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MAMA Net: Multi-Scale Attention Memory
Autoencoder Network for Anomaly Detection

Yurong Chen, Member, IEEE, Hui Zhang , Member, IEEE, Yaonan Wang ,
Yimin Yang , Senior Member, IEEE, Xianen Zhou , and

Q. M. Jonathan Wu , Senior Member, IEEE

Abstract— Anomaly detection refers to the identification
of cases that do not conform to the expected pattern, which
takes a key role in diverse research areas and applica-
tion domains. Most of existing methods can be summa-
rized as anomaly object detection-basedand reconstruction
error-based techniques. However, due to the bottleneck of
defining encompasses of real-world high-diversity outliers
and inaccessible inference process, individually, most of
them have not derived groundbreaking progress. To deal
with those imperfectness, and motivated by memory-based
decision-making and visual attention mechanism as a filter
to select environmental information in human vision percep-
tual system, in this paper,we propose a Multi-scaleAttention
Memory with hash addressing Autoencodernetwork (MAMA
Net) for anomaly detection. First, to overcome a battery
of problems result from the restricted stationary recep-
tive field of convolution operator, we coin the multi-scale
global spatial attentionblock which can be straightforwardly
plugged into any networks as sampling, upsampling and
downsampling function. On account of its efficient features
representation ability, networks can achieve competitive
results with only several level blocks. Second, it’s observed
that traditional autoencoder can only learn an ambiguous
model that also reconstructs anomalies “well” due to lack
of constraints in training and inference process. To miti-
gate this challenge, we design a hash addressing memory
module that proves abnormalities to produce higher recon-
struction error for classification. In addition, we couple the
mean square error (MSE) with Wasserstein loss to improve
the encoding data distribution. Experiments on various
datasets, including two different COVID-19 datasets and
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one brain MRI (RIDER) dataset prove the robustness and
excellent generalization of the proposed MAMA Net.

Index Terms— Anomaly detection, COVID-19 diagnose,
attention mechanism, hash coding, memory autoencoder.

I. INTRODUCTION

ANOMALY detection indicates the problem that finding
patterns that are non-conforming to expected behavior.

It has been extensively researched in the computer vision
field because of its potential applications in medical image
diagnoses [1], video surveillance [2], and network (social
network, finance) analysis [3], etc. Recently, with the rapidly
increasing demand for effective and efficient public health
anomaly detection and real-time surveillance, developing auto-
matic abnormal events detection system is one critical task
which can tremendously alleviate labor-intensive work and
non-stop human attention. For instance, the global pandemic
Coronavirus Disease 2019 (COVID-19) has spread rapidly
across the world [4]. For supplement the low sensitivity of
the reverse-transcription polymerase chain reaction (RT-PCR)
[5], automatically efficient computer-aided anomaly detection
using X-rays or computed tomography (CT) offers great
potential for tackling COVID-19.

Since the first statistics community study for anomalies
detection was finished as early as the 19th century [6], over
time, a spectrum of anomaly detection methods have been
developed, including the one-class classification algorithm [7],
[8], such as support vector machines (SVMs) [7], and neural
networks one-class classification methods: deep one-class
(DOC) [8] and so on. However, the prerequisite for all these
successes is the availability of corpora normal labels, which
is difficult to define the encompasses of the normal item.
Meanwhile, specifying all novel examples is impossible so
that their further variants are inherently limited by a low recall
[9]. In addition, compared with normal instances, abnormal-
ities are rare, resulting in unbalanced positive and negative
sample rates when training those algorithms; Also labeling
is time-consuming and labor-consuming, especially for those
high-demanding works like medical images diagnoses, which
deters their deployment in many real-word applications.

On the other hand, unsupervised anomaly detection
approaches [9], [10] aim to learn a pattern recognition that
only given normal data then detect abnormal examples that do
not conform to the normal profile. Although some studies can
achieve satisfying performance in some particular scenarios,
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the inaccessible training and inference process due to lack
of constraints, human supervision with labels and general-
ization problem lead to a significant obstacle for carrying
out a versatile framework [11]. The inconsistent results in
high-dimensional data spaces, due to the “Curse of dimension”
[12], which is another vital challenge of those approaches.
Moreover, in [12], a semi-supervised autoencoder is treated as
a feature extractor which outputs representations for traditional
classifier such as one-class SVM. In general, autoencoder is
trained to minimize the reconstruction error between normal
samples input and output of decoder and enlarge the error
between anomaly and decoder output. However, due to the
“excellent” generalization ability that the network can only
learn an ambiguous model, the reconstruction of abnormal-
ities is also undistinguished with corresponding inputs by
deep autoencoder. Moreover, the presumption that abnormal-
ities produce high reconstruction error is debatable because
abnormal samples are inaccessible during the training proce-
dure and the reconstruction processes for anomaly cases are
unpredictable [13], [14].

