand, the reconstruction effect of the reg-
ularization method is usually related to the choice of the
regularization parameter λ. Generally, when the regularization
parameter is small, there are many artifacts in the reconstructed
image owing to the noise amplification effect [18]. When the
regularization parameter is large, the reconstructed image will
be over-smoothed or over-sparse. Researchers have proposed
several methods for selecting the appropriate regularization
parameters, such as the L-curve, U-curve, cross-validation, and
discrepancy principle methods [19]–[22]. CR. Vogel noted out
that the choice of regularization parameters should be related
to the specific inverse problem [23].

Recently, elastic net (EN) regularization has been proposed
to address the problem of over-sparseness or over-smoothness
of traditional regularization methods [24]. The method uses
the weight parameters to combine the L1 norm and L2 norm,
which improves the reconstruction effect by balancing the
weight parameters while also alleviating the discontinuity of
the reconstructed tumor region. Recent studies have shown
that EN possesses certain advantages when used to solve
the problem of Lp norm regularization, and it has attracted
wide research attention. For example, T. Rymarczyk et al.
presented an effective algorithm based on multiple ENs to
solve the inverse problem of the electrical impedance tomogra-
phy [25]; P. Causin et al. applied the EN regularization theory
of entropy to diffuse optical tomography applications [26];
T. Nguyen-Duc et al. used EN regularization for better
approximation of the sparse input of high-undersampling-
dynamic magnetic resonance imaging (MRI) data [27]. Some
researchers have also explored the application of EN in FMT
reconstruction [28]. However, choosing the right balance of
weight parameters is a major concern in EN.

In this work, an adaptive parameter search elastic
net (APSEN) method is proposed to optimize the FMT recon-
struction problem. APSEN is based on the L1 norm method
and optimizes the over-sparseness results of the L1 norm
reconstruction by adding the L2 norm to improve the quality
of tumor region morphological reconstruction. APSEN uses
the L2 norm of the residual vector to discriminate, which
can effectively yield parameters suitable for the distribution
of various types of fluorescent probes. By introducing the
L0 norm of valid reconstruction results and using the propor-
tional search and coordinate descent algorithm, APSEN can
rapidly and accurately reconstruct fluorescent probe distribu-
tions in vivo. Based on the results of the previous step during
the iteration of the solution, the APSEN method adaptively
constrains the selection of the parameters for the next step.

To evaluate the performance of the APSEN method,
we performed numerical simulation experiments and in vivo
experiments for liver tumors. Comparisons were made to
the L1-based iterative shrinkage (IS-L1) [29], the L2-based
Tikhonov (Tikhonov-L2) [15], the fused least absolute shrink-
age and selection operator (LASSO) method (FLM) [18],

and Nesterov’s method-based elastic net (N-EN) [28]. The
results demonstrate that APSEN significantly improves the
reconstruction accuracy and shape recovery of the fluorescent
probe distribution compared with the above methods.

The structure of this paper is organized as follows. Section II
introduces the forward model of FMT and the reconstruction
algorithm based on APSEN. Section III presents the process
and results of numerical simulations and in vivo experiments.
Section IV discusses the proposed APSEN method and sum-
marizes the conclusions.

II. METHODOLOGY

A. Forward Model of FMT

For a steady-state FMT that has the point excitation sources,
photon propagation in biological tissues can be described by
a pair of coupled diffusion equations with the Robin-type
boundary condition [30]. This can be expressed as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ [Dx (r)∇�x (r)]+μax (r)�x (r)=�δ (r−rl) (r ∈ �)

−∇ [Dm (r) ∇�m (r)] + μam (r) �m (r) = �x (r) ημa f

(r) (r ∈ �)

2Dx,m (r) ∇�x,m (r) + q�x,m (r) = 0 (r ∈ ∂�)

(1)

where r denotes the nodes inside the problem domain �,
and rl denotes the positions of point excitation sources with
the amplitude �; rl is placed on one mean free-path of
photon transport beneath the surface of �. Subscripts x and m
denote the excitation and emission wavelengths, respectively.
�x,m(r) denotes the photon flux density at the position r
inside the region �. ημa f (r) is the fluorescent source to be
reconstructed, where η is the quantum efficiency. Dx,m =
1/3(μax,am+ (1–g)μsx,sm) denotes the diffusion coefficient,
where g is the anisotropy parameter; μax,am and μsx,sm are the
absorption and scattering coefficients, respectively. q denotes
the optical reflective index of the biological tissues.

Based on the finite element method [31], we can discretize
the light propagation model and linearize the partial differen-
tial equation (1) into the following linear equation

Y = AX (2)

where Y = [y1, . . . , yN ] ∈ R
N denotes the photon

segment on the surface of the measured object. A =[
f T

1 , . . . , f T
N

] ∈ R
N×p denotes the system weight matrix,

where f l = [
a1, . . . , ap

] ∈ R
p is the feature vector, and X =[

x1, . . . , x p
] ∈ R

p is the fluorescence intensity distribution
in biological tissues. Therefore, restoring the fluorescence
intensity distribution X in the above linear matrix equation is
the purpose of solving the FMT inverse problem. The details
of the forward model can be found in [31].

