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Dual-Energy X-Ray Dark-Field
Material Decomposition

Thorsten Sellerer , Korbinian Mechlem , Ruizhi Tang, Kirsten Alexandra Taphorn ,
Franz Pfeiffer, and Julia Herzen

Abstract— Dual-energy imaging is a clinically
well-established technique that offers several advantages
over conventional X-ray imaging. By performing
measurements with two distinct X-ray spectra, differences
in energy-dependent attenuation are exploited to obtain
material-specific information. This information is used
in various imaging applications to improve clinical
diagnosis. In recent years, grating-based X-ray dark-field
imaging has received increasing attention in the imaging
community. The X-ray dark-field signal originates from
ultra small-angle scattering within an object and thus
provides information about the microstructure far
below the spatial resolution of the imaging system. This
property has led to a number of promising future imaging
applications that are currently being investigated. However,
different microstructures can hardly be distinguished
with current X-ray dark-field imaging techniques, since
the detected dark-field signal only represents the total
amount of ultra small-angle scattering. To overcome
these limitations, we present a novel concept called
dual-energy X-ray dark-field material decomposition, which
transfers the basic material decomposition approach
from attenuation-based dual-energy imaging to the
dark-field imaging modality. We develop a physical
model and algorithms for dual-energy dark-field material
decomposition and evaluate the proposed concept in
experimental measurements. Our results suggest that
by sampling the energy-dependent dark-field signal with
two different X-ray spectra, a decomposition into two
different microstructured materials is possible. Similar to
dual-energy imaging, the additional microstructure-specific
information could be useful for clinical diagnosis.
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I. INTRODUCTION

THE concept of dual-energy imaging, which was first
introduced in 1976 [1], represents a great milestone in

diagnostic X-ray imaging. Owing to its capability of extract-
ing material-specific information non-invasively from an
object, dual-energy imaging initiated the development of sev-
eral clinical applications. By performing measurements with
two distinct X-ray spectra, differences in energy-dependent
attenuation are exploited to distinguish between different
materials. In recent years, dual-energy computed tomogra-
phy (DECT) has become a powerful and well-established
diagnostic tool in the daily clinical workflow. DECT has
turned out to be particularly valuable for abdominal imag-
ing, where it has led to significant improvement in diag-
nostic imaging. The availability of additional information in
the form of virtual monochromatic images and quantitative
material-specific contrast agent density maps can provide an
improved detectability of oncological [2], [3] and vascular
[4], [5] pathologies. Apart from DECT, there are several
dual-energy applications relying on projection data only,
such as dual-energy X-ray absorptiometry [6], dual-energy
subtraction radiography [7] and contrast-enhanced digital
mammography [8].

Grating-based differential phase-contrast (DPC) [9] and
dark-field [10] imaging are two emerging imaging modalities
that use entirely different contrast generation mechanisms
compared to attenuation-based techniques. In phase-contrast
imaging, the signal originates from the phase-shift an X-ray
wave-front undergoes when penetrating an object. As this
phase-shift is not directly accessible, a three-grating inter-
ferometer is utilized to measure the refraction angle that
is associated with the induced phase-shift. Although DPC
imaging can achieve a highly improved soft-tissue contrast
compared to attenuation-based imaging [11]–[15], the ben-
efit strongly depends on the imaging parameters [16]–[18].
Besides the differential phase-contrast signal, the aforemen-
tioned interferometer can also be used to extract the X-ray
dark-field signal [10], which is related to ultra small-angle
scattering within the object and provides information about
the microstructure far below the resolution of the imaging
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system [19], [20]. Following evidence of improved diag-
nosis and staging of emphysema in mice [21], this novel
imaging modality has attracted increasing attention in the
imaging community. Many pre-clinical studies have focused
on lung imaging since the microstructured air-tissue interfaces
generates a strong dark-field signal. Dark-field radiography
has the potential to improve the detection of emphysema
[22], pulmonary fibrosis [23] and chronic obstructive pul-
monary disease [24]. Other potential clinical applications
of X-ray dark-field imaging include foreign body detec-
tion [25], mammography [26], [27] and contrast agent
imaging [28], [29].

Significant progress has recently been made in transferring
dark-field radiography from small animal research to clinically
relevant imaging parameters, particularly with regard to sam-
ple size, field of view and X-ray energy. The technique has
been successfully demonstrated in in-vivo pig [30] and ex-vivo
human cadaver studies [24].

However, different microstructures can hardly be distin-
guished with current X-ray dark-field imaging techniques.
The detected dark-field signal only represents the total
amount of ultra small-angle scattering and thus provides no
microstructure-specific information. This problem is analo-
gous to conventional attenuation-based X-ray imaging, where
the measured attenuation does not allow an unambiguous
distinction between materials with different chemical com-
positions. Similar to attenuation-based dual-energy imaging,
valuable additional diagnostic information could be obtained
if materials could be distinguished based on differences in
their microstructure (instead of the chemical composition).
As an example, several diseases result in a decrease of the
observed dark-field signal in the lung, although the under-
lying pathological changes in the lung tissue differ [31].
In many cases, these changes are not associated with a
modified chemical composition and therefore cannot be differ-
entiated based on their spectral attenuation properties. Identi-
fying different structural changes in the lung with dark-field
chest radiography might enable a more differentiated clinical
diagnosis.

In order to overcome the aforementioned limitations of
conventional grating-based X-ray dark-field imaging, we intro-
duce a novel concept called dual-energy X-ray dark-field
material decomposition. Contrary to attenuation-based imag-
ing, the dark-field signal is not only influenced by the
chemical composition of an object (via the electron den-
sity), but also strongly depends on the properties of the
microstructure [32], [33]. Similarly to the attenuation of
X-rays, the dark-field signal has a distinct energy depen-
dency that has been shown to vary for materials with
a different microstructure [34]. In this work, we aim at
establishing a link between the structural properties of an
object and the dependency of the corresponding dark-field
signal on the photon energy. Based on these considera-
tions, we transfer the basis material decomposition approach
from attenuation-based dual-energy imaging to the dark-field
imaging modality. Finally, we validate the feasibility of
the proposed method by conducting several proof-of-concept
experiments.

