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Abstract— Optical Coherence Tomography Angiogra-
phy (OCTA) is a non-invasive imaging technique that has
been increasingly used to image the retinal vasculature
at capillary level resolution. However, automated segmen-
tation of retinal vessels in OCTA has been under-studied
due to various challenges such as low capillary visibil-
ity and high vessel complexity, despite its significance in
understanding many vision-related diseases. In addition,
there is no publicly available OCTA dataset with manu-
ally graded vessels for training and validation of segmen-
tation algorithms. To address these issues, for the first
time in the field of retinal image analysis we construct
a dedicated Retinal OCTA SEgmentation dataset (ROSE),
which consists of 229 OCTA images with vessel annota-
tions at either centerline-level or pixel level. This dataset
with the source code has been released for public access
to assist researchers in the community in undertaking
research in related topics. Secondly, we introduce a novel
split-based coarse-to-fine vessel segmentation network for
OCTA images (OCTA-Net), with the ability to detect thick
and thin vessels separately. In the OCTA-Net, a split-based
coarse segmentation module is first utilized to produce a
preliminary confidence map of vessels, and a split-based
refined segmentation module is then used to optimize the
shape/contour of the retinal microvasculature. We perform
a thorough evaluation of the state-of-the-art vessel seg-
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mentation models and our OCTA-Net on the constructed
ROSE dataset. The experimental results demonstrate that
our OCTA-Net yields better vessel segmentation perfor-
mance in OCTA than both traditional and other deep learning
methods. In addition, we provide a fractal dimension analy-
sis on the segmented microvasculature, and the statistical
analysis demonstrates significant differences between the
healthy control and Alzheimer’s Disease group. This consol-
idates that the analysis of retinal microvasculaturemay offer
a new scheme to study various neurodegenerativediseases.

Index Terms— Optical coherence tomography angiogra-
phy, vessel segmentation, deep network, benchmark.

I. INTRODUCTION

THE vasculature is an essential structure in the retina,
and its morphological changes can be used not only

to identify and classify the severity of systemic, metabolic,
and hematologic diseases [1], but also to facilitate a bet-
ter understanding of disease progression, and assessment of
therapeutic effects [2]. Color fundus is the most commonly
used retinal imaging technique: however, it is difficult with
this method to capture microvasculartures (thin vessels and
capillaries), which are surrounded in the fovea and parafovea
regions, as shown in the green rectangle area of Fig. 1 (A).
Fluorescein angiography and indocyanine green angiography
can resolve the retinal vasculature including capillaries, but
they are invasive techniques and may cause severe side effects
and even death [3].

In contrast, Optical Coherence Tomography Angiogra-
phy (OCTA) is a newly emerging non-invasive imaging tech-
nique, with the ability to produce high-resolution 3D images
of the retinal vasculature, and has been increasingly accepted
as an invaluable imaging tool to observe retinal vessels [4],
[5]. By means of OCTA imaging technology, such as the
RTVue XR Avanti SD-OCT system (Optovue, Inc, Fremont,
California, USA), equipped with AngioVue software (version
2015.1.0.90), en face images of retinal vascular plexus at
different depths can be generated by using the maximum
projection of OCTA flow signals within specific slabs. Fig. 1
(B-D) show superficial vascular complexes (SVC), deep vas-
cular complexes (DVC), and the inner retinal vascular plexus
that includes both SVC and DVC (SVC+DVC). In brief,
the SVC extended from 3 μm below the internal limiting
membrane (ILM) to 15 μm below the inner plexiform layer
(IPL): the DVC extended from 15 to 70 μm below the IPL;
and the inner retina extended from 3 μm beneath the ILM
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Fig. 1. Illustration of the macula in color fundus image and fovea-centred
(green rectangle area) 3×3 mm2 OCTA images of the same eye: (A) color
fundus, (B) superficial vascular complexes (SVC), (C) deep vascular
complexes (DVC), and (D) the inner retina vascular plexus including both
SVC and DVC (SVC+DVC).

to the outer boundary of the outer plexiform layer [6]. These
plexuses were distinguished and separated automatically, using
the proprietary tool supplied with the device. OCTA enables
observation of microvascular details down to capillary level,
permitting quantitative assessment of the microvascular and
morphological vessel structures in the retina.

By extracting microvascular structures from different OCTA
depth layers, one can obtain their corresponding en face
projections to analyze their respective variations. In particular,
the microvasculature distributed within the parafovea is of
great interest, as any abnormality there often indicates the
presence of some diseases such as early stage glaucomatous
optic neuropathy, diabetic retinopathy, and age-related macula
degeneration [7]–[11]. More recently, several studies have
shown that the morphological changes of microvasculature
revealed by OCTA are associated with Alzheimer’s Disease
and Mild Cognitive Impairment [12], [13]. A new avenue is
thereby opened up to study the relation between the appear-
ance of retinal vessels and various neurodegenerative diseases.
Thus, automatic vessel detection and quantitative analysis of
OCTA images are of great value for the early diagnosis of
vascular-related diseases affecting retinal circulation, and the
assessment of disease progression. However, automated vessel
segmentation in OCTA images has been explored only rarely,
and remains a challenging task, despite the fact that many
medical segmentation approaches - particularly deep learning
based techniques [14], [15] - have achieved great success in
segmenting blood vessels.