B. Inverse Problem of FMT Reconstruction

As described above, the linear relationship between the
fluorescent sources inside the tissue and the surface photon
density has been established. Due to the inverse problem being
ill-posed, the unique solution is absent. To solve the inverse
problem based on (2), we propose an APSEN method.
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The objective function in traditional FMT reconstruction can
be expressed as the sum of the least squares and regularization
terms [12], [29]. This is defined as

min
X∈R

p
≥0

E (X)= 1

2
�AX − Y�2

2+α

(
β �X�1+ (1 − β)

2
�X�2

2

)
where β ∈ [0, 1] (3)

where E(X) denotes the objective function. α and β denote
the regularization parameters. This combination of different
norms, which is called EN regularization, can combine the
advantage of each regularization and find a balance between
the sparseness and smoothness of the image. If β = 1,
equation (3) becomes the L1 norm regular expression (lasso
regularization); if β = 0, equation (3) will become the
L2 norm regular expression (ridge regression). We use the
coordinate descent algorithm [32] to solve the objective equa-
tion (3), which uses the EN penalty term. A detailed procedure
is introduced in Section II.B.1. Obviously, multiple regulariza-
tion parameters need to be determined to obtain the optimized
solution from equation (3). In this work, we introduce the
L0 norm of the valid reconstruction result and the L2 norm of
the residual vector as the standard and propose a novel APSEN
method that adaptively adjusts the regularization parameters.
Detailed information regarding the method is introduced in
Section II.B.2. The flow chart of the APSEN method is shown
in Fig. 1.

1) EN Based on the Coordinate Descent Algorithm: Because
of the complexity of the regularization term in EN regulariza-
tion, we used a fast and accurate iterative algorithm based on
the coordinate descent algorithm to solve equation (3). The EN
regularization is summarized in Algorithm 1, and the details
of the method are explained below.

Because of the complex regularization term, we used the
coordinate descent method to solve equation (3) and simplify
the operation process. We have N values of yi , where yi

denotes the value of the i -th term in the measured emission
light distribution Y . The derivative of equation (3) is

∂ E (X)

∂xk
l

=
(

1

N

(
N∑

i=1

a2
il

)
+ α (1 − β)

)
xk

l

− 1

N

N∑
i=1

ail

⎛
⎝yi −

∑
j �=l

ai j xk
j

⎞
⎠ + αβ∂

∣∣∣xk
l

∣∣∣ (4)

where xl denotes the value of the l-th term in the fluorescence
intensity distribution X , ail denotes the i -th term of the l-
th feature vector in the system weight matrix A, and xk

l
denotes xl in the k-th iteration. To simplify (4), we let w f =
1
N

(
N∑

i=1
a2

il

)
+α (1 − β) and ws = 1

N

N∑
i=1

ail

(
yi − ∑

j �=l
ai j xk

j

)
.

Through ws , we find that

yi − ỹ(l)
i = yi − ŷi + ail x

k
l = ri + ail x

k
l (5)

where ỹ(l)
i = ∑

j �=l
ai j xk

j is the fitted value excluding the

contribution from xk
l , and ŷi is the current fit of the model

Fig. 1. Flow chart of the APSEN method.

for the i -th observation; hence, ri = yi − ŷi is the current
residue. Therefore, we can rewrite ws as

ws = 1

N

N∑
i=1

ailri +
(

1

N

N∑
i=1

a2
il

)
xk

l (6)

where the first term on the right-hand side in equation (6) is
the gradient of the loss with respect to xk

l .
From equation (6), it can be found that the coordinate

reduction is computationally effective. For more efficient cal-
culation, the first term on the right-hand side in equation (6)
can be written as

N∑
i=1

ailri = �al, Y 	 −
∑

t :∣∣xk
t

∣∣>0

�al , at 	xk
t (7)

where �al, Y 	 = ∑N
i=1 ail yi . Thus, the ideal way to perform

the coordinate descent method is to use the sparseness of the
solution to improve the calculation efficiency by summing the
non-zero terms. Furthermore, in this case, scaling the variable
will not change the sparsity.
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Algorithm 1 EN
Input: matrix A, measured emission light distribution Y ,
regularization parameters α and β
Initialization: fluorescence intensity distribution X0 = ∅,
iterator number k = 0, tolerance for the optimization tol,
maximum number of iterations I for the stopping criterion.
While

∥∥xk+1 − xk
∥∥ > tol or k ≤ I do

1: k = k + 1
2: While l ≤ p do

1): Calculate intermediate variables.

w f = 1
N

(
N∑

i=1
a2

il

)
+ α (1 − β) ,ws = 1

N

N∑
i=1

ailri

+
(

1
N

N∑
i=1

a2
il

)
xk

l

2): Iteration result update.

xk+1
l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

N∑
i=1

ail ri +
(

1
N

N∑
i=1

a2
il

)
xk

l −αβ

1
N

(
N∑

i=1
a2

il

)
+α(1−β)

i f 1
N

N∑
i=1

ailri +
(

1
N

N∑
i=1

a2
il

)
xk

l > 0 and

αβ <

∣∣∣∣ 1
N

N∑
i=1

ailri +
(

1
N

N∑
i=1

a2
il

)
xk

l

∣∣∣∣
1
N

N∑
i=1

ail ri +
(

1
N

N∑
i=1

a2
il

)
xk

l +αβ

1
N

(
N∑

i=1
a2

il

)
+α(1−β)

i f 1
N

N∑
i=1

ailri

+
(

1
N

N∑
i=1

a2
il

)
xk

l < 0 and αβ <

∣∣∣∣ 1
N

N∑
i=1

ailri

+
(

1
N

N∑
i=1

a2
il

)
xk

l

∣∣∣∣
0 i f αβ ≥

∣∣∣∣ 1
N

N∑
i=1

ailri +
(

1
N

N∑
i=1

a2
il

)
xk

l

∣∣∣∣
where

N∑
i=1

ailri = �al , Y 	 − ∑
t :∣∣xk

t

∣∣>0

�al, at 	xk
t

End while
End while
Output: X = X∗

To solve equation (4), we can use the soft-thresholding
operator proposed by Friedman et al. [33](