II. METHODS

A. Spectral Phase-Contrast and Dark-Field Model
In conventional differential phase-contrast and dark-field

imaging, a so-called stepping curve is acquired using a
three-grating interferometer (cf. Fig. 1). Thereby, several mea-
surements with slightly transversally shifted positions of one
of the gratings are acquired. The expected intensity for each
stepping position is commonly approximated by [35]:

ŷr
i = Se−μdμ

i

(
1 + V e−εdε

i cos (φr
i + �φi )

)
, (1)

where ŷr
i is the expected intensity for pixel i and stepping

position r . The quantity dμ
i describes the thickness of an atten-

uating material in the beam path and μ its corresponding linear
attenuation coefficient. The visibility parameter V represents
the ratio of the amplitude and the mean value of the sinusoidal
stepping curve. In general, the visibility can be defined by
the maximum and minimum intensity values of an intensity
modulation:

V = ŷmax − ŷmin

ŷmax + ŷmin
. (2)

Ultra small-angle X-ray scattering on a microstructured object
reduces the visibility of the stepping curve and thus generates
a dark-field signal. Similarly to the Lambert-Beer law for the
attenuation channel, the visibility reduction compared to the
reference visibility V (without the object in the beam path) is
described by an exponential term

(
e−εdε

i

)
. The thickness of

the dark-field scatterer is given by dε
i and ε is the material’s

linear diffusion coefficient, which can be defined analogously
to the linear attenuation coefficient μ [36]. The displacement
of the stepping curve due to the refraction caused by the
sample is labeled as �φ. The reference intensity of the incident
beam is given by S and φr describes the reference phase
of the stepping curve for stepping position r . The standard
stepping curve model of eq. 1 neglects beam hardening effects
by implicitly assuming that the polychromatic X-ray spectrum
can be described by an effective energy Eeff :

S =
∫ EV

0
S(E)d E, μ = μ(Eeff), ε = ε(Eeff), (3)

where S(E) is the effective X-ray spectrum seen by the
detector and EV denotes the maximum photon energy given
by the acceleration voltage of the X-ray tube. In the context of
grating-based spectral differential phase-contrast X-ray imag-
ing, we have recently extended the standard stepping curve
model to include polychromatic effects [37]:

ŷrs
i =

∫ EV

0
Ss(E)e−μ1(E)d

μ1
i −μ2(E)d

μ2
i[

1 + V (E)e−ε(E)dε
i cos (φr

i + �φi (E))
]

d E . (4)

Compared with eq. 1, an additional index s is introduced to
indicate the different X-ray spectra used for spectral imaging.
The quantity ŷrs

i thus represents the expected intensity for the
s-th effective X-ray spectrum (including source and detector
effects), detector pixel i and stepping position r . Excluding the
presence of K-edge discontinuities within the relevant energy
range, the two material approximation [1] is used to model
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Fig. 1. Experimental set-up. The experimental measurements were conducted on a lab-bench set-up with a microfocus tube, a symmetric Talbot-Lau
interferometer and a flat-panel detector. For the calibration procedure, different thicknesses of the basis materials were mounted onto movable linear-
stages.

the attenuation of the incident spectra, where dμ1
i , dμ2

i are
the line integrals of the attenuating basis materials in pixel
i and μ1(E), μ2(E) describe the energy dependencies of the
corresponding linear attenuation coefficients. The visibility
of the stepping curve becomes an energy-dependent quan-
tity labeled as the visibility spectrum V (E). The visibility
reduction attributed to the dark-field signal is modeled by
the thickness of the scattering material dε

i and the energy
dependency of the scattering processes ε(E).

A general mathematical description of the dark-field signal
in grating-based neutron and X-ray imaging allows to relate
the visibility reduction caused by small-angle scattering to the
projected autocorrelation function G(x) [38]:

Vsca(ξ)/V (ξ) = exp
(−dεσ (E) (1 − G(ξ)

)
, (5)

where Vsca and V describe the visibility with and without
scattering structures along the beam path, respectively. The
penetrated object thickness is labeled by dε and the total scat-
tering cross-section σ(E) denotes the scattering probability
while ξ is the correlation length of the grating interferometer.
It describes the length at which correlations within the sample
are measured [32] and can be directly related to the geometri-
cal parameters of the grating interferometer. Assuming that the
sample is located between the G1 and G2 grating (compare
figure 1), the correlation length is given by:

ξ = hc

E

dS,G2

p2
, (6)

where h and c are Planck’s constant and the speed of light,
respectively. The distance between the sample and the G2
grating is denoted by dS,G2 and p2 is the period of the G2
grating. In the following, we assume that the thickness of
the sample is small compared with the inter-grating distances.
In this case, dS,G2 can be regarded as a constant, which means
that ξ and thus also the dark-field signal Vsca(ξ)/V (ξ) in eq. 5
only depend on the photon energy E .

We define the cartesian coordinate system (x, y, z) such that
the z-coordinate coincides with the beam direction. The grat-
ing bars are aligned along the y direction, which means that
the grating interferometer is sensitive to phase shifts and small

angle scattering along the x-direction (i.e., perpendicular to the
grating bars). With this definition, the projected autocorrelation
function along the beam direction is expressed as [39], [40]:

G(x) = 1

γ0

∫
γ (x, 0, z)dz, (7)

where γ0 is a normalization factor such that G(0) = 1 and
γ (x, y, z) = γ (�r) is the normalized autocorrelation function
of the electron density fluctuations of the sample:

γ (�r) =
∫

�ρel(�r ′)�ρel(�r ′ + �r)d �r ′∫
�ρel(�r ′)�ρel(�r ′)d �r ′ ,

�ρel(�r) = ρel(�r) − 〈ρel(�r)〉 . (8)

Note that in case of using a standard grating interferometer,
the real-space autocorrelation function can only be sampled in
the x-direction, i.e perpendicular to the grating bars.