There is no publicly available OCTA dataset with manual
vessel annotations, which hinders the further validation of
OCTA segmentation techniques. To our best knowledge, only
a few automated methods have been developed to segment
the retinal vessels from OCTA images based on fully auto-
matic thresholding schemes, such as the methods proposed in
[16]–[20]. Recently, several deep learning-based methods were
developed for vessel segmentation in OCTA images, and
each using its own private OCTA dataset. For instances,
Eladawi et al. [8] proposed an automatic method on 47 OCTA

Fig. 2. Comparison of two OCTA images with different scan modes of
3 × 3 mm2 (in top row) and 6 × 6 mm2 (in bottom row), respectively.
Columns 1 to 3 respectively show the original OCTA images, manually
annotated vessel networks by experts, and zoomed image patches of
the same size (0.5 × 0.5 mm2) in both scans.

images. Zhang et al. [11] set up the first 3D OCTA microvas-
cular segmentation approach to directly extract 3D capillary
networks from OCTA volume data for subsequent shape
modeling and analysis. However, they mainly evaluated the
test re-test reliability of their 3D framework on 360 OCTA
volume images, as there were no manually annotated 3D vessel
networks available. Mou et al. trained a deep network [1] with
30 OCTA images, but the small dataset used suggests that
this method may not be universally applicable across different
pathological scenarios. Li et al. [21] more recently introduced
an image projection network that can achieve 3D-to-2D vessel
segmentation: they evaluated their method on 316 OCTA
images. Although these methods achieve usable segmentations
for OCTA vessel analysis, the privacy of their datasets makes
a unified evaluation benchmark impossible.

In addition, Eladawi [8] and Li et al. [21] set up their
segmentation frameworks based on the OCTA data within a
6 × 6 mm2 fovea-centered field of view (FOV). It is worth
noting that the scan density for the 3 × 3 mm2 is higher
than that for the 6 × 6 mm2 scans [22], 6 × 6 mm2 scans
has relatively wider area of scan coverage, and is more like
to detect the presence of pathological features, e.g., microa-
neurysms and non-perfusion. By contrast, the 3 × 3 mm2

protocol has a higher scan resolution, and thus is able to
delineate the foveal avascular zone (FAZ) and capillaries
more clearly than 6 × 6 mm2 scans. Previous findings by
Zhang et al. [11] have shown that small capillaries play a
much more important role in distinguishing different disease
groups compared with relatively large vessels. It is therefore
necessary to established a dedicated OCTA dataset focusing
on more detailed capillary networks within a 3×3 mm2 FOV,
and is the main motivation we construct our ROSE dataset.
Fig. 2 demonstrates a comparison between 3 × 3 mm2 and
6×6 mm2 FOVs. We may clearly observe the richer capillary
information graded by experts from the 3 × 3 mm2 scans,
while 6 × 6 mm2 scan has wider FOV but poorer delineation
of microvascular. Therefore, the proposed OCTA-Net will be
fully evaluated using the well-established 3 × 3 mm2 OCTA
dataset for more detailed microvascular study.
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The OCTA imaging process typically produces images with
a low signal-to-noise ratio (SNR) [5]. Additionally, varying
vessel appearances at different depth layers, projection [23],
[24], motion and shadow artifacts [25]–[29], and the poten-
tial existence of pathologies [11] increase the challenge for
achieving accurate segmentations, particularly for densely
connected capillaries, which can easily result in discontinuous
segmentations. Most deep learning-based methods are region-
based [30], a technique which is prone to produce imprecise
and discontinuous vessel segmentation results, and existing
methods do not perform well when required to detect subtle
differences in microvascular networks with different vessel
thicknesses and imaging depths.

A. Contributions

In order to mitigate the issues of lacking a public
retinal OCTA dataset and effective microvascular segmenta-
tion methods, we make the following contributions in this
work.

• For the first time in the retinal image analysis field,
we establish a publicly available retinal OCTA dataset, with
precise manual annotations of retinal microvascular networks,
in order to promote relevant research in the community.

• We introduce a novel split-based coarse-to-fine vessel
segmentation network for blood vessel segmentation in OCTA,
aimed at detecting thick and thin vessels separately. In our
method, a split-based coarse segmentation (SCS) module is
first utilized to produce a preliminary confidence map of
vessels, and a split-based refined segmentation (SRS) module
is then used to optimize towards the finer vessels, with a view
to obtaining more accurate overall segmentation results.

• We give a full evaluation/benchmarking of OCTA
microvascular segmentation, both quantitatively and qual-
itatively. Comparative analysis shows that the proposed
OCTA-Net works robustly on different types of retinal images
and yields accurate vessel segmentations.

To further promote developments in this field, the code,
baseline models, and evaluation tools, are publicly available
at https://imed.nimte.ac.cn/dataofrose.html.

II. RELATED WORKS

In the past two decades, we have witnessed a rapid devel-
opment of retinal blood vessel segmentation methods for
color fundus images (as evidenced by extensive reviews [2],
[31]). As blood vessels are curvilinear structures distrib-
uted across different orientations and scales, the conventional
vessel segmentation methods are mainly based on various
filters, including Hessian matrix-based filters [32], matched
filters [33], multi-oriented filters [34], symmetry filters [2],
and tensor-based filters [35]. These filter-based methods aim to
suppress non-vascular or non-fiber structures and image noise,
thus enhance the curvilinear structures, thereby simplifying the
subsequent segmentation problem.