1

N

(
N∑

i=1

a2
il

)
+ α (1 − β)

)
xk

l

− 1

N

N∑
i=1

ail

⎛
⎝yi −

∑
j �=l

ai j xk
j

⎞
⎠ + αβ∂

∣∣∣xk
l

∣∣∣
= w f xk

l − ws + αβ∂
∣∣∣xk

l

∣∣∣
=

⎧⎪⎨
⎪⎩

w f xk
l − ws + αβ i f xk

l > 0

[−ws − αβ,−ws + αβ] i f xk
l = 0

w f xk
l − ws − αβ i f xk

l < 0

(8)

Therefore, when equation (8) equals zero, the updated value
xk+1

l on the corresponding gradient direction is achieved.
According to equation (8), the iterative result xk+1

l is as
follows

xk+1
l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

N∑
i=1

ailri +
(

1
N

N∑
i=1

a2
il

)
xk

l − αβ

1
N

(
N∑

i=1
a2

il

)
+ α (1 − β)

i f
1

N

N∑
i=1

ailri +
(

1

N

N∑
i=1

a2
il

)
xk

l >0 and

αβ <

∣∣∣∣∣ 1

N

N∑
i=1

ailri +
(

1

N

N∑
i=1

a2
il

)
xk

l

∣∣∣∣∣
1
N

N∑
i=1

ailri +
(

1
N

N∑
i=1

a2
il

)
xk

l + αβ

1
N

(
N∑

i=1
a2

il

)
+ α (1 − β)

i f
1

N

N∑
i=1

ailri

+
(

1

N

N∑
i=1

a2
il

)
xk

l <0 and

αβ <

∣∣∣∣∣ 1

N

N∑
i=1

ailri +
(

1

N

N∑
i=1

a2
il

)
xk

l

∣∣∣∣∣
0 i f αβ ≥

∣∣∣∣∣ 1

N

N∑
i=1

ailri +
(

1

N

N∑
i=1

a2
il

)
xk

l

∣∣∣∣∣
(9)

Therefore, we finally acquire the value of the iterative result
xk+1

l . If the change of another complete cycle in X is less
than tol or the number of iterations exceeds I , the operation
is completed, otherwise, the process repeats.

2) Adaptive Parameter Search EN: The FMT reconstruc-
tion based on (3) creates a problem in that the parameters
are difficult to select. To optimize the parameter selection
problem based on (3), we proposed APSEN which can adap-
tively adjust the regularization parameters to improve the
parameter selection and final results of FMT reconstruction
in the region of interest (ROI). APSEN is summarized in
Algorithm 2.

It can be seen from (3) that EN has two regularization
parameters, and the two-dimensional (2-D) parameter search
process is complicated and computationally intensive. After
determining that the parameter αβ of the L1 norm term in (3)
is unchanged, we increase the proportion of the L2 norm
term of the objective function by changing β. In the iterative
search, we introduce the L0 norm of the valid reconstruction
results. The L0 norm of valid reconstruction results reflects the
degree of reconstruction of the corresponding parameters and
changes with the parameters. Equation (3) shows that when β
decreases, the L2 norm proportion increases, the reconstruc-
tion result X tends to be smooth, and the number of valid
reconstruction results increases accordingly. Then, we use the
residual vector as the criterion for judging the reconstruction
result and select the solution with the smallest L2 norm of
the residual vector in the search path as the optimal solution
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with the current path. The core idea of APSEN is to add the
L2 norm term based on the L1 norm term solution, use the
L0 norm of valid reconstruction results as a new parameter
search criterion to constrain the direction of parameter search
and perform a fast search, and simultaneously use the residual
vector as a judgment standard to select the optimal parameter
in each epoch search path. The expression for the L0 norm of
valid reconstruction results is as follows

N† =
∥∥∥E N

(
A, Y, α†, β†

)∥∥∥
0

(10)

where EN(•) is the EN regularization (Algorithm 1) which is
mentioned in Section II.B.1 with a matrix A and a measured
emission light distribution Y as inputs. Further, N† denotes
the number of positive items obtained by running the EN
regularization when the parameters are α† and β†.

Referring to the previous work, the FMT is reconstructed
using L1 norm regularization to determine parameter α∗,
which ensures the accuracy of the reconstructed spatial infor-
mation of APSEN and obtains the target value N∗ as the
starting point of the search by (10). APSEN converts the 2-D
parameter search into a one-dimensional parameter search by
determining parameter αβ = α∗ and then adjusting β. We want
to control the accuracy of the search by setting the search
step size ratio R, which controls the end of the search path
for each epoch. The parameter acquisition method used in
APSEN is introduced in Section III.B.1. The L0 norm of valid
reconstruction results at the end of each search epoch can be
computed by using