Albeit fruitful progress has been made in the last sev-
eral years for working out those challenges, such as [9]
combines variational Bayes and neural networks to obtain
a commendable generation model. Vercruyssen et al. [13]
propose a constrained-clustering-based approach for anomaly
detection and [14] proposes a deep autoencoder with a memory
module that the autoencoder reconstructs the most relevant
instance of the input in the memory module. Despite of
those techniques introduce supervision to guide their network,
they are hampered by the limited receptive field of single
convolution operator and vanishing gradient problem from the
deep network due to the competing depth and width [15],
which results poor perceptual quality and cannot fully exploit
the potential of global information. In detail, the shallow layers
cannot be trained usable to encode and reconstruct the input
image well [16].

Inspired by interactions between visual processing and
visual attention as a filter to select environmental information
for learning, as well as the contribution of visual attention
to memory [17], in this paper, we coin the multi-scale
attention block that can be used in encoder and decoder
for feature extracting and data reconstruction which can
replace the single convolutional layer and transpose convo-
lutional layer in traditional deep autoencoder network. The
multi-scale attention block can achieve sampling, upsampling,
and downsampling straightforwardly with combining channel
attention layer which can mitigate the channel information
loss and focus on the discriminative feature maps and pixel
patch attention layer which has the ability to identify specific
locations information within their footprint [18]. In the end,
the model can outperform or match state-of-the-art networks
with two or three blocks, which is beneficial to convergence
and inference speed with 1.3× and 2.7× fewer FLOPs than
ResNet101 with 7.6 GFLOPs and VGG16 with 15.5 GFLOPs
backbone network (our backbone with 5.7 GFLOPs).

In addition, to mitigate the drawback of the traditional
autoencoder network and those variant algorithms [9], [14]
that due to lack of constraints and human intervention, it’s

Fig. 1. The difference between the traditional autoencoder network (top)
and our proposed MAMA Net (bottom) and its main components. Both
are trained on normal items as the gray line and tested on new normal
cases as the blue line and anomaly as the red line. In the training phase,
the memory module is updated with prototypical normal items as plus
sign. And in the testing process, the memory module is fixed and both
normal cases and anomaly are addressed via hamming distance.

observed that they can only learn an ambiguous model and it
also reconstructs anomalies “well”, in other words, it cannot
produce higher reconstruction error than normal instances,
leading to the miss detection of anomalies. To mitigate this
challenge, motivated by [14] that human choices are shaped
by awareness of past experiences and anticipation of future
possibilities, furthermore, to bridge the gap of unstable sim-
ilarity measurement and slow image retrieval methods, [19]
shown superior improvements of similarity search and the
work [20], [21] that proves semantic image hashing as a potent
tool for image retrieval, in this paper, we propose a generalized
deep autoencoder with a hash memory module. The difference
between traditional autoencoder and MAMA Net and its main
process are shown in Fig. 1. In the training, the parameter of
hash memory module with a fixed number of memory slots is
updated. After only training on the normal dataset, the learned
hash table memory module is settled. Therefore, the normal
testing data can retrieve similar hashing code and then get
a low reconstruction error. On the other hand, the anomaly
has to retrieval the nearest normal neighbor in hash memory
module which will make a high reconstruction error.

In conclusion, we proposed a generalized attention hash
addressing memory autoencoder based framework named as
MAMA Net for automatic anomaly detection, especially for
COVID-19 detection. The main contributions of this paper are
summarized as follows:

1): A hash addressing memory module is designed for fast
retrieving the most relevant item and more appropriate produce
high reconstruction error of the anomaly.

2): A multi-scale attention block with combining pixel
patch attention layer and channel attention layer is proposed
for replacing the convolution layer and transpose convolution
layer, which can achieve sampling, downsampling, and upsam-
pling function.

3): Couples Wasserstein distance (Earth-Mover distance)
for the sake of same data distribution with mean square
error (MSE) to build a new loss function.
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We apply the proposed MAMA Net on various com-
prehensive datasets from different applications. Experiments
have proven its excellent robustness, high effectiveness, and
generalization ability.