By contrast, automated vessel segmentation from OCTA
images is relatively unexplored tasks, and most of the existing
methods are based on thresholding schemes. Yousefi et al. [16]
developed a hybrid Hessian/intensity based method to segment
and quantify shape and diameter of vessels. Gao et al. [17]

binarized en face retinal OCTA images according to mean
reflectance projection and maximum decorrelation projection.
Camino et al. [18] set an optimized reflectance-adjusted
threshold to segment the vascular. Sarabi et al. [19] devel-
oped a three-step algorithm including adaptive thresholding
processes to construct the vessel mask. Wu et al. [20] pro-
posed an optimized approach based on an improved vascular
connectivity analysis (VCA) algorithm to extract the vascular
network. However, these thresholding-based approaches are
sensitive to noise distributed in en face OCTA images and
hard to perform well on regions with no significant intensity
difference.

In recent years, deep learning-based methods have made
significant progress in the fields of medical image segmen-
tation. In particular, many deep neural networks have been
modified and applied for blood vessel segmentation [1],
[14], [36], [37] and have yielded promising results. How-
ever, the extraction of vessels from OCTA images has been
relatively unexplored. We will review and discuss the most
relevant vessel segmentation works in this section.

A method based on Convolutional Neural Network
(CNN) [36] was proposed to enhance training samples for bet-
ter retinal vessel detection: subsequently, a Conditional Ran-
dom Field (CRF) was incorporated into the CNN by Fu et al.
for retinal vessel detection [14]. Wang et al. [38] applied
the U-Net [39] for retinal vessel segmentation in fundus
images of pathological conditions. Xiao et al. [40] modified
ResU-Net [41] by introducing a weighted attention mechanism
for high-quality retinal vessel segmentation. Gu et al. [15]
proposed a context encoder network (CE-Net), which consists
of dense atrous convolution and residual multi-kernel pooling
modules for retinal vessel image segmentation. Jin et.al. [42]
integrated deformable convolution into the DUNet, which is
designed to extract context information and enable precise
localization by combining low-level features with high-level
ones. Yan et al. [43] proposed a three-stage deep model to seg-
ment thick and thin vessels separately, which achieves accu-
rate vessel segmentation for both types of vessels. However,
there have been very few deep learning methods for vessel
segmentation in OCTA images. Mou et al. [1] proposed a
channel and spatial attention network (CS-Net) for curvilinear
structures (including vessels in some example OCTA images)
where they applied spatial and channel attention to further inte-
grate local features with their global dependencies adaptively.
Li et.al. [21] presented an image projection network, which
is a novel end-to-end architecture that can achieve 3D-to-2D
image segmentation in OCTA images.

III. DATASET

Our constructed Retinal OCT-Angiography vessel
SEgmentation (ROSE) dataset comprises of two subsets,
named as ROSE-1 and ROSE-2, which were acquired by
two different devices. All the data described in this paper
are acquired from studies that have appropriate approvals
from the institutional ethics committees, and written informed
consent was obtained from each participant in accordance
with the Declaration of Helsinki. The diagnosis result of each
subject is provided in the dataset.
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Fig. 3. Illustration of OCTA images from ROSE-1 and their manual annotations. From top to bottom: en face of the SVC, DVC and SVC+DVC,
respectively. From left to right: en face, centerline-level labels, and pixel-level labels, respectively.

A. ROSE-1

The ROSE-1 set consists of a total of 117 OCTA images
from 39 subjects (including 26 with Alzheimer’s disease (AD)
and 13 healthy controls). The mean age was 68.4 ± 7.4
years of the AD group and 63.0 ± 10.2 years of the con-
trol group. Participants with known eye disease, such as
glaucoma, age-related macular degeneration, high myopia,
etc, and with known systematic disease, e.g., diabetes, were
excluded from this study. The diagnosis of AD were based on
the NINCDS-ADRDA criteria [44] and participants did not
undergo PET imaging or lumbar puncture for assessment of
biomarker status. All the OCTA scans were captured by the
RTVue XR Avanti SD-OCT system (Optovue, USA) equipped
with AngioVue software, with an image resolution of 304×304
pixels. The scan area was 3 × 3 mm2 centered on the fovea,
within an annular zone of 0.6 mm-2.5 mm diameter around
the foveal center. The SVC, DVC and SVC+DVC angiograms
of each participant were obtained.

Two different types of vessel annotations were made
by image experts and clinicians for the ROSE-1 dataset,
and the consensus of them was then used as the ground
truth:

(1) Centerline-level annotation. The centerlines of vessels
were manually traced using ImageJ software [45] by our
experts on the SVC, DVC, and SVC+DVC images individu-
ally, as shown in Fig. 3 A-2, B-2, and C-2;

(2) Pixel-level annotation. We first invited an image expert
to grade the complete microvascular segments with varying
diameters in the SVC and SVC+DVC images at pixel level.
Since it is difficult for a human expert to perceive the diameters
of small capillaries located around the macula region, we asked
the expert to grade the small capillaries at centerline level.
The combination of these different labels is defined as the
final pixel-level annotation, as shown in Fig. 3 A-3, and C-3.

Fig. 4. Example of an OCTA image and its centerline-level manual
annotations in ROSE-2.

(Note that, Fig. 3 B-3 is also the centerline-level label of the
DVC, as it is difficult to obtain pixel-level grading in this
layer.) ROSE-1 dataset were further analysed in Section Dis-
cussion to demonstrate the significance of retinal vasculature
in the management of neurodegenerative diseases.