Ns = RN∗ (11)

where Ns denotes the search target number of each search
epoch and N∗ denotes the number of valid reconstruction
results of the corresponding parameter α∗ and β∗. APSEN
uses an adaptive objective function parameter search ratio
Ns /Nm−1 in the iteration. Ns /Nm−1 is the ratio of the target
value of the L0 norm needed to search the L0 norm of the
valid reconstruction result obtained in m − 1 iterations, and
parameters can be adaptively adjusted based on the result of
each iteration. If Ns /Nm−1 > 1, β value will decrease and the
proportion of the L2 norm term in the objective function will
increase. Meanwhile Ns /Nm−1 < 1, β value will increase and
the proportion of the L2 norm term in the objective function
will decrease. This ratio simultaneously constrains the search
direction to reach Ns quickly. Hence, the search method is as
follows

sm =
(

Ns

/
Nm−1

)
sm−1, βm = 1 − sm , αm = α∗/βm

(12)

where sm denotes the search step size of β at step m in each
search epoch. At the beginning of the search, we set the initial
search step size s0. Using the search method described above,
we determine the weight of the L1 norm term and increase
the weight of the L2 norm term to improve the final image
smoothing effect. To eliminate the possibility of fluctuations
at the end of the ratio search algorithm, which will cause the
search results to not converge, we have added interruption
conditions I ∗.

In each epoch of the search, APSEN searches for the target
value Ns according to a predetermined step size and calculates
the L2 norm size of the corresponding residual vector in the
determined ROI. The ROI is selected as follows

RO I
(
E N

(
A, Y, αm , βm))

= {
xi

∣∣xi > d∗ max
(
E N

(
A, Y, αm , βm))

, i = 1, . . . , j
}

(13)

where d denotes the ROI parameter and j denotes the maxi-
mum number of eligible xi in X . We define the ROI to distin-
guish the reconstruction region from the background region,
and we calculate and judge whether the corresponding light
intensity value of each node is greater than d times (d < 1) the
maximum light intensity value of the corresponding solution.
If it is greater than d times the maximum light intensity value,
we consider the point in the ROI. The corresponding residual
vector is given by

r = Y − ARO I RO I
(
E N

(
A, Y, αm , βm))

(14)

where r denotes the residual vector, ROI(•) denotes the
corresponding calculation result of equation (13), and ARO I

denotes the A matrix corresponding to the ROI. APSEN selects
the solution corresponding to the smallest value with �r�2
in each epoch as the optimal solution in the current search
path. If the �r�2 in the next epoch of search does not change
or reaches an acceptable range �r�2 < ε, the algorithm is
terminated and the optimal solution X∗ is output.

In this study, we set the search step size ratio R = 3 and
s∗ = 0.0001, and the ROI parameter d = 0.03. In most
instances of this study, the optimal reconstruction results can
be obtained within 10 iterations. When I ∗ > 10, the subse-
quent iterative calculation only produces a slight influence on
the reconstruction result, which is time-consuming. Finally,
we utilized I ∗ = 10 as the maximum number of iterations.
For the selection of the parameter n, we basically adopt the
same parameter selection as the comparison method, as shown
in Section III.B.3. As described in the algorithm 2, different
n can lead to different L0 norm of the initial vector. However,
according to the algorithm debugging, under the condition
of controlling other parameters unchanged, the influence of
different n on reconstruction accuracy is within 10%.

III. EXPERIMENTS AND RESULTS

This section describes the numerical simulations and in
vivo experiments are designed to verify the reconstruction
performance of APSEN. Specifically, the location accuracy,
spatial resolution, fluorescence yield recovery ability, mor-
phological recovery ability, robustness, and practicality of
APSEN were evaluated. This section shows the parameter
acquisition in the APSEN, the results of comparison with
the brute-force parameter search method and the results of
four experiments, which includes dual-sources reconstruc-
tion, multi-size single-source reconstruction, anti-noise ability
experiments, and in vivo reconstruction experiments. All the
MATLAB and Python programs were run on a desktop com-
puter with an Intel(R) Core(TM) i7-6700 CPU (3.40 GHz) and
16GB RAM.
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Algorithm 2 APSEN
Input: matrix A, measured emission light distribution Y ,
precision ε > 0 and L1 norm term parameter n
Initialization: starting point parameters α∗ = n and β∗ = 1,
iteration reconstruction result X∗ = ∅, iterator number m =
0, initial search step size ratio R = 3 and s∗ = 0.0001, ROI
parameter d = 0.03, residual vector r0 = Y and stopping
criterion I ∗ = 10.
Step1: Set starting point.

N∗ = ∥∥E N
(

A, Y, α∗, β∗)∥∥
0

Step2: Iteration.
Repeat
1: Update algorithm residual vector: r∗ = rm

2: Set search step size ratio to get the target number of
searches: Ns = RN∗
3: Search the parameters by step size:

(1) Zero the iteration number m and update the initial
parameters: m = 0, Nm = N∗, sm = s∗, Xm =
X∗, rm = r∗
Repeat

(2) m = m+1
(3) Search parameters by proportion:

sm =
(

Ns

/
Nm−1

)
sm−1, βm = 1 − sm, αm = α∗/βm

(4) Calculate the L0 norm of valid reconstruction
results:

Nm = ∥∥E N
(

A, Y, αm , βm)∥∥
0

(5) Calculate residual vector of the ROI region:

RO I
(
E N

(
A, Y, αm , βm)) = {xi |xi > d ∗ max(

E N
(
A, Y, αm , βm))

,

i = 1, . . . , j}
r = Y − ARO I RO I(

E N
(
A, Y, αm , βm))

(6) Update optimal solution vector:

a) If �r�2 <
∥∥rm−1

∥∥
2

rm = r, Xm = E N
(
A, Y, αm , βm)

b) Else

rm = rm−1, Xm = Xm−1

Until �rm�2 < ε or m = I ∗

4: Update algorithm solution and parameters: X∗ = Xm ,
N∗ = Nm , s∗ = sm

Until �rm�2 < ε or �r∗�2 < �rm�2
Output: X = X∗

A. Experimental Process

1) Numerical Simulation: To evaluate the performance of
APSEN in FMT reconstruction, we used a digital mouse
model to simulate liver tumors. The main components of

Fig. 2. 3-D views of simulation models with (a) single-source and
(b) dual-sources. The spherical single-source and dual-sources with a
radius of 0.5 mm were both placed in the liver.