II. RELATED WORK

A. Feature Extraction

To reduce the redundant information of input, feature extrac-
tion is essential in pattern recognition and image processing.
The inappropriate feature may cause an algorithm to overfit
and generalize poorly to new samples [22]. The traditional
algorithm [23] is not enough robust in complex or crowded
scenes, especially dealing with high dimensional data. In the
recent years, feature extraction methods attracted a lot of
attention, such as with the tremendous growth of the neural
network, deep autoencoder [25] was proposed to learn efficient
data representations in an unsupervised manner. Moreover,
in order to accommodate more flexible modeling and more
complex datasets representation, attention mechanisms [24]
became the basic building block of most state-of-the-art
architectures. Convolutional neural networks (CNNs) shows
impressive success in image processing [25] due to its feature
extraction ability. Instead of using artificial neural networks
in deep autoencoder, [26] presents a convolutional autoen-
coder (CAE) for unsupervised feature learning.

B. Anomaly Detection

In the introduction section, we briefly go through the
menagerie of traditional anomaly detection work and their
dilemmas [7], [8], [12], [13]. In addition, Luo et al. [2]
adopts stacked RNN with iteratively update the sparse coeffi-
cients to detect anomalies. However, this algorithm demands
a robust and stable recurrent mechanism to encourage the
model to generate large reconstruction error on the anomalies.
Moreover, [8] purposes two loss functions, compactness loss
and descriptiveness loss, to facilitate deep one-class (DOC).
With recent achievements in the applications of deep neural
networks (DNNs), memory augmented DNNs have attracted
researchers’ interest in increasing the robustness of networks
[14], [34]. Gong et al. [14] propose a memory-augment
autoencoder to mitigate the drawback that the reconstruction
error of anomalies is inconspicuous. [34] presents a generative
model with an attention mechanism to capture the local
information. Lu et al. [35] use a layerwise procedure to train
autoencoder models that can capture the intrinsic difference
between outliers and normal instances.

C. Artificial Intelligence for COVID-19

The global outbreak of COVID-19 substantially increases
doctors and and other medical workers’ workload, which
make automated anomaly detection for COVID-19 urgently
needed. For supplement the low sensitivity of the RT-PCR,
automated efficient computer-aided detection using X-Ray and
computed tomography (CT) offers great potential for tackling
COVID-19. Radiological imaging testing is of considerable
practical importance especially in the early stages of COVID-
19 [5]. Typical deep learning framework: Classification and
segmentation method depends on DenseNet [27]; Unet is

adopted in [28] as a weakly-supervised model to predict
the COVID-19 infectious probability and in [29] to develop
detection Coronavirus. Moreover, [30] modifies the Inception
transfer-learning model for classifying COVID-19 patients.
Xi et al. [31] develop a dual-sampling attention network
to automatically diagnose COVID-19. And [32] performs
COVID-19 detection in a weakly-supervised manner. Inf-Net
[33] is proposed to automatically identify infected regions
from chest CT slices. Although significant progress achieved,
those methods only focus on certain modality and a general-
ized and comprehensive framework for COVID-19 detection
is imperative.

III. MULTI-SCALE ATTENTION HASH MEMORY

AUTOENCODER

A. Overview
The proposed MAMA Net mainly involves three parts

(see Fig. 2): an encoder network for learning the latent
representations of input data; a hash memory module that
given a query tensor from the encoder, it can retrieve the
most homogeneous value tensor via the hamming distance
of hash coding; a decoder network for reconstructing the
value tensor from the memory module. During the training
process, the encoder, decoder network, and memory module
are trained to optimize the reconstruction error. Different
from previous works [13], [14] that only using MSE as
loss function, the Earth-Mover distance is joint for similar
data distribution. The hash memory module is simultaneously
optimized and updated during the training procedure. In the
testing phase, the memory module is fixed. So that given a
normal sample, it can retrieve a similar normal item in the
memory module and result in a small reconstruction error.
On the contrary, an anomaly instance incurs high error due
to it has to retrieve the most relevant normal item. Instead
of the commonly stacking convolutional layer, we propose
the multi-scale attention block which can greatly reduce the
depth of neural networks and achieve better feature extraction.
In Section III-B, the structure of the multi-scale attention
block is provided. In Section III-C, the hash memory module
will be discussed. And the whole framework can be seen in
Section III-D. Table I defines the symbols used in this article.