According to eq. 5, the energy dependency of the dark-field
signal can be divided into two constituents: the energy depen-
dency of the scattering cross-section σ(E) ∼ 1/E2 and
the energy dependency introduced by probing the sample’s
(projected) autocorrelation function with the correlation length
ξ(E), which in turn is a function of the photon energy. The
scattering cross-section σ(E) only depends on the average
electron density within an image voxel (or pixel) and is
thus independent of the microstructure. However, the energy
dependency introduced by the correlation function G(ξ) is
specific to the microstructural properties of the object. As an
example, we consider a diluted suspension of monodisperse
microspheres. In this case, the correlation function G(ξ) can
be well approximated by [40]:

Gsphere(ξ) ≈ exp

(
−9

8

(
ξ

R

)2
)

= exp

(
−9

8
q2

)
, (9)

where the dimensionless parameter q = ξ/R gives the ratio
of the correlation length to the radius R of the spheres.

For a better visualization, Fig. 2(a) shows 1 − Gsphere(ξ)
as a function of the photon energy for three different sphere
sizes. The correlation length is calculated according to the
grating parameters listed in Table I. As illustrated in the figure,
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TABLE I
GRATING SPECIFICATIONS AND ACQUISITION PARAMETERS FOR THE EXPERIMENTAL MEASUREMENTS.

Fig. 2. Analogy between the dark-field and the attenuation signal.
The correlation function plotted against the photon energy (a) varies
depending on the ratio q between the size of a sample’s microscopic
structure R and the correlation length ξ(ED) at the design energy of the
grating interferometer. This behavior is analogous to the variation of the
energy dependency of the attenuation signal caused by materials with
different chemical composition (b).

the energy dependency of the correlation function varies for
different ratios of the correlation length and the sphere size.
This behavior is analogous to the varying energy dependency
of the attenuation caused by materials with different atomic
numbers (cf. Fig. 2(b)).

By performing a limit value consideration for sphere sizes
far larger and smaller than the correlation length of the grating
interferometer, we arrive at:

G(ξ) ≈
⎧⎨
⎩

0, for q � 1 (10)

1 − 9

8

(
ξ

R

)2

, for q < 1. (11)

Finally inserting eq. 10 and eq. 11 into the exponent of
eq. 5 and assuming approximately equally sized spheres,

we obtain:

ε(E) ∼
{

E−2, for q � 1 (12)

E−4, for q < 1, (13)

revealing a distinct variation in the energy dependency of the
dark-field signal for differently sized microspheres (compared
with the correlation length of the interferometer). Although
the considerations above only apply to samples consisting of
a homogeneous distribution of equally sized microspheres,
a generalization of the concept to arbitrary microstructures is
possible. This is due to the general properties of the correlation
function:

G(x) =
⎧⎨
⎩

0, for q � 1 (14)

] − 1, 1[ for q ∼ 1 (15)

1, for q 	 1, (16)

where parameter q is generalized to the ratio of the correlation
length and the typical structural size of the relevant microstruc-
ture. Equations 14-16 apply for microstructures that have no
long-range order. Consequently, the correlation length of a
Talbot-Lau interferometer can normally be chosen in such a
way that two differently sized microstructures within an object
show a difference in the energy dependency of the induced
dark-field signal and therefore allow for a differentiation based
on energy-resolved measurements. Based on these considera-
tions we are able to set up the following system of equations:

− ln (Vsca(E1)/V (E1)) = ε1(E1)d
ε1 + ε2(E1)d

ε2

− ln(Vsca(E2)/V (E2)) = ε1(E2)d
ε1 + ε2(E2)d

ε2, (17)

where ε1(E) and ε2(E) are the energy dependencies of two
different dark-field inducing microstructures and the loga-
rithmic visibility fractions respresent measurements with two
different photon energies E1, E2. Similar to attenuation-based
dual-energy material decomposition [1], eq. 17 can be solved
for the dark-field basis material thicknesses dε1 and dε2 .
Finally, we extend the concept for the use with polychro-
matic photon spectra by inserting eq. 17 into eq. 4, yield-
ing a generalized form of the previously introduced spectral
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phase-contrast and dark-field model:

ŷrs
i =

∫ EV

0
Ss(E)e−μ1(E)d

μ1
i −μ2(E)d

μ2
i

(1 + V (E)e−ε1(E)d
ε1
i −ε2(E)d

ε2
i cos (φr

i + �φi (E)))d E . (18)

Acquiring at least three different stepping positions with two
different photon spectra allows for a pixel-wise decomposition
of the measurements into basis material line integrals by
maximum-likelihood estimation. Assuming Poisson statistics
for the measured photon counts, this corresponds to minimiz-
ing the negative log-likelihood function:

−L(dμ1
i , dμ2

i , dε1
i , dε2

i ,�φi ) =
R∑

r=1

S∑
s=1

ŷrs
i − yrs

i ln
(
ŷrs

i

)
),

(19)

where R and S are the number of phase steps and photon
spectra, respectively. The number of photons measured in
detector pixel i at stepping position r with photon spectrum s
is denoted by yrs

i . In the following, we focus on two distinct
energy spectra (dual-energy imaging, S = 2), however similar
to attenuation-based spectral imaging, a generalization of the
model to more than two spectra is straightforward. As we
have shown in previous work [37], the phase-shift �φi can be
eliminated as an additional optimization variable by expressing
it with the attenuation basis material thicknesses dμ1

i , dμ2
i via

the projected electron density gradient. However, if one is
primarily interested in the dark-field channels, regarding �φi

as additional optimization variable makes the log-likelihood
function separable with respect to different detector pixels,
which greatly accelerates the numerical optimization. Theoret-
ical noise considerations [18] show that the dark-field channels
are only weakly coupled with the other optimization variables
(for a standard phase stepping scan). Consequently, making
the model separable only leads to a negligible increase of the
noise level for the dark-field images.