TABLE I
THE MESH SIZE AND TUMOR LOCATIONS IN

THE NUMERICAL SIMULATION

the mouse model are the heart, liver, lungs, kidneys, and
muscles. We used spheres with different diameters and posi-
tions to simulate the fluorescence light source in a digital
mouse [34]. The single-source and dual-sources are shown
in Fig. 2.

The fluorescence yield was set to 0.5 mm−1, and the power
of the excitation light source was set to 0.02 W. The excitation
light sources were on the same plane as the fluorescence
sources. We captured the fluorescence distribution of the
phantom surface opposite to the excitation light source within
a 160

◦
field of view (FOV). To facilitate the calculations

involved, Amira 5.2 (Thermo Fisher Scientific, USA) was
used to scatter the selected torso section of the digital mouse
model into a uniform tetrahedral mesh. The specific numbers
of nodes, numbers of tetrahedral elements, and tumor center
coordinates are shown in Table I below.

To verify the performance of APSEN more practically,
we performed three simulation experiments and compared
APSEN with IS-L1, Tikhonov-L2, FLM, and N-EN. We first
designed a dual-sources simulation experiment with different
edge-to-edge distances (EEDs). The radius of the dual-sources
tumors was 0.5 mm, and the EED was set to 2 mm, 3 mm and
3.7 mm. The EED simulation experiment was used to evaluate
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Fig. 3. Configuration of multi-modality imaging tomography system
for FMI/CT data acquisition. The system includes 1: EMCCD, 2: X-ray
tube, 3: X-ray detector, 4: small animal gas anesthesia machine, 5: small
animal bed, and 6: rotating gantry.

TABLE II
OPTICAL ABSORPTION AND SCATTERING COEFFICIENTS OF

BIOLOGICAL TISSUES IN NUMERICAL AND in vivo EXPERIMENTS

the positioning accuracy and spatial resolution of APSEN.
We then designed simulation experiments with single sources
of different sizes. We placed a single-source with a radius
of 0.5 mm, 1.0 mm, or 1.5 mm at the same tumor center
coordinates. Therefore, the morphological recovery ability of
APSEN was evaluated by simulating single sources of different
sizes. To eliminate the influence of the mesh size on the final
result, a different mesh size was used in the dual-sources
experiment in which EED was set to 3.7 mm compared
to that used in the single-source simulation experiment and
the other dual-sources experiments. Finally, we designed a
simulation experiment to test the anti-noise ability of APSEN.
In particular, 5%, 15%, and 25% Gaussian noise was added
in the 1.0 mm single-source simulation experiment. Anti-noise
ability simulation experiments were performed to evaluate the
robustness of APSEN. To better calculate the fluorescence
yield recovery ability more accurately, we did not normalize
the data before the reconstruction procedure, and for better
comparison between methods, the same ROI was used in all
reconstruction methods.

2) In Vivo Experiment: In vivo experiments were performed
by preparing 4-week-old BALB/c nude mice (Vital River
Laboratory Animal Technology Co. Ltd., Beijing, China)
to establish the tumor model. All animal protocols were
approved by the Institutional Animal Care and Use Committee
at Peking University (Permit Number 2011-0039), and all
procedures were in accordance with approved guidelines.

Fig. 4. The structure of the in vivo experimental process. Multi-modality
imaging tomography system data acquisition (upper), data processing
(lower left), and FMT reconstruction (lower right).

Fig. 5. The quantitative analysis of the parameter acquisition.

The mice were intraperitoneally injected with 2% pento-
barbital sodium at a dosage of 40 mg/kg. After the mice
were anesthetized, we implanted Huh7-GFP-fLuc cells into
their livers to establish orthotopic liver cancer models. After
12 days, three tumor-bearing mice models were successfully
obtained. To evaluate the feasibility of this method in vivo,
we injected 2 nmol MMPSense 750 FAST (Perkin Elmer, MA,
USA) into these three mice via the tail vein 6 h before imaging.
Studies have shown that matrix metalloproteinases (MMPs)
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Fig. 6. Comparison of adaptive and brute-force parameter search methods: (a) The red line shows the results of the adaptive parameter search
method, and the blue and green lines are the LE results of S1 and S2 obtained by the adaptive parameter search method in the dual-sources
reconstruction experiment (EED: 3.7mm). (b) The red and orange parts show the running time of the adaptive parameter search method and overall
running time of the brute-force parameter search method, respectively.

can be over-expressed in various tumor tissues, so we used
MMPSense to activate the MMPs to visualize the tumors.
We utilized the multi-modality imaging tomography system,
which was developed by the key laboratory of molecular
imaging of Chinese Academy of Sciences, to image these
mice [35]. As shown in Fig. 3, the multi-modality imaging
tomography system mainly consists of two subsystems: a
fluorescence acquisition system and a CT system. The flu-
orescence acquisition system consists of a 750 nm continuous
wave laser and thermoelectric cooling electron multiplying
charge coupled device (EMCCD) cameras (iXonem + 888,
Andor, UK). The CT system is composed of an X-ray tube
(UltraBright, Oxford Instrument, USA) and an X-ray detector
(CMOS Flat-panel Detector, Hamamatsu, Japan).