B. Multi-Scale Attention Block

To mitigate the limited receptive field of invariably local
operators of single convolutional layer and deconvolutional
layer, the multi-scale attention block can fuse global informa-
tion effectively and efficiently. Unlike the self-attention trans-
former [24] only generates outputs with same feature sizes
as the input, the proposed multi-scale attention block can be
employed for regular sampling, downsampling and upsampling
that can outputs any arbitrary dimensions (see Fig. 3) with a
novel combination of pixel patch attention layer and channel
attention layer. Specifically, we define Same Attention (SA)
block for regular convolution with generates same size feature
maps; Down Attention (DA) block for downsampling with
outputs half size and Up Attention (UA) block for upsampling
with produce double dimension. Even those three types of
block generate different dimension outputs, they share similar
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Fig. 2. The structure of proposed MAMA Net: (a) an encoder network for encoding input data; (b) a hash memory module that given a query
tensor from the encoder, it can retrieve the most homogeneous value tensor via the hamming distance of hash coding; (c) a decoder network for
reconstruction.

Fig. 3. The framework Multi-Scale Attention Block consists of two parts: (i) pixel patch attention layer (ii) channel attention layer. All SA, DA, and
UA block can be realized with this framework only need to change the kernel size KS and stride S.

TABLE I
SYMBOLS DEFINITION

design ideas and structures as Fig. 3 shown. Given inputs of
multi-scale attention blocks are denoted as Input ∈ R

H×W×C ,
the first process is to get pixel patch query tensor PQ, pixel
patch key tensor PK and pixel patch value tensor PV . Here,
we adopt three three convolution layers as

PQ = Conv1C �(Input) ∈ R
H×W×C �

,

PK = Conv1C �(Input) ∈ R
H×W×C �

,

PV = Conv1C �(Input) ∈ R
H×W×C �

, (1)

where Conv1C �(·) denotes a kernel size (K S) 1×1 convolution
layer with stride (S) 1 and C � output feature channels. In this
paper, considering the interaction of pixels and smoothing
effect of convolution layer, we designed pixel patch atten-
tion mechanism. Specifically, each query pixel patch tensor
PatchQ ∈ R

patchS×patchS×C �
(patchS represents the patch

size) times the transpose of corresponding key patch tensor
PatchT

K ∈ R
C �×patchS×patchS to form the pixel attention map.

And PV is converted into a matrix PV ∈ R
C �×H W . The output

of pixel patch attention operator is computed as

OutputP = PV × 1

(patchS)2 (PatchQij · PatchT
Ki j

), (2)

where i ∈ R
H and j ∈ R

W that iterate the whole feature map
and OutputP ∈ R

C �×H W which is further converted back to
R

H×W×C �
.

The choice of subsequent channel attention layer relies on
the types of multi-scale attention block. For SA block, a K S =
3 and S = 1 convolutional layer is used to generate channel
query CQ. For DA block, a K S = 3 and S = 2 convolutional
layer is employed to generate CQ and we apply a K S = 3 and
S = 2 deconvolutional layer to generate CQ as

CQ = G(OutputP ) ∈ R
HQ×WQ×C ��

, (3)

where G(·) outputs C �� feature maps. Similar with the oper-
ation of PK and PV , CK and CV are generated with a
K S = 1 and S = 1 convolutional layer with C �� output
feature channel. Then these three are converted to matrix
CQ ∈ R

C ��×HQ WQ , channel key CK ∈ R
C ��×H W and channel

value CV ∈ R
C ��×H W . Finally, the output is computed as

Output = CV × Sof tmax(CT
K CQ), (4)

and achieved with Output ∈ R
HQ×WQ×C ��

. In conclusion,
given Input ∈ R

H×W×C our proposed multi-scale attention
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block can generate feature maps Output ∈ R
HQ×WQ×C ��

with
optional feature size and channel.

C. Memory Module With Hash Coding Addressing
As the Fig.2. shown, given the feature embedding vector

z of the current image x as the input of memory module,
it is first stored at memory slots. Simultaneously, it is mapped
with hashing function to get the hash binary codes, which
is stored at the hash table. Instantaneously, the similarity
coefficients of input z and the whole hash table is com-
puted with hamming distance. In the end, the corresponding
embedding feature is taken from memory slots to feed the
decoder. The proposed hash memory module involves a set
of memory slots to preserve the encoding representations
of normal instances and hash-based addressing for querying
and retrieving. The memory slot matrix is denoted as M =
{m1, m2, . . . , mi , . . . , mN } ∈ R