B. ROSE-2
The ROSE-2 subset contains a total of 112 OCTA images

taken from 112 eyes, acquired by a Heidelberg OCT2 system
with Spectralis software (Heidelberg Engineering, Heidelberg,
Germany). These images are from eyes with various macula
diseases. All the images in this dataset are en face angiograms
of the SVC within a 3×3 mm2 area centred at the fovea. These
OCTA images were reconstructed from 512 × 512 repeated
A-scans, with the Heidelberg automated real time (ART) and
Trutrack system employed to reduce artefacts and noise. Each
image was resized into a grayscale image with 840×840 pix-
els. All the visible retinal vessels were manually traced using
an in-house program written in Matlab (Mathworks R2018,
Natwick) by an experienced ophthalmologist. An example
OCTA image and its corresponding centerline-level annotation
are shown in Fig. 4. It should be noted that only the centerlines
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Fig. 5. Architecture of the proposed OCTA-Net network (with an example of en face of the angioram of SVC+DVC in the ROSE-1 set). The SCS
module (coarse stage) is designed to produce two preliminary confidence maps that segment pixel-level and centerline-level vessels, respectively.
The SRS module (fine stage) is then introduced as a fusion network to obtain the final refined segmentation results.

are annotated at single pixel level for ROSE-2. For better
visualization, all the centerlines are widened to 7-pixel wide
in the illustration figures.

IV. PROPOSED METHOD

In this section, we introduce a novel split-based coarse-
to-fine network, named as OCTA-Net, for retinal vessel
segmentation in OCTA images. The pipeline of OCTA-Net
has two indispensable stages - coarse stage and fine stage,
as illustrated in Fig. 5. In the coarse stage, a split-based
coarse segmentation (SCS) module is designed to produce
preliminary confidence maps. In the fine stage, a split-based
refined segmentation (SRS) module is used to fuse these vessel
confidence maps to produce the final optimized results.

A. Coarse Stage: Split-Based Coarse Segmentation
Module

Since the ROSE-1 set has both pixel-level and centerline-
level vessel annotations for each en face OCTA image,
we design a split-based coarse segmentation (SCS) module
with a partial shared encoder and two decoder branches (for
pixel-level and centerline-level vessel segmentation, respec-
tively), to balance the importance of both pixel-level and
centerline-level vessel information, as illustrated in the coarse
stage of Fig. 5. It should be noted that for the ROSE-2 set and
en face of the DVC layer in the ROSE-1 set on, the designed
SCS module only consists of one encoder and one decoder
(same architecture as pixel-level vessel segmentation) due to
only centerline-level annotations for them.

1) Pixel-Level Vessel Segmentation: Pixel-level vessel seg-
mentation is a U-shape network including five encoder layers
and the symmetric decoder layers. A ResNet-style structure
with split attention module, ResNeSt block [46], is used as
the backbone of each encoder-decoder layer. The primary
point of ResNeSt block is to regard a series of representations
as the combination of different feature groups, then apply

channel-wise attention to these groups. The detailed structure
of ResNeSt block is illustrated as Fig. 6 (A). The input
X ∈ R

H×W×C of the block is equally split into two cardinal
groups which are then fed into two cardinal blocks with same
structure respectively. In each cardinal block, the cardinal
group is further equally divided and input to two parallel
branches. Each branch consists of 1×1 and 3×3 convolutional
layers followed by batch normalization (BN) and ReLU layers,
and outputs feature maps with size of H × W × C/4.

In addition, a split attention module is applied in each
cardinal block to integrate these feature maps from the two
branches, as illustrated in Fig. 6 (B). The module first fuses
feature maps from the two branches (denoted as U1 and U2)
via an element-wise summation, then adopts global pooling
(gp) to generate channel-wise statistics s:

s = 1

H × W

H�
i=1

W�
j=1

[U1(i, j) + U2(i, j)]. (1)

Two fully connected (FC) layers followed by a softmax
layer are then applied to s to obtain a1 and a2, the channel-
wise soft attention weights of U1 and U2 respectively, as illus-
trated in Fig. 6 (B).

With the weight vectors a1 and a2, the weighted results of
U1 and U2 and output of the cardinal block V are: V1 =
a1 · U1, V2 = a2 · U2, V = V1 + V2, where · represents
channel-wise product. Next, outputs of both cardinal blocks
(denoted as V 1 and V 2) are fused by concatenation along the
channel dimension and one 1 × 1 convolution F1×1: Z =
F1×1([V 1, V 2]). Therefore, the final output Y of the ResNeSt
block is produced using a shortcut connection: Y = Z +T (X),
where T represents an appropriate transformation, such as
stride convolution, combined convolution with pooling or even
identity mapping.

2) Centerline-Level Vessel Segmentation: Compared with
pixel-level annotation, vessel annotation at centerline level
aims to grade the vessels in regions with poor contrast,
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Fig. 6. ResNeSt [46] block with split attention module. (A) ResNeSt block. (B) Split attention module.

more complex topological structures, and relatively smaller
diameters. On one hand, considering the differences between
centerline-level and pixel-level vessels, the features used for
pixel-level vessel segmentation might not be suitable for
centerline-level vessel segmentation. The deeper architecture
might be detrimental to closer attention to low-level features,
which are of great significance for centerline-level vessel
segmentation. On the other hand, pixel- and centerline-level
vessel segmentation may reveal shared features after fea-
ture extraction, due to spatial dependencies between the two
types of vessel annotations. Based on the above consid-
erations, we append several ResNeSt blocks followed by
an up-sampling layer in the third encoder layer of the
backbone, as the decoder of the centerline-level vessel seg-
mentation network. Finally, the outputs of the decoder are
processed by one 1 × 1 convolutional layer with a Sig-
moid function to achieve the centerline-level segmentation
map.