B. Empirical Model for Dark-Field Material
Decomposition

In this work, we focus on a proof-of-concept study for
dark-field material decomposition with microstructured sam-
ples that show weak attenuation and small phase shifts. In this
case, a simplified forward model for the expected visibilities
V̂ s

i,sca of the stepping curves can be employed:

V̂ s
i,sca(d

ε1
i , dε1

i ) =
∫ EV

0
Ss

N(E)V (E)e−ε1(E)d
ε1
i −ε2(E)d

ε2
i d E,

(20)

where Ss
N(E) is the normalized effective spectrum,

i.e.,
∫ EV

0 Ss
N(E) = 1. Knowledge of the photon spectra Ss(E),

the visibility spectrum V (E) and the energy dependencies
of the scattering materials ε1(E), ε2(E) allows the dark-field
basis material line integrals dε1, dε2 to be calculated by
comparing the forward model with the measured visibilities
V s

i . However, an accurate experimental determination of
these quantities is challenging. In recent years, several
empirical forward models that are tuned by calibration

measurements have been developed for attenuation-based
spectral X-ray imaging. This strategy circumvents the problem
of determining the source spectrum and the detector response,
which can be particularly challenging for photon-counting
detectors. Owing to the mathematical similarity between
the visibility reduction in eq. 20 and the polychromatic
Lambert-Beer law, it is possible to adapt an existing empirical
polynomial-based forward model [41] (originally developed
for attenuation-based spectral imaging) for dark-field material
decomposition. Thereby, the visibility reduction measured for
photon spectrum s in pixel i is modeled by:

V̂ s
i,sca/V s

i = exp
(
−Ps

i (dε1
i , dε2

i ; �cs
i )

)
, (21)

where Ps
i (dε1

i , dε2
i ) is a second-order rational function of

the basis material thicknesses with the fit coefficients �c s
i =

(cs
0, . . . , cs

7)
T :

P(dε1
i , dε2

i )

= c0 + c1dε1
i + c2dε2

i + c3(d
ε1
i )2 + c4(d

ε2
i )2 + c5dε1

i dε2
i

1 + c6dε1
i + c7dε2

i

,

(22)

where the indices s and i of the coefficients �c s
i have been

omitted for convenience. The fit parameters �c s
i are determined

by a least-square fit to the calibration measurements:

�c s
i = arg min

K∑
k=1

wk
(
ls
ik−P

(
dε1

i , dε2
i ; �c s

i

))2
, (23)

where ls
ik = − ln

(
V s

ik,sca/V s
i

)
is the negative logarithm of

the visibility reduction measured for calibration point k and
the weights wk consider the statistical uncertainty of the corre-
sponding measurements. After determining the parameters �c s

i ,
the calibrated empirical forward model (cf. eq. 21) can be used
to decompose dual-energy visibility measurements of a sample
into the dark-field basis material line integrals dε1

i , dε2
i . Assum-

ing a Gaussian noise distribution for the measured visibilities,
this corresponds to minimizing the following log-likelihood
function:

−L(dε1
i , dε2

i ) =
2∑

s=1

1

2(σ s
i )2

(
V̂ s

i,sca(d
ε1
i , dε2

i ) − V s
i,sca

)2
, (24)

where (σ s
i )2 is the variance of the extracted visibility for pixel

i and spectral measurement s. The variance of the visibility
is proportional to the total number of photon counts for the
corresponding stepping curve measurement [18].

C. Theoretical Noise Analysis
In the case of attenuation-based dual-energy X-ray imag-

ing, noise amplification during material decomposition is a
well-known problem that can limit the usability of basis
material images [42]. Owing to the mathematical similar-
ity of dual-energy imaging based on the attenuation and
the dark-field signal, the same effect could be expected for
dual-energy dark-field material decomposition. Based on the
Cramér-Rao lower bound (CRLB) [43], we conduct a theo-
retical noise analysis to investigate the noise characteristics
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of dark-field material decomposition. We focus on the sim-
plified dark-field material decomposition model that neglects
attenuation and phase shifts. The noise properties of the full
spectral phase-contrast and dark-field model (eq. 18) will be
investigated in future work. To facilitate the interpretation of
the results, we use the physical forward model of eq. 20,
however, the subsequent noise analysis is also applicable to
the empirical forward model of eq. 21.

The CRLB is a powerful tool from estimation theory that
allows the prediction of a lower limit for the variance of
an unbiased estimator. Applied to the estimation problem of
eq. 24, the Cramér-Rao inequality states that:

σ 2(dεu ) ≥
(

F−1
)

uu
, u ∈ (1, 2), (25)

where σ 2 (dε j ) is the variance of the decomposed thickness for
dark-field basis material j and

(
F−1

)
uu is the corresponding

diagonal element of the inverse Fisher matrix. To simplify
the notation, we have omitted the pixel index i . The Fisher
information matrix is defined as the expectation value of the
curvature of the negative log-likelihood function:

Fuv =
〈−∂2L(dε1, dε2)

∂dεu ∂dεv

〉
. (26)

Analogous to the derivations for spectral X-ray imaging [18],
[44], the elements of the Fisher matrix can be expressed as:

Fuv =
2∑

s=1

1

(σ s)2

(
V̂ s

sca

)2
ε̄s

u ε̄s
v ≡

2∑
s=1

J s ε̄s
u ε̄s

v , (27)

where ε̄s
u is the weighted average of the linear diffu-

sion coefficient for dark-field basis material u and spectral
measurement s:

ε̄s
u =

∫ EV

0
θ s

N(E)εu(E)d E . (28)

The weighting function θ s
N(E) is the normalized effective

amplitude of the stepping curve:

θ s
N(E) = Ss

N(E)V (E)e−ε1(E)dε1−ε2(E)dε2∫ EV
0 Ss

N(E ′)V (E ′)e−ε1(E ′)dε1−ε2(E ′)dε2 d E ′ . (29)

After analytical inversion of the 2 ×2 Fisher matrix, the diag-
onal elements of the inverse Fisher matrix (and thus the lower
limits for the variances according to eq. 25) can be written as:

(
F−1

)
uu

=
(

ε̄2
u

ε̄2
j

− ε̄1
u

ε̄1
j

)−2 2∑
s=1

1

J s
(
ε̄s

j

)2 , (30)

where j = 2 if u = 1 and j = 1 if u = 2. In case of
a standard phase stepping with equally distributed stepping
positions, the variance of the extracted visibilities is given by:1(

σ s)2 = (
gys

T

)−1
, (31)