N×F , where N represents
the number of slots and F means the dimension of each
memorized item features. Each row vector mi of M denotes a
memory item. Theoretically, F is optional, and in practice, for
reducing the computation cost, F is always set as same as the
dimension of encoding representations. In the training phase,
parameters of all memory slots are random initially. With
the training on normal data iteratively, all slots are updated
to preserve encoding representations of normal instances.
Simultaneously, the memory module matrix M is mapped to
a hash matrix H S = {h1, h2, . . . , hi , . . . , hN } ∈ {0, 1}N×F �

.
Specifically, given the memory module slot mi , considering
the following hash function:

r(mi ) = argmin
h∈{0,1}F

− f (mi ; θ)T )h, (5)

the idea is to optimize the weights f (·; θ) : mi → R
F that

can activate the corresponding manifolds in the binary hash
code h, consequently, hash the data M into a hash table H S
that can denote the hash code as H S. We seek to optimize
hash mapping function to hash similar instances into alike
buckets, in other words, we wish to maintain the proximity
of similar items and divided apart dissimilar items during the
hash process [20]. Following the work [21], the hash function
in Eq.(5) can be implemented with a single neural layer with
trainable weights as follows:

hi = 1

2
(sgn( f c(mi ) − 0.51) + 1), (6)

where f c represents a fully connected layer that transform the
memory feature vector with dimension of mi to the dimension
of the dimension of hi , sgn denotes a sign activate function
that can output one or negative one based on the input mi , and
1 represents a ones vector with length hi . Therefore, the binary
codes hi with the value one or zero is obtained.

Traditionally, given a query tensor from encoder network
z ∈ R

H×W×C, [14] directly calculates the cosine similarity
of z and each preserved item, which will be utilized as the
attention coefficients for addressing. The attention addressing
vector wcos ∈ R

N represents the similarity of the query z
and each memory item mi . Although it has advantages in
quantification of low-dimension data, it cannot be a com-
prehensive and impactful evaluation standard of similarity of

high-dimension and sparse data. In addition, wcos is required
for accessing N times memory module and meanwhile, it’s
observed from experiments that a larger enough N results in
better work, so this method takes redundant cost. In this paper,
the hamming distance H D

H D(hz, hi ) =
C∑

j=1

|(hz) j − (hi ) j |,

(hz) j = (hi ) j ⇒ |(hz) j − (hi ) j | = 0,

(hz) j �= (hi ) j ⇒ |(hz) j − (hi ) j | = 1, (7)

is introduced for computing the attention coefficients and
similarity-based search on hash matrix H S. There are two
major advantages of this mapping hash matrix H S: (i) greatly
reducing the dimension of the calculative matrix from
F (F equals to the feature maps’ height H times feature
maps’ width W times the number of channel C) to F � (F �
is set as 128 or 256 generally); (ii) the high efficiency of
searching in the hash matrix via sorting hamming distance
H D. The hamming distance weight vector wH D ∈ R

N

represents the similarity of the query z and each memory
slot. The smaller H D means the more homogeneous. Both
soft and hard addressing methods can be conducted on our
framework. The soft addressing takes the top smallest H D
memory items and combines them with the coefficients that
H D via a Softmax operation as follows:

ĥz = Sof tmax(wH D)M. (8)

But the chance that the anomaly can be reconstructed well
with a compound combination of memory normal instances
cannot be ignored. The hard addressing is a more suitable
method, as follows shown:

ĥz = argmin(wH D)M. (9)

In Fig. 1 and Fig. 2, we provide the visualization of the hash
memory module, which shows the output of hard addressing
only retrieval the smallest hamming distance prototypical
normal item. Then the latent representation ẑ can be obtained
via the hash corresponding memory matrix M . This method
reduces the computation cost greatly and encourages the model
to represent an item with fewer latent representation, which
results in more informative features.

D. Encoder and Decoder

Encoder network is utilized for embedding input, which
is encouraged to represent the input in a meaningful and
informative manifold space. Given a sample x , the encoder
maps it to an embedding representation z as follows:

z = fe(x; θe), (10)

where θe denotes the parameters of the encoder network.
Different from previous works [25], [26] that stack deep,
linear CNNs to build networks, our encoder adopts the simple
but effective proposed multi-scale attention block. As Fig. 2
shown, after resizing all inputs to size H ×W ×C , the encoder
network established by three DA blocks and one SA block.
Each DA block generates half-size feature maps. The dimen-
sion of final feature maps is H/8 × W/8 × 512. In addition,
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we proposed a semantic basis that generated by the SA block
to represent the semantic information of encoding features,
which is concatenated with decoding feature maps lately.
Concretely, the semantic basis is plugged into decoder to resort
to fully utilization of feature fusion. Our proposed UA and
SA block is a simple yet effective heuristic-based method
compared with most prevailing methods that simply sum
up while fusing different feature sizes. Simultaneously, after
getting retrieval ẑ from our hash memory block as mentioned
before, the decoder network consists of two SA blocks and
three UA blocks. Each concatenated layer is passed to the SA
block to reducing the channel. Then the UA block can generate
new feature maps with double-size. The decoder is trained to
reconstruct the input given a latent representation:

x̂ = fe(ẑ; θd). (11)