B. Fine Stage: Split-Based Refined Segmentation
Module

In order to further recover continuous details of small ves-
sels, we introduce the fine stage to adaptively refine the vessel
prediction results from the coarse stage. Inspired by [47],
a split-based refined segmentation (SRS) module is proposed
as the fine stage. The structure of our SRS module is illustrated
in the fine stage of Fig. 5. In order to fully integrate pixel-level
and centerline-level vessel information from the SCS module,
the predicted pixel-level and centerline-level vessel maps and
the original (single channel) OCTA image are first con-
catenated as input (total 3 channels) to the SRS module.
In addition, the SRS module will produce adaptive propagation
coefficients to refine the pixel-level and centerline-level maps
respectively. In the SRS module, a mini network including
three convolutional layers with 3 × 3 kernels is designed to
refine the pixel-level map from the coarse stage. Besides, one
additional 3×3 convolutional layer is appended to the second
layer of the mini network to refine the centerline-level map
from the coarse stage. BN and ReLU layers are adopted
after each convolutional layer. Finally, the refined pixel- and
centerline-level maps are then merged into a complete vessel
segmentation map, by choosing the larger value from the two
maps at each pixel. As in the case of the coarse stage, for
the ROSE-2 set and en face of the DVC in the ROSE-1 set,
no additional convolutional layer is appended to the mini
network and only the centerline-level map from the coarse
stage is refined.

The detailed channel configuration of the SRS module is
shown in Fig. 5. For vessel refinements, the module produces
normalized m × m local propagation coefficient maps for all
the positions, formulated as:

w
p
i = exp

�
h p

i

�
�m×m

t=1 exp
�
ht

i

� , p ∈ 1, 2, . . . , m × m, (2)

where h p
i is the confidence value at position i for its neighbor

p, and m × m is the size of propagation neighbors. Finally,
the local propagation coefficient vector w

p
i at position i will be

multiplied by the confidence map of thick or thin vessels from
the front model and aggregate to the center point to generate
the refinement result, denoted as:

gi =
m×m�
p=1

w
p
i · f p

i , (3)

where f p
i is the confidence vector of the neighbor p at position

i from the SCS module, and gi is the final predicted vector at
position i . Note that the propagation coefficient maps can learn
the spatial relationship between position i and its neighbors
to refine the structure information of vessels. In addition,
the final vessel map must be similar to that before refinement.
To achieve this goal, the coefficient of position i should be far
larger than that of its neighbors, and we adopt a reasonable
method for initialization of network parameters following [47]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
kl(a, c) = ε, ε ∼ N �

0, σ 2
�

and σ � 1

bl(c) =



1 l = L, c = (m × m + 1)/2

0 others

(l = 1, 2, . . . , L)

(4)

where L is the number of convolutional layers, kl and bl

represent convolutional kernels and the bias of layer l respec-
tively, c is the channel of a layer and a is the position in
kernels.

V. EXPERIMENTS

A. Experimental Setting

The proposed method was implemented with PyTorch. Both
the coarse and the fine stage were trained with 200 epochs
and with the following settings: Adam optimization with the
initial learning rate of 0.0005, batch size of 2 and weight decay
of 0.0001. For more stable training, we adopted poly learning
rate policy with a poly power of 0.9.
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For the coarse stage, we set r = 16 as the reduction ratio
of the FC layers in the split attention modules, and selected
mean square error (MSE) as the loss function:

L M S E = 1

N

N�
i=1

(pi − gi)
2 (5)

where N is the number of all pixels, pi and gi represents
the i -th pixel of the prediction map and the ground truth
respectively. For the fine stage, we set m = 3 as the size
of aggregation neighbors. Considering that there is a large
imbalance between vessel regions and the background in
en face OCTA images, we replaced MSE loss with Dice
coefficient loss to further optimize the vessel segmentation in
the fine stage:

L Dice = 1 − 2
�N

i=1 pi gi + ��N
i=1 p2

i + �N
i=1 g2

i + �
(6)

where the parameter � is a small positive constant used to
avoid numerical problems and accelerate the convergence of
the training process. For training and inference of the proposed
method, the ROSE-1 subset was split into 90 images for
training and 27 images for testing, and the ROSE-2 subset
was split into 90 images for training and 22 images for testing.
Data augmentation was conducted by randomly rotation of an
angle from −10◦ to 10◦ during all training stages.

We train our OCTA-Net separately for ROSE-1 and
ROSE-2, so the annotation differences will not affect the
reliability of the evaluation results. In addition, for ROSE-1
dataset, we have both pixel- and centerline-level annotations,
so the proposed method learns features from both types of
manual annotations.

B. Evaluation Metrics
To achieve comprehensive and objective assessment of

the segmentation performance of the proposed method, the
following metrics are calculated and compared:

• Area Under the ROC Curve (AUC);
• Sensitivity (SEN) = TP/(TP + FN);
• Specificity (Specificity) = TN/(TN + FP);
• Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN);
• Kappa score = (Accuracy − pe)/(1 − pe);
• False Discovery Rate (FDR) = FP/(FP + TP);
• G-mean score [48] = √

Sensitivity × Specificity;
• Dice coefficient (Dice) = 2 × TP/(FP + FN + 2 × TP);
where TP is true positive, FP is false positive, TN is

true negative, and FN is false negative. pe in Kappa score
represents opportunity consistency between the ground truth
and prediction, and it is denoted as:
pe = ((T P + F N)(T P + F P) + (T N + F P)(T N + F N))

/(T P + T N + F P + F N)2 (7)

The use of sensitivity and specificity is not adequate for the
evaluation of this segmentation task, since over-segmentation
still leads to high sensitivity, and the vast majority of pixels do
not belong to vessels. Specifically, for centerline-level vessel
detection in the DVC images from the ROSE-1 and all images
from the ROSE-2, a three-pixel tolerance region around the
manually traced centerlines is considered a true positive, which

follows the evaluating methods for extracting one pixel-wide
curves in [49].