1This result can for example be derived by replacing the factor Q =
be−μV e−ε in equation (25) of reference [18] by Q = be−μ . Since we are
interested in the variance of the measured visibility instead of the variance
of ε that was analyzed in reference [18], the optimization variable has to be
changed from ε to V e−ε , which leads to a different definition of the factor Q.

where ys
T = ∑

r ŷrs is the total number of photon counts
that were measured when acquiring the stepping curve. The
factor g ≈ 0.5 slightly varies with the number of stepping
positions and the visibility of the stepping curve. Combining
eq. 27 and eq. 31, variable J s can be expressed as J s =
gys

T

(
V̂ s

sca

)2
. The first term in eq. 30 shows that the variance

of the decomposed thicknesses depends quadratically on how
much the ratio of the average linear diffusion coefficients for
the two basis materials differs for the low- and high-energy
spectrum. Similar to attenuation-based dual-energy imaging,
this term explains the importance of good spectral separation
to achieve low noise levels. Furthermore, as can be seen
from the factor J s , the variance is inversely proportional
to the number of photon counts and the squared visibil-
ity of the stepping curve. By replacing the average linear
diffusion coefficients with average linear attenuation coeffi-
cients and defining J s = ys

T, the formula of eq. 30 can
also be applied to standard, attenuation-based dual-energy
imaging. The energy-dependent attenuation generally varies
more strongly between different elements than ε(E) varies for
different microstructures. Consequently, the first term of eq. 30
will be larger for dark-field material decomposition compared
with standard dual-energy material decomposition. It can thus
be expected that the problem of noise amplification will be
more severe for dual-energy dark-field material decomposition.
The additional inverse proportionality to the squared visibility
V̂ s

sca for dark-field material decomposition is another reason
for increased noise levels compared to standard dual-energy
imaging.

D. Experimental Measurements
1) Experimental Set-up: The experimental measurements

were performed at a stationary, lab-bench CT setup consisting
of an X-ray tube, a flat-panel detector and several positioning
devices. The statically mounted X-ray source (XWT-160-CT,
X-RayWorX, Garbsen, Germany) is a micro-focus tube with a
tungsten reflection target and a 2 mm thick beryllium window.
The data acquisition was performed with a flat-panel detector
(PaxScan4030CB, Varex Imaging, Salt Lake City, Utah) with
a 600 μm thick caesium iodide (CsI) scintillator and an active
area of 2048x1536 pixels. The detector pixels have a native
pixel size of 194 μm resulting in a maximum field of view of
40x30 cm2. The specifications of the grating interferometer are
listed in Table I. The phantoms used for calibrating the forward
model were mounted on linear stages between the G1 and G2
grating, at a distance of 46.25 cm in front of the G2 grating.
In order to determine the energy dependency of the dark-field
signal induced by different materials, an X-ray spectrometer
(Amptek X-123CdTe, AMETEK Inc., Berwyn, Pennsylvania,
USA) was placed at the position of the flat-panel detector.
The spectrometer has a cadmium telluride (CdTe) sensor with
a thickness of 1 mm and an active area of 25 mm2. A graphical
overview of the experimental set-up is displayed in Fig. 1.

2) Sample Preparation: In a first experiment, we performed
spectroscopic measurements of two materials with a differently
sized microstructure: polyurethane (PU) foam (PORON
4701-30; manufacturer: Rogers Corporation, Chandler,
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TABLE II
INVESTIGATED MATERIALS AND CORRESPONDING ENERGY DEPENDENCY OF THE DARK-FIELD SIGNAL. THE EXPONENT REFERS TO THE MEAN

VALUE OF THE EXPONENTS DETERMINED IN THREE INDEPENDENT MEASUREMENTS. THE UNCERTAINTY OF THE LISTED VALUES GIVES THE

STANDARD DEVIATION OF THE OBTAINED EXPONENTS.

Arizona, USA) and hollow glass micro-bubbles (im16K;
manufacturer: 3M, Neuss, Germany). The cell size range of
the PU foam and the average diameter of the micro-bubbles
as provided by the manufacturer are listed in Table II. After
evaluating the variation in the energy-dependent dark-field
signal, the two materials were prepared for calibrating the
proposed forward model (cf. eq. 22). The polyurethane foam
was cut into sheets and stacked to five different thicknesses
(0 - 2.12 cm). The different stacks were then attached to an
aluminum frame that was mounted onto a linear stage. The
im16K powder was filled into five cuboid plastic containers
with different thicknesses (0 - 0.2 cm) and attached to
a second aluminum frame mounted onto another linear stage.
This arrangement of two movable calibration phantoms allows
various thickness combinations of the two materials to be
measured.

For the last experiment, we designed an imaging phan-
tom consisting of the two basis materials PU and im16K.
We drilled several cylindrical holes into a stack of four PU
sheets (with a total thickness of 9.44 mm) to form the letters
“TUM” and filled the holes in one of the four PU sheets
with im16K powder. Some of the removed PU cylinders
were randomly distributed on the suface of the uppermost
PU sheet. Moreover, we drilled additional cylindrical holes
in the topmost sheet of PU without filling them with the
im16K powder. The last two steps ensure that the two materials
cannot be unambiguously distinguished in the conventional
dark-field images. The imaging phantom was placed at the
same location as the calibration phantoms in order to ensure
the same correlation lengths (as a function of the X-ray energy,
see eq. 6) for all measurements.

3) Acquisition Parameters and Signal Extraction: The energy
dependency of the dark-field signal for the two basis materials
was determined using an X-ray spectrometer. In doing so,
a 10 mm thick sheet of PU and a plastic container with
a thickness of 2.5 mm that was filled with im16K powder,
were placed in the beam path, respectively. The X-ray tube
was operated at 140 kVp peak voltage. The source power
was set to a rather low value of 2 W to keep the dead-time
of the spectrometer within the range recommended by the
manufacturer. One of the gratings was periodically shifted and
a spectrum was acquired for each stepping position of the
grating. The measured spectra were used to generate a stepping
curve for each energy bin acquired with the spectrometer.
By performing phase retrieval [45] for each of those stepping
curves, the visibility spectra with and without sample in
the beam were obtained and the energy-dependent dark-field
signal was calculated. The process was repeated three times to
provide sufficient statistical significance of the acquired data.