Moreover, besides the M SE = �x − x̂�2 to measure the
quality of reconstruction, we couple Earth-Mover distance [36]
which is a criterion of data distribution as

E M(Px , Px̂ ) = in f
γ∼∏

(Px ,Px̂ )

E(x,x̂)∼γ [�x − x̂�] (12)

between the input data distribution Px and the generator
data distribution Px̂ . For joint probability distribution γ ∼∏

(Px , Px̂ ), and for each marginal distribution is Px or Px̂ ,
the goal is to minimize the lower bound of the expected value
of distance. With minimizing E M distance, it can let the
generator data distribution be closer to the prior distribution.
Moreover, it is easier to converge at the embedding space
than using Kullback–Leibler (K L) divergence [36], which is
common data distribution loss but it tends to infinity when
there is no overlap between two distributions and has a
mutation when states from non-overlap to overlap. With our
loss function as

Loss = M SE(x, x̂) + E M(x, x̂), (13)

the model can achieve better pixel reconstruction and realize
more alike data distribution.

IV. EXPERIMENTS

To demonstrate the robustness and generalization ability
of our proposed MAMA Net, experiments are conducted
on three datasets, including COVID-19 CT Images [27],
COVID-19 X-Ray Images [37] and Reference Image Data-
base to Evaluate Response (RIDER) Neuro MRI dataset
[38] and evaluating the model with stratified k-fold cross-
validation. Compared with various baseline models and state-
of-the-art algorithms, the results prove the high effective-
ness and excellent generalization of the proposed MAMA
Net. Experiments are deployed on PyTorch [39] using Adam
[40] optimizer with a learning rate of 0.01 with NVIDIA
GeForce GTX 1080 graphics card for 70k iterations with
mini-batch size of 8 samples. Code will be made available
on https://github.com/DanielChen98/MAMA_NET_Pytorch.

A. Parameter Settings

As Fig. 4 shows, the training set only involves normal
instances, which has no overlapping with the testing items. All
anomalies are going with testing samples. In this experiments,

we build the encoder network with three DA block (K S =
3, S = 2) and one SA block (K S = 3, S = 1). Firstly,
the inputs are resized to 228 × 228. And taking the inputs,
the first DA block with C �� = 64 generates Conv_1 ∈
R

114×114×64. Similarly, the second and third DA block outputs
Conv_2 ∈ R

57×57×256 and Conv_3 ∈ R
29×29×512.

Simultaneously, the Semantic Basis ∈ R
29×29×512 generated

by SA block is used in our model and the encoding represen-
tation z ∈ R

F (F = 29 × 29 × 512) is flatten from Conv_3.
We implement the hash memory block with a set of memory
slots (N × F) for recording and retrieving and a hash table
(N × F �). It’s observed that a larger N has a better results and
the effect of N will be discussed later. Briefly, the N = 2000
is the bottleneck of performance. The hash coding is achieve
by Sigmoid activation function and its dimension F � is set
as 128. The decoder network is composed of two UA block
(K S = 3, S = 2) and two SA block (K S = 3, S = 1).
UA block generates double-size feature maps and SA block
is used to reduce channel: Pre_DeConv_3 ∈ R

29×29×1024,
DeConv_3 ∈ R

29×29×1024, Pre_DeConv_2 ∈ R
57×57×512,

DeConv_3 ∈ R
57×57×512, DeConv_2 ∈ R

114×114×64 and
Ouput (x̂) ∈ R

228×228×3. The loss coupled with MSE and
Wasserstein distance is applied on all experiments.