C. Performance Comparison and Analysis
We have thoroughly evaluated the proposed method over

our ROSE dataset, and compared it to existing state-of-the-art
segmentation methods to demonstrate the superiority of our
OCTA-Net in the segmentation of OCTA microvasculature.

Comparison methods. In order to verify the superiority
of our method, we compared our method with other
state-of-the-art segmentation methods on both ROSE-1 and
ROSE-2, including three conventional methods: infinite
perimeter active contour (IPAC) [50], trainable COSFIRE fil-
ters [32], and curvelet denoising based optimally oriented flux
enhancement (COOF) [11] for their effectiveness in detecting
vessels with irregular and oscillatory boundaries; and six deep
learning approaches: U-Net [39], ResU-Net [41], CE-Net [15],
DUNet [42], CS-Net [1] and three-stage networks [43].
For [50] and [32], the parameters were tuned to achieve seg-
mentation results of all vessels in both ROSE-1 and ROSE-2
subsets. For deep learning approaches, all hyper-parameters
were manually adjusted to yield the best performances.

• Subjective comparisons. Fig. 7 presents the respective
vessel segmentation results produced by the proposed method,
backbone, and the other three selected state-of-the-art segmen-
tation networks. We can see that U-Net achieves relatively low
performance, due to its over-segmentation at regions with high
density. CE-Net and CS-Net achieve better performance than
U-Net. However, they are not able to preserve fine capillaries
well in terms of producing weak vessel responses. In contrast,
the proposed method yields more visually informative results.
The benefit of the proposed method for segmentation can be
observed from the representative regions (green patches). It is
clear from visual inspection that our method has identified
more complete and thinner vessels particularly in ROSE-1 sub-
set (shown in purple). It achieves relatively uniform responses
in both thick and thin vessels, and provides more sensitive and
accurate segmentation on capillaries, as demonstrated in the
segmentation results of the DVC and SVC+DVC angiograms.

In contrast, all the methods yield very similar segmentation
performance in ROSE-2. Therefore, to better evaluate the
performance of the proposed method, we provide quantitative
results in the following subsections.

• Performance on the SVC layer in ROSE-1. We will
first evaluate the vessel segmentation performance on each
of the plexus layers of the ROSE-1 subset. Table I quan-
tifies the segmentation performance in SVC images of the
different approaches. Overall, our method achieves the best
performance in terms of almost all the metrics, with the single
exception that its FDR score is 0.0038 lower than that of the
three-stage network [43]. Nevertheless, the proposed method
is able to correctly identify the majority of vessels using our
two-stage architecture. Besides, the last column of Table I also
gives paired t-test results in terms of AUC. All p < 0.05
demonstrate that the proposed method performs significantly
better than the other compared methods.

• Performance on the DVC layer in ROSE-1. For the
DVC images in the ROSE-1 subset, we first adopted the
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Fig. 7. Vessel segmentation results of different methods on different layers of ROSE-1 and ROSE-2. From left to right: en face angiograms (original
images), manual annotations, vessel segmentation results obtained by U-Net, CE-Net, CS-Net, backbone (ResNeSt) and the proposed method
(OCTA-Net), respectively. Note, the color purple indicates the segmentation results at centerline level.

TABLE I
SEGMENTATION RESULTS OBTAINED USING DIFFERENT METHODS

ON THE SVC LAYER FROM ROSE-1

ResNeSt backbone to obtain preliminary vessel segmentation
results at the coarse stage. Afterwards, the initial segmen-
tations are combined with their original images as inputs
of the fine stage for producing final vessel segmentations.
Table II demonstrates the segmentation results achieved by
our method and the state-of-the-art methods. Although the
improvement on AUC is not significant when compared with
CS-Net and DUNet, the proposed network outperformed all
the other compared approaches. In particular, it significantly
outperforms other methods by a large margin, with an increase
of about 12.0% and 11.9% in kappa and Dice, respectively,
and a reduction of about 13.2% in FDR when compared
with CS-Net. These performance improvements are consistent
with the segmentation results shown in the middle row of
Fig. 7, where the proposed method successfully extracts small
capillaries from macula regions with promising continuity
and integrity, while other methods produces relatively lower
capillary responses.

TABLE II
SEGMENTATION RESULTS OBTAINED USING DIFFERENT METHODS ON

THE DVC IMAGES FROM ROSE-1

TABLE III
SEGMENTATION RESULTS OBTAINED USING DIFFERENT METHODS ON

THE SVC+DVC ANGIOGRAMS FROM ROSE-1

• Performance on the SVC+DVC angiograms in
ROSE-1. Table III shows the results of using different seg-
mentation approaches on the SVC+DVC images. Again,
the proposed method achieves overall the best performance,
with a single exception at the FDR score, where a per-
formance score of 0.0988 is obtained using the method by
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Fig. 8. ROC curves of different methods in terms of SVC+DVC angiograms segmentation performance on ROSE-1 and that of SVC of ROSE-
2 datasets.

TABLE IV
SEGMENTATION RESULTS OBTAINED USING

DIFFERENT METHODS ON ROSE-2

Azzopardi et al. [32]. However, detection rate of conventional
methods of of Azzopardi et al. [32] and Zhao et al. [50] are
significantly lower than those of all the deep learning-based
methods. This shows that the conventional methods have yet to
solve the problems as posed by the high degree of anatomical
variations across the population, and the varying scales of
vessels within an image. Moreover, motion artefacts, noise,
poor contrast and low resolution in OCTA exacerbate these
problems. By contrast, deep learning-based methods extract
a set of higher-level discriminative representations, which
are derived from both local and global appearance features
and thus can achieve better performance. All p ≤ 0.001
demonstrate the significant performance of our method.