Data acquisition for the in vivo experiments included
fluorescence acquisition and structural data acquisition. First,
fluorescence data were acquired using a fluorescence acquisi-
tion system. Then, CT imaging was performed on each mouse

by using the CT system to obtain the structural data of the
mouse. After multi-modality raw data acquisition, the mouse
was imaged by MRI (1.5T, M3TM, Aspect Imaging, Israel)
to provide the location of the tumor, as MRI is the gold
standard for locating tumors. After the data collection was
complete, we proceeded with data processing. We segmented
the major organs, including the muscle, bones, lungs, heart,
and liver, and integrated these organs into the mouse model.
Finally, we mapped and registered the fluorescence image
to the surface of the mouse torso. The structure of the in
vivo experimental process is shown in Fig. 4. The optical
parameters of the different organs used in the numerical
simulations and in vivo experiments were obtained from [36],
as shown in Table II.

3) The Evaluation Indexes: To evaluate the accuracy of FMT
reconstruction quantitatively in terms of the source location
as well as the fluorescence yield and shape recovery in the
ROI, the location error (LE), relative intensity error (RIE) and
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Fig. 7. Reconstruction results of different methods for the dual-sources
simulated mouse with different EEDs. The white circles on the plane view
represent the actual area of the fluorescence source.

dice similarity (Dice) were used as the quantitative indexes.
LE measures the distance variation between the centers of the
actual region and the reconstructed region, respectively, and is
defined as

L E = �Lt − Lr�2 (15)

where Lt denotes the center coordinates of the true region and
Lr denotes the center coordinates of the reconstructed region
in the ROI.

RIE measures the intensity variation between the true region
and reconstructed regions and is given by

RI E = |It − Ir |
Ir

(16)

where It denotes the true fluorescence yield of sources and Ir

denotes the mean fluorescence yield of reconstructed sources
in the ROI. If RIE is close to 0, the reconstructed result reveals
a better fluorescence yield recovery.

Dice is the similarity between the reconstructed and true
fluorescence regions [18]. Thus, Dice is computed as

Dice = 2 |RO I (X) ∩ S|
|RO I (X)| + |S| (17)

where ROI (X) denotes the reconstructed result of ROI and
S denotes the true fluorescence region. Note that Dice mea-
sures the similarity of the shapes of two objects and ranges

TABLE III
THE QUANTITATIVE ANALYSIS OF DUAL-SOURCES SIMULATED

MOUSE RECONSTRUCTION RESULTS

from 0 to 1. If Dice is close to 1, the reconstructed result
coincides well with the true region; otherwise, if Dice is close
to 0, the reconstructed result reveals poor shape recovery.

B. Results

1) Parameter Acquisition: We used all the single-source
phantoms to select the search step size ratio parameter in
each search epoch. Using single sources with radii of 0.5 mm,
1.0 mm and 1.5 mm, respectively, we tested to select the search
step size ratio R from 2 to 5. In this work, to reduce the artifact
error, LE was calculated using only the reconstruction results
within 3 mm of the center of the light source. The quantitative
analysis of the reconstruction results is presented in Fig. 5.

The quantitative analysis results showed that all search step
size ratio settings could more effectively search for better
target solutions. In particular, for the quantitative analysis
results of RIE, when R increases or decreases, APSEN’s
search path will be changed correspondingly, resulting in
different β obtained from the search. When radius = 1.0 mm
and R = 3, we get β around 0.4, and L0 norm obtained in
APSEN iteration is closer to the number of the nodes of the
true source, and the total intensity of the reconstructed light
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Fig. 8. Reconstruction results of simulation models with different single-source sizes. The white circles on the plane view represent the actual area
of the fluorescence source.

source is also close to the true light source intensity. According
to the calculation formula of RIE, RIE is the smallest in this
case. Similarly, when radius = 1.5 mm and R = 5, we get
β around 0.6, and the RIE is the smallest in this case. But in
the evaluation of the reconstruction results, we believe that the
reconstruction results are better if two results which in LE, RIE
and Dice are better than other parameter results in quantitative
analysis. When R was set to 3, the searched optimal solution
had smaller LE and RIE and larger Dice coefficient. Therefore,
when R was 3, more accurate reconstruction results could
be obtained. In summary, R was set to 3 in the following
experiments.