B. Experiments on COVID-19

We first conduct the experiments to detect the anomaly
in COVID-19 CT [27] experiments, the training set only
includes the non-COVID cases that contains 463 images with
a composition of 36 images from LUNA, 195 from MedPix,
202 from PMC, and 30 from Radiopaedia. And the test set
includes non-COVID samples that has168 CT images (164 of
them from LUNA dataset and the rest 4 from Radiopaedia)
and 100 COVID CT images from SIRM COVID-19 Database.
And the experiments conducted on chest X-ray contains a total
of 1808 images, which includes 225 COVID-19 chest X-ray
images and 1583 normal images obtained from Cohen [37].
Similarly, the partition of normal samples to training set and
test set is based on k-fold cross-validation strategy. In addition,
all 225 COVID cases are consider as test set. The normal
samples are divided into training set and testing set, following
the setting used in [27], [37]. The memory size N of [27]
is set as 2000 and [37] is 3000, which both are the tradeoff
according its dataset as the ablation studies shown. The brief
results of reconstruction of the normal and abnormal cases
of MAMA Net are shown in Fig. 4. It’s observed that the
reconstruction of normal sample is almost same to the input,
but the reconstruction image of COVID-19 case is distinct
from the input and similar with the normal item which results
in high reconstruction error.

The results are compared with traditional algorithm:
one-class SVM (OC-SVM) [7], non-reconstruction methods
based on deep learning: Visual Geometry Group (VGG16),
ResNet, Dense-UNet [27], Inf-net [33], Zheng [32] and recon-
struction methods: MemAE [14], Autoencoder-VGG16 (AE-
VGG16), Autoencoder-ResNet101 (AE-ResNet101), TSC [2]
and StackRNN [2]. Specifically, non-reconstruction meth-
ods are supervised learning that predicts the predic-
tion of anomalies, and anomaly classification can be
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Fig. 4. The results of our proposed MAMA Net. Only need training on normal samples, our model can generate high reconstruction error of abnormal
samples than normal samples.(a) testing inputs on normal samples; (b) reconstruction on normal samples; (c) reconstruction error of binary mask
on normal samples; (d) testing inputs on anomaly; (e) reconstruction on anomaly; (f) reconstruction error of binary mask on anomaly.

evaluated by reconstruction error of reconstruction meth-
ods. AE-VGG16 and AE-ResNet101 denote the autoencoder
network is built with VGG16 and ResNet101. In testing,
we report the sensitivity, specificity, F1-score and Area Under
Curve (AUC) as Table II shown, MAMA Net outperforms all
reconstruction-based baselines and is more than a match for
the state-of-the-art method which needs labels for training.
We also do the Student’s t-test [41] between results of MAMA
Net and MemAE [14] that the p-value of all tests were
performed at a significance level of α = 0.05 (two-sided). The
visualization and comparison of the reconstruction image of
normal and COVID-19 cases are shown in Fig. 5, it’s obvious
that our MAMA Net has advantages in anomaly classification,
feature extraction, and reconstruction quality.

C. Experiments on RIDER Neuro MRI
Furthermore, for proving the generalization of proposed

MAMA Net, we conduct experiments on RIDER Neuro MRI
[38] for evaluating the tumor detection. The training set
consists of brain MRIs from 19 patients. T1 and T2-weighted

MRIs are used, which contains a total of 349 MRIs, including
109 normal images and 240 abnormal images. Most baselines
are introduced before, moreover, some former state-of-the-art
methods [42], [43] are compared. The memory size N is also
set as 2000. A short comparison of sensitivity, specificity, and
F1-score is presented in Table II (all p-values tested between
our model and [14] are less than 0.05), the obtained results
prove the superiority of the proposed method in terms of brain
tumor detection.

In the end, the normalized the reconstruction normality
score pu of u-th index image with range [0, 1] as follows

pu = 1 − eu − minu(eu)

maxu(eu) − minu(eu)
, (14)

where eu denotes the reconstruction error, between normal
cases and abnormalities are compared with proposed MAMA
Net as shown in Fig. 6, which provides that our proposed
method an evident gap. And the comparison of training loss
and speed are compared in Fig. 7, where our proposed model
shows a stable loss and a high frames per second (FPS).
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TABLE II
SUMMARY OF TESTING SENSITIVITY, SPECIFICITY, F1-SCORE, AND AUC RESULTS ON COVID-19 CT [27], X-RAY IMAGES [37] AND RIDER

NEURO MRI [38]

Fig. 5. The comparison of reconstruction normal cases (left), anom-
aly (right) of MAMA Net with other baselines. (a) input samples; (b)
reconstruction of our MAMA Net; (c) reconstruction of MemAE [14]; (d)
reconstruction of AE-ResNet101; (e) reconstruction of AE-VGG16. It can
be seen that our proposed network has a similar reconstruction of normal
samples and intrinsically different the reconstruction of anomalies, while
other baselines cannot make a distinction between reconstruction of
normal cases and anomaly.