To calibrate the empirical forward model (cf. eq. 23) and the
sample measurement using the flat-panel detector, we gener-
ated two different photon spectra by adjusting the tube voltage
(to 50 kVp and 80 kVp) and filtering the high-energy spectrum
with a molybdenum (Mo) foil (cf. Fig. 3(c)). We performed a
phase stepping with 7 equidistantly distributed stepping posi-
tions for all calibration points and the sample measurement,
followed by a pixel-wise signal extraction for both photon
spectra. The corresponding acquisition parameters are listed
in Table I.

III. RESULTS

A. Energy Dependency of the Dark-Field Signal
We determined the energy dependency of the linear diffu-

sion coefficients ε(E) for the two basis materials as (compare
eq. 17):

ε(E) = − ln (Vsca(E)/V (E)), (32)

where Vsca(E) and V (E) represent the visibility spectra that
were extracted from the spectroscopic measurements with and
without the sample in the beam path, respectively. Figure 3a
exemplarily shows the measured visibility spectra that were
used to determine ε(E) for the PU sample.

Based on the considerations presented in section II-A
(cf. eq 12 and eq. 13), we fitted a power-law dependency
of the form ε(E) = cE−x to the calculated linear diffusion
coefficients that are displayed in Fig. 3(b). Owing to the high
transmittance of the absorption gratings around the K-edge of
gold, the reference visibility is strongly reduced around 80 keV
which results in a poor signal-to-noise ratio of the extracted
data in the corresponding range. Therefore, we restricted the
fitting range from 30 to 60 keV. The obtained fit coefficients
for the exponent x are listed in Table II. The coefficient c
does not affect to the energy dependency as its only a scaling
factor depending on the general signal strength and the sample
thickness.

B. Decomposition Accuracy
To evaluate the quantitative accuracy of the proposed empir-

ical dark-field material decomposition algorithm, we per-
formed a series of dual-energy dark-field measurements.
By measuring all possible thickness combinations of the two
calibration phantoms, we obtained 25 measurements of the
dark-signal for both the low and high energy spectrum.

Figure 3(d) shows the average low and high energy
dark-field log signals (− ln

(
V s

sca/V s
)
). Although the

dark-field measurements were performed with two well
separated X-ray spectra (see Fig. 3(c)), the measured log
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Fig. 3. Energy dependency of the dark-field signal. The energy dependency of the dark-field signal of different materials was determined by
spectroscopic measurements of the visibility spectra (a) with and without the sample in the beam path (exemplarily displayed for the PU sample).
The resulting dark-field signals of im16K and PU (b) reveal a different energy dependency of the two materials. Although the dark-field measurements
of the two materials were performed with two well separated photon spectra (the simulated spectra are shown in c), the ratio of the measured log
signals differs only slightly between the two dark-field basis materials (d). For a better comparability with attenuation-based dual-energy imaging,
the simulated attenuation log signals (using bone and soft tissue as basis materials) are also displayed in (d).

signals lie almost on a straight line. This means that the ratio
of the low and high energy log signals varies only slightly
for the two basis materials, which is explained by the similar
energy dependency of the corresponding linear diffusion
coefficients (ε(E) ∝ E−3.89 and ε(E) ∝ E−2.70 for PU and
im16K, respectively). For comparison purposes, Fig. 3(d)
also shows the simulated log signals for the attenuation
channel that would have been obtained if the same calibration
measurement was performed with bone and soft tissue as
basis materials. In this case, the ratio of the log signals varies
more strongly. This can be explained by the larger differences
between the energy-dependent attenuation coefficients of bone
and soft tissue compared with the linear diffusion coefficients
of PU and im16K.

As illustrated in Fig. 4(a), half of the points were used to
calibrate the empirical forward model (cf. eq. 23), while the
remaining data points were decomposed into basis material
line integrals. The points marked with crosses had to be
excluded from the evaluation as intensity fluctuations of the
X-ray tube during the measurement corrupted the acquired
data points. Since the noise level turned out to be too high to
reliably determine the fit coefficients �c s

i of the empirical for-
ward model (eq. 21) individually for each pixel, we averaged
the extracted visibilities V̂ s

i,sca and fitted a common rational
function Ps

(
dε1

i , dε2
i ; �c s) (see eq. 21) for all detector pixel.

However, the decomposition into basis material thicknesses
according to eq. 24 was performed individually for each
pixel. The mean of the decomposed thickness values over all
detector pixels is shown as a scatterplot in Fig. 4(b) alongside
the corresponding ground truth values. Figures 4(c) and 4(d)
show lineplots of the mean decomposed PU and im16K

thicknesses as a function of the test point index together with
the corresponding ground truth values. Moreover, the average
deviations from the true thicknesses are displayed. The average
deviation of the decomposed thicknesses values is given by:

�d
ε j
k = 1

M

M∑
i=1

(d
ε j
ik − D

ε j
k ), j ∈ (1, 2), (33)

where M is the number of detector pixels and d
ε j
ik is the

decomposed thickness value for the j -th dark-field basis
material, pixel i and calibration point k. The corresponding
true thickness values are denoted by D

ε j
k .

Although the decomposed thickness values qualitatively
match the corresponding ground truth values, quantitative
deviations can be observed for all test points. The observed
deviations range from −0.11 mm to 0.14 mm for im16K
and −0.51 mm to 0.38 mm for PU, where the relative error
is higher for im16K than for PU. For both materials the error
is relatively constant over all test points and only slightly
depends on the corresponding line integral thicknesses.
Furthermore the observed deviations exhibit an anti-correlated
behavior between the two materials (cf. Fig. 4(b)).