2) Comparison With the Brute-Force Parameter Search
Method: To prove the validity of the adaptive parameter search
method, a comparison between the adaptive and brute-force
parameter search methods was performed. In the comparison
experiment using the brute-force parameter search method,

the same initial L1 norm parameter with APSEN was adopted,
and β was divided into 10 groups from 0.1 to 1 for the
reconstruction experiments. The quantitative analysis of the
reconstruction results is shown in Fig. 6 (a). According to
the evaluation method in the previous section, the quantitative
analysis results showed that the adaptive parameter search
method could effectively search for the optimal solution. For
example, when β = 0.5, the reconstruction results of the
1.5 mm single-source experiment are similar to the adap-
tive parameter search reconstruction results: however, in the
0.5 mm and 1.0 mm single-source experiments as well as
the 0.5 mm dual-sources experiment, the adaptive parameter
search reconstruction results are better than the β = 0.5 recon-
struction results. When β = 1, the expression of the EN
regularization term changes to LASSO regularization, and the
reconstruction results of the 0.5 mm single-source experiment
are similar to the adaptive parameter search reconstruction
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TABLE IV
QUANTITATIVE ANALYSIS OF MULTI-SIZED SINGLE-SOURCE

SIMULATION RECONSTRUCTION RESULTS

results. However, in the 1.0 mm and 1.5 mm single-source
experiments as well as the 0.5 mm dual-sources experiment,
the adaptive parameter search reconstruction results are sig-
nificantly better than the reconstruction results with β = 1.
All the comparison experiments demonstrate that the optimal
parameters searched vary with the data set.

3) Dual-Sources Reconstruction: To verify the location
accuracy and spatial resolution of APSEN, we set up a
dual-sources reconstruction experiment. We set two sources
S1 and S2 with different EEDs in the liver of the simu-
lated mouse. The specific values of the simulated mouse and
coordinates of the two source centers are shown in Table I.
We utilized IS-L1, Tikhonov-L2, FLM, and N-EN for com-
parison. All the comparison methods and the initial L1 norm
parameter of APSEN were tested according to the parameters
given in the corresponding references [15], [18], [28], [29].
The initial parameter selections were: IS-L1: α = 2e−10;

TABLE V
QUANTITATIVE ANALYSIS OF ANTI-NOISE ABILITY

VERIFICATION RESULTS

Tikhonov-L2: α = 1e−9; FLM: α1 = 2e−3, α2 = 4e−8;
N-EN: α1 = 1e−5, α2 = 1e−6; and APSEN: α = 2e−9.
The regularization parameters of all methods in the experiment
were manually optimized by brute-force parameter searches of
different orders of magnitude based on the initial parameter
selection [29]. Fig. 7 shows the reconstruction results obtained
using different methods on the dual-sources simulated mouse.
The shape on the axial plane proves the validity and accuracy
of the reconstruction method. The quantitative analysis of the
dual-sources simulated mouse reconstruction results is shown
in Table III. Under different EEDs, APSEN has the best results
in terms of the total location accuracy (S1 + S2) and Dice
coefficient among the five methods, as well as better RIE
results.

By comparing the reconstruction results of EED = 3.7 mm
and EED = 3 mm and 2 mm, we find that the accuracy of
APSEN is not affected by grid density. At the same time,
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Fig. 9. Effects of adding 5%, 15%, or 25% Gaussian noise on the reconstruction performance of the five methods. The white circles on the plane
view represent the actual area of the fluorescence source.

analyzing the reconstruction time, we find that the EED =
3.7 mm is less sparse than the grids with EED = 3 mm
and 2 mm, which means that there are less unknowns to
be calculated, so the calculation time for EED = 3.7 mm
is the least. For EED = 3 mm and 2 mm, the grid density
is close. When EED = 2 mm, the measurable surface flu-
orescence distribution generated by two relatively close light
sources during the simulation have a considerable overlapping,
so the surface fluorescence distribution area is relatively less
than the case of EED = 3 mm, which indicate the number
of effectively solved equations is also less than EED =
3 mm. Therefore, it takes less time for the reconstruction
of EED = 2 mm than EED = 3 mm. Thus, APSEN
could successfully improve the location accuracy and spatial
resolution.

4) Multi-Sized Single-Source Reconstruction: To measure the
morphological recovery ability of APSEN, we set up single
sources of different sizes in the reconstruction experiments.

We compared the proposed APSEN to the four methods
described previously in terms of shape restoration ability
(Fig. 8). The 3-D reconstruction results and shape on the axial
plane proved the effectiveness of the method in morphological
restoration. The quantitative analysis of the single-source
simulation reconstruction results is shown in Table IV. IS-L1
and FLM generated overly convergent source boundaries, and
Tikhonov-L2 produced over-smoothing artifacts around the
single source. N-EN and APSEN could obtain satisfactory
results under different single-source conditions; nevertheless,
APSEN produced more morphologically accurate results and
fewer image artifacts. The 3-D mesh reconstructed by APSEN
exhibited a good overlap with the actual mesh. APSEN had
a smaller LE, and the reconstructed light source center was
closer to the true value. RIE was also smaller for APSEN
than for the other methods, suggesting that the fluorescence
yield of the reconstructed light source was closer to the true
value.
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Fig. 10. Reconstruction results of in vivo experiments with different methods. The red, blue, and purple regions on the plane view represent the
reconstructed results, actual areas, and intersection of the reconstruction and actual areas, respectively.

More importantly, according to the Dice coefficient, the
reconstruction area of APSEN was closer to that of the
actual source area. Therefore, APSEN has good morphological
recovery ability.

5) Anti-Noise Ability Experiment: To examine the robustness
of the APSEN, we set up an anti-noise ability experiment.
Using the 1.0mm single-source simulation as an example,
the effects of adding 5%, 15%, and 25% Gaussian noise
on the reconstruction performance of the five methods were
compared, as shown in Fig. 9. We performed independent
simulation reconstruction for the five reconstruction methods.
The simulated reconstruction source was displayed in 3-D and
axial views.