Fig. 6. Normality scores of RIDER Neuro MRI dataset. The green
background represents the normal samples that hold high normality
scores. And the score decreases immediately when anomalies appear.

D. Ablation Studies
As previous sections mentioned, comprehensive experi-

ments comparisons have demonstrated the importance of
the major components of the proposed MAMA Net, like
hash-memory module and multi-scale attention block layer.
In this section, we further conduct several ablation studies to
analyze other different components more specifically.

1) Study of the Memory Size: We adopt all datasets to
study the effect of the memory size N. The experiments with

Fig. 7. The Loss of autoencoder network constructed with ResNet,
VGG Net, and our proposed multi-scale attention block. The vanishing
gradient that may stick in local optimization and unstable loss appears in
VGG Net and ResNet 50/101. The network with only three ours blocks
achieve minimum loss, which equals and perhaps surpasses ResNet34.
The FPS also proves that our block with simple structure has advantages
on detection speed.

Fig. 8. Robustness to the setting of memory size. F1-score values of
proposed MAMA Net with different memory size on COVID-19 CT, X-Ray
Images and RIDER Neuro MRI are shown.

different N are shown in Fig. 8. The summary report of the
F1-score is testing. In conclusion, with a large enough memory
size (2000 as the red dash line), the model can robustly
produce superior results with the datasets size from 100 images
to 349 slices in our experiments.

2) Study of the Semantic Basis: The deteriorated quality
of decoder feature maps inherently restricts high-definition
reconstruction, which makes normal samples and abnormal-
ities without distinction. The semantic basis fully exploits the
potential of encoding representations and the utilization of
UA and SA block to fuse feature maps consistently achieve
much better efficiency across a wide spectrum of resource. One
brief comparison of utilization and discard of semantic basis
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Fig. 9. The input (a) and the comparison of reconstruction image with
utilization semantic basis (b) and without using semantic basis (c).

Fig. 10. Evaluation for the effectiveness of semantic basis and
Wasserstein loss. Dark blue bar is the network with semantic basis and
Wasserstein loss; Gray bar represents the model without semantic basis;
Light blue bar is the network without Wasserstein loss.

Fig. 11. The t-SNE visualization of embedded features (points) z. The
comparison of with EM (left) and without EM (right) on (a) COVID-19 CT
Images (b) COVID-19 X-Ray Images and (c) RIDER Neuro MRI.

is shown in Fig. 9 that it is obvious that the reconstruction
keeps high fidelity with utilization semantic basis. In the end,
we report the evaluation for the effectiveness of semantic basis
as shown in Fig. 10. The performance remarkably increase at
introducing semantic basis. In our model, the semantic basis
is adopted as Fig. 2. shown.

3) Study of the Wasserstein Loss: The Wasserstein (EM)
distance not only can measure two distributions similarity, also
it provides every transferability of probability density. Here,
we compare the features obtained from the hidden layer with

EM and without EM of a trained MAMA Net on all datasets
we used as Fig. 11 shown. It’s obvious that with introducing
EM distance into loss function, the robustness of embedding
representation improved and the domain shift is mitigated. The
validity of Wasserstein loss is also proven in performance as
Fig. 10 shown.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a hash addressing memory
autoencoder with the multi-scale attention block to detect the
anomaly, especially for COVID-19 detection. With the recon-
struction of the input by our encoder and decoder network,
the anomaly produce high reconstruction error while the nor-
mal samples generate a lower error. Multi-scale attention block
is designed to mitigates nowadays challenges of restricted
stationary convolution operators with combining pixel patch
attention and channel attention layer, which is conveniently
plugged into any network for sampling, downsampling, and
upsampling. Due to the memory is trained only to record the
prototypical normal cases, it can reconstruct the normal sam-
ples well and amplify the reconstruction error of the anomalies
[14]. But the soft-addressing via cosine similarity looks like
a fish out of water, and a hash memory module is proposed
for fast retrieving. To the best of our knowledge, this is the
first time to introduce the hash addressing memory module
into autoencoder. In addition, with coupling mean square error
with Wasserstein distance over input to reconstruction data,
the network resorts to robust data distribution. Experiments
on various datasets prove the effectiveness and generalization
of MAMA Net. Our proposed module achieves better perfor-
mance than other baselines, while our model is a more general
framework that can be flexibly applied to various types. In the
future, we will apply our model on more challenging datasets,
investigate quicker and easier memory module and addressing
methods. Furthermore, designing taxonomy anomaly detection
system is our next objective.
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