C. Sample Decomposition
Figures 5(a) and (b) show the conventional dark-field images

of the imaging phantom for the low and high energy spectrum,
respectively. The green arrow in figure 5(a) exemplarily high-
lights the location of the holes that were filled with im16K
powder to form the letters “TUM”, whereas the blue and
orange arrows highlight empty holes and additional PU cylin-
ders that were placed on top of the PU sheets, respectively.
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Fig. 4. Decomposition accuracy. The quantitative accuracy of the decomposed line integral values was evaluated using a test grid (a) of different
thickness combinations that were left out for the calibration of the empirical forward model. The thickness combinations marked with a cross were
excluded from both the calibration and test grid owing to intensity fluctuations of the X-ray source during the acquisition of the data points. The
average decomposed thicknesses are shown in (b) and the deviations from the corresponding ground truth values are plotted for im16K (c) and PU
(d), respectively, where the test point index traverses the test grid (a) from left to right and then from bottom to top.

Due to the diminishing contrast, the pattern resulting from
the holes filled with im16K powder can hardly be distin-
guished from the other structures in the two conventional
dark-field images in Fig. 5(a,b). Figures 5(c) and 5(d) show the
decomposed basis material images of PU and im16K, respec-
tively. Despite the strongly increased noise levels, the basis
material images provide a clear separation of PU and im16K
revealing the letters “TUM”. Owing to the high noise level
the holes through just one slice of PU and the additional
PU structures on top of the phantom can hardly be dis-
tinguished from the background (cf. blue and orange arrow
in Fig. 5(d)).

IV. DISCUSSION

The spectroscopic measurements of the dark-field signal
for PU and im16K demonstrate that the microstructure of the
object influences the energy dependency of the dark-field sig-
nal. The observations are in agreement with eq. 12 and eq. 13,
which predict that the linear diffusion coefficient ε(E) falls off
more quickly for larger microstructures. Although eq. 12 and
eq. 13 are only valid for a diluted suspension of microspheres,
the general trends (cf. eq. 14- 16) also apply to more complex
microstructures. The differences in the energy dependencies
of the dark-field signals induced by the two basis materials
PU and im16K are smaller compared to attenuation-based
imaging. Consequently, there is also a smaller difference in the
ratio of the log signals measured for the two dark-field basis
materials (cf. green crosses in Fig. 3(c)), even for the two well
separated photon spectra that were used in the dual-energy
dark-field measurements. Together with the theoretical
noise analysis in section II-C, this explains the rather low
signal-to-noise ratio (SNR) of the dark-field basis material

images in Fig. 5. Noise amplification and a degradation
of the SNR during material decomposition are well-known
problems for attenuation-based dual-energy imaging. Owing
to the mathematical similarity between dark-field and
attenuation-based material decomposition, the same behavior
can be expected for dual-energy dark-field imaging. However,
the smaller differences in the energy-dependent dark-field
signal aggravate the degradation of the SNR, since the
SNR is directly proportional to how much the ratio of the
average linear diffusion coefficients for the low and high
energy spectrum differs between the two basis materials
(compare eq. 30). Although the exact relation depends on
the projected autocorrelation function, one could normally
expect that the energy-dependent linear diffusion coefficients
are more similar for microstructured materials with similar
length scales. Consequently, it can generally be expected that
the noise level of the decomposed images rises as the size
difference between the microstructures decreases. Besides
increasing the spectral separation, the SNR for a particular
dark-field decomposition task can be improved by tuning
the interferometer parameters to achieve a correlation length
that maximizes the difference between the energy-dependent
linear diffusion coefficients of the microstructured materials.
The mathematical similarities between attenuation-based and
dark-field dual-energy imaging suggest a high efficiency of
denoising algorithms, which have originally been developed
for attenuation-based dual-energy data [41], [42]. In the
future, we plan to analyze the noise characteristics of
dual-energy dark-field imaging in more detail (especially
in combination with the full forward model of eq. 18) and
investigate the viability of existing dual-energy denoising
techniques.
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Fig. 5. Sample decomposition. In the conventional dark-field signal
acquired with the low (a) and high (b) energy spectrum, the PU and im16K
structures cannot be distinguished properly owing to the diminishing
contrast. The basis material images, however, provide a clear separation
between PU (c) and im16K (d). Further details on the test phantom are
given in the text.

The evaluation of the decomposition accuracy (cf. Fig. 4)
shows that quantitative thickness values can be retrieved
reliably utilizing the calibration-based dark-field material
decomposition approach. However, the achieved quantitative
accuracy is inferior to results for attenuation-based material
decomposition methods relying on empirical forward models
[46], [47]. In our experiments, this can be attributed at least
partly to inaccuracies in the line integral values of the calibra-
tion and test-grid. An evaluation of the conventional attenua-
tion images revealed a fluctuating filling density of the im16K
powder in the different plastic containers. This leads to slightly
inconsistent input data for the calibration of the forward model
as well as the ground truth values of the test-grid. This assump-
tion is supported by the fact that the decomposed im16K
values tend to exhibit higher deviations compared to PU, which
consists of homogeneous sheets with well-defined thicknesses.

The measurement of the imaging phantom (cf. Fig. 5)
demonstrates that contributions of different materials to the
dark-field signal can be clearly separated and that spatial
information about the distribution of different microstruc-
tures can be obtained. Moreover, similar to attenuation-based
dual-energy imaging, the basis material images provide addi-
tional quantitative information compared to the conventional

Fig. 6. Influence of the sample position on the correlation function.
Due to the position dependency of the correlation length, the energy
dependency of the correlation function is varying as a function of the
position of the scattering structure along the interferometer axis.

dark-field images. For radiography applications, quantitative
line integral values are obtained, whereas an extension of
the method to computed tomography imaging would allow
to quantify the volume fractions of different microstructured
materials.

We believe that the proposed concept of dual-energy
dark-field material decomposition could enhance the current
performance and extend the capabilities of grating-based
dark-field imaging. Especially dark-field chest radiography
might benefit from the material decomposition approach.
Dark-field chest radiography potentially allows the severity of
pathological changes of the lung tissue to be staged with a
relatively low radiation dose (compared to chest CT), but the
information on the type of the underlying pathological changes
is still limited. The combination of dark-field chest radiog-
raphy with the proposed material decomposition approach
might provide valuable quantitative information, thus enabling
a more differentiated diagnosis.