• Performance on ROSE-2. ROSE-2 only provides
centerline-level manual annotation, and includes en face
OCTA images of the SVC. Therefore, as with the DVC images
in ROSE-1 subset, for ROSE-2, our method adopts a ResNeSt
backbone at the coarse stage to obtain the preliminary vessel
segmentation results. Then, the final results are obtained at
the fine stage, using the original image and the preliminary
results from the coarse stage as input. Table IV presents the
performance of the different segmentation methods. It shows
that our method achieves the best AUC, ACC, Kappa and Dice
respectively. The statistical analysis reveals that our OCTA-Net
outperforms significantly other methods: all p < 0.001 with a
single exception that when compared with three-stage model.

Moreover, Table I - IV also report the inference time cost
of deep learning methods. We don’t list the time cost of three
conventional methods here because it is unfair to compare
these methods run on CPU or even with MATLAB codes that

are not optimized in efficiency with the deep learning methods
run on GPU. For fair comparison of inference time, we test all
these trained deep learning models with PyTorch. We observed
that although consisting of a coarse stage and a fine stage,
the proposed two-stage framework is capable to achieve better
segmentation performance within a relatively shorter time on
both ROSE-1 and ROSE-2.

In order to illustrate the vessel segmentation performance
of different methods in a more intuitive manner, we have
also provided ROC curves for both the ROSE-1 and ROSE-2
subsets, as shown in Fig. 8. Due to limited space, here we
show only the segmentation performances on the SVC+DVC
images in ROSE-1. Compared with the conventional methods
such as the algorithms proposed by Zhao et al. [50] and
Azzopardi et al. [32], deep learning based methods demon-
strate their superiority in segmenting OCTA images. This is
because the introduction of excellent modules such as ResNet
and attention blocks, are usually helpful in improving the AUC
score of the encoder-decoder architecture. In addition, there are
two reasons that our two-stage architecture achieves the best
ROC curve (shown in red in both the subfigures of Fig. 8).
Firstly, using ResNeSt as the backbone of the encoder-decoder
architecture further strengthens performance for feature extrac-
tion, which improves the extraction of vessel information at
different complexities. Secondly, the fine stage can adjust local
details on the basis of preliminary results from the coarse
stage, which additionally refines the segmentation accuracy
of the coarse stage.

VI. DISCUSSION AND CONCLUSION

A. Ablation Studies

In this paper, the proposed vessel segmentation method
consists of a ResNeSt backbone, joint learning from pixel-level
and centerline-level vessel segmentation, and two-stage train-
ing. To validate the effectiveness of these components, we car-
ried out the following ablation studies. U-Net [39] is treated
as the baseline encoder-decoder method. Then, we gradually
evaluated how each of these components affect the results.

• Ablation for ResNeSt backbone. To discuss the
performance of the ResNeSt backbone, we compare segmen-
tation performance of the original U-Net, ResU-Net [41] (the
modified U-Net with residual blocks in the encoder) and
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TABLE V
ABLATION STUDIES OF OUR TWO-STAGE METHOD ON BOTH THE ROSE-1 AND ROSE-2 SUBSETS

our proposed encoder-decoder architecture (with ResNeSt as
the backbone), as shown in Table V. For both the ROSE-1
and ROSE-2 subsets, our encoder-decoder architecture with
ResNeSt as the backbone achieves the best performance on
AUC, ACC, Kappa, Dice and FDR in comparison with the
original U-Net and ResU-Net. This indicates that the ResNeSt
backbone is superior in feature extraction, which reveals more
information about vessels with different characteristics.

• Ablation for joint learning at pixel-level and
centerline-level vessel segmentation. In addition, we com-
pared joint learning from pixel-level and centerline-level
vessel segmentation with only one segmentation branch
(with ResNeSt as the backbone) of all vessels for the
SVC+DVC images in the ROSE-1 subset, so as to demonstrate
the advantages of joint learning from both pixel-level and
centerline-level vessel segmentation. Comparisons of both
performance are illustrated in Table V. We can observe that
joint learning achieves higher scores in terms of AUC, ACC,
Kappa and Dice than learning from only one segmentation
branch. This suggests that joint learning could help to improve
both pixel-level and centerline-level vessel segmentation per-
formance by highlighting the relevant topological distinctions
between pixel-level and centerline-level vessels.

• Ablation for two-stage training. Furthermore,
we analysed the impact of the fine stage on the coarse
stage in our two-stage procedure. At the coarse stage,
for the ROSE-1 subset, pixel-level and/or centerline-level
vessel segmentation results are treated as the preliminary
segmentation results, while for the ROSE-2 subset, vessel
segmentation results produced by the ResNeSt backbone are
treated as the preliminary segmentation results. At the fine
stage, final vessel segmentation results are derived from both
the original images and preliminary results from the coarse
stage. Accordingly, we made a comparison between the
preliminary segmentation results of the coarse stage and final
vessel segmentation results of the fine stage. As illustrated in
Table V, final vessel segmentation performance at the fine
stage for the most parts shows improvement when compared
with results from the coarse stage. The last column of Fig. 7
also indicates that some details of microvasculature are
optimized in the fine stage.