Owing to the influence of the Gaussian noise, the recon-
structed light source was further away from the center of
the actual light source. The quantitative analysis of anti-noise
ability verification results is shown in Table V. ASPEN
exhibits a superior reconstruction effect, with a superior RIE
value, the lowest LE value and the highest Dice value among
the investigated methods. The anti-noise ability verification
results demonstrate that APSEN is the most robust of these
approaches.

6) In Vivo Reconstruction: To evaluate the utility of the
proposed APSEN for in vivo imaging, we performed in vivo
FMT on three orthotopic liver tumor-bearing mice. According
to the registration of the mouse body boundaries, the FMT
images reconstructed by the five methods were compared to
MRI data. As shown in Fig. 10, the 3-D reconstruction results
and the shape of the axial plane prove the effectiveness of the
different methods. APSEN has the smallest LE and a tumor
area matching similarity that is significantly better than those
of the other methods. The quantitative analysis also verified

TABLE VI
THE QUANTITATIVE ANALYSIS OF in vivo RECONSTRUCTION RESULTS

the above results, as shown in Table VI. Although APSEN was
slightly affected by the reconstructed optical center, compared
to the other four methods, it obtained the minimum LE value
and maximum Dice value. Compared with Tikhonov-L2 and
FLM, APSEN has the advantage of reconstruction depth.
Compared with IS-L1 and N-EN, the reconstruction accuracy
of APSEN is improved; in particular, the APSEN reconstruc-
tion results are about twice as accurate as those of N-EN. The
in vivo experiments further validated the superiority of APSEN
in FMT reconstruction, indicating that APSEN has potential
for use in practical biomedical research.
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7) Reconstruction Efficiency Analysis: To evaluate the time
efficiency of the proposed APSEN, we recorded the actual
running times of all methods. The running time of the EN
algorithm in the adaptive and brute-force parameter search
methods was analyzed as shown in Fig. 6 (b). These results
prove that the adaptive parameter search method requires
less calculation time than the brute-force parameter search
method and has a better reconstruction effect. According to
the experimental results in Tables III–VI, APSEN spent at
most twice the running time to reach the optimal parameter
selection compared to N-EN. However, compared to the man-
ual optimization of the brute-force parameter search and entire
FMT reconstruction process, this running time was acceptable.
In particular, the APSEN could use an acceptable account
of time to obtain better results in terms of reconstruction
accuracy, robustness, and practicality.

IV. DISCUSSION AND CONCLUSION

FMT can quantitatively reconstruct the 3-D fluorescence
distribution inside an organism and is proposed to solve the
problem of insufficient depth resolution in traditional FMI
methods. To improve the quality of 3-D reconstruction further,
we proposed a novel APSEN method to achieve morphological
FMT reconstruction with higher accuracy of tumor regions.
The EN regularization combines the conventional L1 and
L2 norms and reconciles the smoothness and sparsity of the
reconstruction result. Owing to the complex regularization
term, we used the coordinate descent method to simplify
the operation process. The EN regularization simultaneously
increased the problem of parameter selection. We further
proposed an adaptive parameter search method that used the
L0 norm of valid reconstruction results as a new parameter
search criterion to constrain the direction of the parameter
search and to perform a fast search and simultaneously used
the residual vector as a judgment standard to select the optimal
parameter in each epoch search path. This method reduced the
number of parameters that needed to be adjusted.

For comparison, we used the IS-L1, Tikhonov-L2, FLM,
and N-EN approaches to verify the performance of APSEN
and conducted numerical simulation and in vivo experiments.
The experimental results showed that 1) APSEN could guar-
antee a high reconstruction accuracy and spatial resolution.
2) Compared with the traditional methods, APSEN had advan-
tages in tumor morphological reconstruction. 3) In the anti-
noise ability experiment, APSEN had a higher reconstruction
accuracy and morphological recovery ability, than the other
approaches, demonstrating its robustness. 4) The simulation
results revealed that APSEN has a better fluorescence yield
recovery ability than the other methods and acceptable solution
time, indicating its practicality. 5) The in vivo experiments
verified the significant advantages of APSEN in tumor detec-
tion, demonstrating the practicality and potential of APSEN
in biomedical research. 6) APSEN has reasonable time effi-
ciency. Although APSEN achieved better results than the other
approaches considered, some concerns remain to be addressed.
The starting point of the parameter search is based on the
results of L1 norm regularization; therefore, the accuracy of

the reconstruction is based on the selection of the starting
point. Moreover, our adaptive parameter search method is cur-
rently only applicable to the EN regularization reconstruction
algorithm based on the coordinate descent method. In the
future, it would be beneficial to develop a more general
adaptive parameter search.

In summary, we proposed an APSEN method that can
provide precise morphological FMT reconstruction of tumor
areas. The EN method simultaneously reconciled the smooth-
ness and sparseness of the reconstruction results using the
coordinate descent method to simplify the calculation process.
The L0 norm of valid reconstruction results was used as a
search criterion to constrain the search direction, and the resid-
ual vector was used as a judgment standard. The method was
subsequently evaluated by performing numerical simulations
and in vivo experiments. The reconstruction results showed
that compared to the traditional methods, the proposed method
had better results in terms of localization, spatial resolution,
fluorescence yield recovery, and morphological reconstruction;
it also simultaneously had better robustness and acceptable
time efficiency. Future work will focus on developing a more
general adaptive parameter search method, as well as the
pre-clinical or clinical biomedical application of the proposed
method.
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