The presented results are a proof-of-concept demonstration
of dual-energy dark-field material decomposition. The per-
formed experiments involve simplifications that do not fully
reflect the conditions of a real diagnostic application. In our
experiments, the thickness of the samples was small compared
with the inter-grating distances. In this case, the position
dependency of the dark-field signal (via the correlation length,
see eq. 6) can be neglected. However, for object thicknesses
comparable to the inter-grating distances, the dark-field signal
becomes a function of both the X-ray energy and the position
along the beam path. To assess the influence of this effect
in a potential chest radiography application, we evaluate the
correlation function of two different microstructures at various
positions along the interferometer axis. We assume that the
microstructures consist of two differently sized microspheres
R1, R2 and calculate the correlation function according to
eq. 9. The resulting energy dependency of the correlation
function at different positions with respect to the center of G1
and G2 is shown in Fig. 6. The extension of the sample from
the center position was chosen to be ±10 cm according to a
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representative thickness of a human thorax in sagittal direction.
Owing to the position dependency of the correlation length,
the correlation function and hence the energy dependency of
the dark-field signal vary as a function of the sample position.
Instead of a distinct energy dependency, an effective energy
dependency consisting of the contributions from different posi-
tions along the interferometer axis is obtained. While the influ-
ence might average out for symmetrical objects, especially in
case of a highly inhomogeneous distribution of the scattering
microstructures within the sample, a bias might be introduced
to the decomposed line-integral values. In cases where the
energy dependencies of the linear diffusion coefficients of the
two microstructures are very similar, the additional position
dependency might cause an overlap of the two functions and
thus make an unambiguous decomposition impossible. There-
fore, in a potential clinical application, the ratio of the sample
thickness and the inter-grating distance should always be
minimized by an appropriate interferometer design. However,
it must be noted that a strongly elongated interferometer design
also might increase the requirements to the source flux and/or
the detector size. A strategy of solving this problem would
be to extend the method to computed tomography. In doing
so, iterative reconstruction techniques would allow the posi-
tion dependency of the linear diffusion coefficients ε1,2(E)
to be considered during the forward projection step of the
reconstruction. However, such an implementation would also
require the utilization of the analytical spectral phase-contrast
and dark-field model (cf. eq. 18). In case of chest radiography,
respiratory motion (even while holding one’s breath) could
influence the size of the underlying microstructure (e.g., size of
alveoli) and thereby induce changes to the energy dependency
of the dark-field signal. In addition to the position dependency
mentioned above, this could introduce a variation of the
energy dependency of the dark-field signal as a function of
time. To minimize the impact of respiratory motion on the
dark-field signal, the acquisition time needs to be kept as
short as possible. Hence, in clinical applications, the usage
of a rapid kVp-switching X-ray source or a photon-counting
detector might be necessary to obtain the spectrally resolved
measurements required for dark-field material decomposition
within a short time interval.

The attenuation caused by the scattering materials which
were evaluated in the study (cf. Fig. 2(d)) is very low and the
impact of beam-hardening can be neglected.

However, especially for larger objects, beam-hardening
would alter the measured dark-field signals depending on the
absorber thickness in the beam path. In this case, a calibration
that only relies on the scattering basis materials would be
insufficient. In order to take the impact of beam-hardening
into account, one would either have to use the full spectral
phase-contrast and dark-field model given in eq. 18 or involve
equivalent absorbers when calibrating the empirical forward
model. Using the full forward model requires the knowl-
edge of the effective spectrum and the visibility spectrum,
which are challenging to determine with high accuracy. An
appropriate extension of the presented empirical approach
would drastically increase the effort for the calibration process.
For each dark-field calibration point, the measurement of
various equivalent absorber thicknesses would be required.

Both approaches should be evaluated with respect to their
practical feasibility in future studies.

The measured phantoms were mostly homogeneous and did
not exhibit strong electron density gradients. In case of a
more inhomogeneous sample, sudden changes in the projected
electron density can result in phase-wrapping. In theory, phase
wrapping alone would not influence the proposed imaging
approach, since the dark-field signal is independent of the
phase shift of the stepping curve (even if it exceeds the
standard 2π interval). However, phase wrapping is typically
associated with large electron density gradients, which can
generate artificial dark-field signals via the “phase shift dis-
persion” effect [48]. This effect could be considered with the
full dark-field material decomposition model of eq. (18). For
this reason, we assume weak attenuation and small phase shifts
for the validity of the simplified decomposition model that is
discussed in section 2.B.

In attenuation-based dual-energy imaging (and in the
absence of K-edge discontinuities) the energy-dependent atten-
uation of any material can be modeled by linear combinations
of only two basis functions (e.g., photoelectric absorption and
Compton scattering). To some extent, it might also be possible
to model the energy-dependent linear diffusion coefficient
ε(E) of an arbitrary microstructure by a linear combination of
two basis functions. However, ε(E) depends on the electron
density distribution of the microstructure (via the autocor-
relation function), which is highly material specific [40].
The well-known dual-energy basis material approximation can
thus not be transferred to dark-field material decomposition.
In contrast to attenuation-based dual-energy imaging, accurate
linear transformations between different basis material repre-
sentations are therefore not possible. Nevertheless, similar to
attenuation-based dual-energy material decomposition, a third
dark-field inducing material, with different structural prop-
erties than the two basis materials would be modeled by a
linear combination of the basis materials. However, it can be
expected that the approximation error would be higher.

V. CONCLUSION

In this work, we introduced the concept of dual-energy
X-ray dark-field material decomposition and experimentally
demonstrated the method’s feasibility. Our proof-of-concept
study shows that quantitative dark-field basis material line
integral values can be obtained by exploiting differences in
the energy-dependent dark-field signals. This indicates the
potential of dark-field material decomposition to become a
powerful tool for the quantification and differentiation of
microstructures within an object. In future applications, this
information could be used, for example, to characterize struc-
tural changes in the lung parenchyma and thereby allow
a more differentiated diagnosis of lung diseases in chest
radiography. As the experimental evaluation included a lot
of simplifications, the applicability of the method for clinical
diagnosis needs to be further investigated in future studies.
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