B. Clinical Evaluation

It has been suggested that the retina may serve as a window
for monitoring and assessing cerebral microcirculation [51]
and neurodegeneration conditions [13]. OCT images have been
utilized to observe neurodegenerative changes occurring in the
ganglion cell-inner plexiform layer (GC-IPL) thickness and
retinal nerve fiber layer (RNFL) thickness of AD and MCI

Fig. 9. Descriptive results of the FD of AD patients and controls in the
SVC, DVC and SVC+DVC, respectively.

patients [52]. Recently, contributions of vascular biomarkers
such as length, density and tortuosity, to the diagnosis of
MCI and AD are increasingly recognized [52], [53]. OCTA,
as an extension of OCT, that can provide in vivo, noninvasive
visualization of the retinal vessels in different layers. With
the simultaneous occurrence of both neurodegeneration and
microvascular changes in the brain, many studies [51], [54],
[55] have suggested that the macula microvasculature may
provide vital information on the changes in the cerebral micro-
circulation during the subclinical phase. Changes in the retinal
capillary network may indicate the onset and progression
of retinopathy, and fractal dimension (FD) is a well-known
measure for characterizing the geometric complexity of retinal
vasculature that will be a promising biomarker for vascular
diseases [56]–[58] as well as neurodegenerative [59] and cere-
brovascular diseases [60]. In particular, Cheung et al. [56] indi-
cated that the conventional structural measures (e.g., branching
angle and vascular tortuosity) represent only one of the many
aspects of the retinal vascular geometry and are lack of single
global measure that can summarize the branching pattern of
the vasculature as a whole. On the other hand, FD reflects
the overall complexity [58], and has been used as a global
measure of the geometric pattern of the retinal vasculature
potentially representing the complex branching pattern of the
microvasculature [59].

In this work, we performed an FD analysis by applying a
box-counting method named Fraclab [61] on the segmentation
results of the SVC, DVC, and SVC+DVC images in ROSE-1
using the proposed method. The box-plots in Fig. 9 show the
statistical analysis results on the ROSE-1 dataset, including
39 images of normal and 78 images of AD subjects, and
each subject has three OCTA angiograms: SVC, DVC, and
SVC+DVC. We have done three statistical tests with one for
each of SVC, DVC and SVC+DVC in order to avoid the
potential correlation issues amongst them. It can be observed
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that the AD group has reduced FD in the SVC, DVC and
SVC+DVC when compared with the control group. Student’s
t-test was employed to assess the differences between the
AD and control groups and results confirmed that the differ-
ences between the AD and control participants are significant
in the SVC (p=0.004<0.05), DVC (p=0.028<0.05) and
SVC+DVC (p=0.007<0.05), respectively. All the three tests
have demonstrated significant differences between AD and
healthy groups. These results are consistent with the previ-
ous findings that retinal microvascular changes may reflect
neurodegenerative changes [13], [52].

C. Projection Artefacts

Projection artefacts are one of the main limitations of OCTA
images [62]. In this work we used the exported OCTA images
as it is and didn’t applied any further artifacts removal method.
However, Optovue has incorporated their own proprietary
three-dimensional projection artifact removal technique into
their AngioVue software, and so the ROSE-1 dataset we used
in fact have undergone some artifacts removal. In real scenario,
projection artefacts may still exist in OCTA images and require
further technological improvements, which however is not the
focus of the paper. In our experience if a segmentation works
on noisy images it will often works well (if not better) in
more clean images. We expect that the proposed approach will
continue to work on images free of projection artefacts.

VII. CONCLUSIONS

In this paper, we have presented a novel Retinal OCTA
SEgmentation dataset (ROSE) dataset, which is a large, care-
fully designed and systematically manually-annotated dataset
for vessel segmentation in OCTA images. To our best knowl-
edge, this is the first OCTA dataset released to the research
community for the vessel segmentation task. It contains two
sub-sets, where the images were acquired by two different
devices. All the vessels were manually annotated by human
experts at either centerline level and/or pixel level. All of
the images contained in the dataset were eventually used for
clinical diagnostic purposes. To ensure the utmost protection of
patient privacy, the identities of all patients have been removed
and cannot be reconstructed. We plan to keep growing the
dataset with more challenging situations and various types of
eye and neurodegenerative diseases, such as diabetic retinopa-
thy and Parkinson’s disease.

In addition to the new dataset, we further proposed a
novel two-stage framework for vessel segmentation in OCTA
images. In the coarse stage, a split-based coarse segmenta-
tion (SCS) module has been designed to achieve the pre-
liminary segmentation results: ResNeSt block is used as the
backbone of the framework. In the fine stage, a split-based
refined segmentation (SRS) module has been adopted to
improve the vessel segmentation results by utilizing both the
original images and the preliminary results from the coarse
stage.

The experimental results on the ROSE dataset show that
our vessel segmentation approach outperforms other state-
of-the-art methods. Small capillaries are major components
of the retinal microvasculature and many of them are very

tiny segments with only 2 − 4 pixel width. Due to the high
noise ratio and low capillary visibility in OCTA images, large
vessels can be easily extracted while the segmentation of
small capillaries becomes challenging. Thus, small increases
of metric values may already indicate significant improvement
of segmentation with more extracted capillaries. We have
conducted paired t-tests on the segmentation performance of
our method and other methods. The statistical analysis in
Section V.C demonstrates competitive performance of the pro-
posed method. In particular, the improvements of small cap-
illaries in quantitative evaluation metrics are quite significant
also due to the extreme imbalance between foreground and
background regions. The sub-analysis on AD shows the great
potential of exploring retinal microvascular-based analysis for
the diagnosis of various neurodegenerative diseases.
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