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Low Dose CT Perfusion With K-Space Weighted
Image Average (KWIA)

Chenyang Zhao, Thomas Martin, Xingfeng Shao, Jeffry R. Alger, Vinay Duddalwar ,
and Danny J. J. Wang

Abstract— CTP (Computed Tomography Perfusion) is
widely used in clinical practice for the evaluation of cere-
brovascular disorders. However, CTP involves high radi-
ation dose ( ≥ ∼200mGy) as the X-ray source remains
continuously on during the passage of contrast media. The
purpose of this study is to present a low dose CTP technique
termed K-space Weighted Image Average (KWIA) using
a novel projection view-shared averaging algorithm with
reduced tube current. KWIA takes advantage of k-space sig-
nal property that the image contrast is primarily determined
by the k-space center with low spatial frequencies and over-
sampled projections. KWIA divides each 2D Fourier trans-
form (FT) or k-space CTP data into multiple rings. The outer
rings are averaged with neighboring time frames to achieve
adequate signal-to-noiseratio (SNR), while the center region
of k-space remains unchanged to preserve high temporal
resolution. Reduced dose sinogram data were simulated by
adding Poisson distributed noise with zero mean on digital
phantom and clinical CTP scans. A physical CTP phantom
study was also performed with different X-ray tube currents.
The sinogram data with simulated and real low doses were
then reconstructed with KWIA, and compared with those
reconstructed by standard filtered back projection (FBP)
and simultaneous algebraic reconstruction with regulariza-
tion of total variation (SART-TV). Evaluation of image quality
and perfusion metrics using parameters including SNR,
CNR (contrast-to-noise ratio), AUC (area-under-the-curve),
and CBF (cerebral blood flow) demonstrated that KWIA is
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able to preserve the image quality, spatial and temporal
resolution, as well as the accuracy of perfusion quantifica-
tion of CTP scans with considerable (50-75%) dose-savings.

Index Terms— Perfusion imaging, X-ray imaging and
computed tomography, brain, image reconstruction - ana-
lytical methods, image enhancement.

I. INTRODUCTION

COMPUTED Tomography Perfusion (CTP) of the brain
is a widely used imaging technique that provides assess-

ments of regional blood supply, and hemodynamic informa-
tion to distinguish the ischemic core from penumbral tissue,
helping with decision making for recanalization therapy in
cerebral ischemia [1]–[4]. In a typical CTP scan, a dataset of
time-resolved CT images is acquired over the scan duration
(∼ 1 min) to track the passage of the contrast bolus through
the intracranial vasculature. The contrast enhancement of the
tissue over time is depicted by the time density curve (TDC),
and multiple perfusion parameters such as cerebral blood
flow (CBF), cerebral blood volume (CBV), mean transit time
(MTT), can be derived from the TDC information [5]. The
repeated CT scans that are performed on the same brain
region during the passage of a contrast bolus resulting in a
high radiation dose to patients. For example, with a typical
clinical setting of CTP scan acquisition parameters using a
tube voltage of 80 keV, tube current of 150 mAs, and temporal
sampling rate of 1 image/2s according to the ALARA (As Low
As Reasonably Achievable) principle, the resultant dose can
be about 200 mGy which is approximately 3 times higher than
that of a standard head CT [6].

Recently, several techniques have been applied for radiation
dose reduction in CTP scans, including reduction of tube
current and/or tube voltage, as well as the use of noise
reduction techniques such as iterative reconstruction (IR)
[7], [8]. Typical IR methods include the adaptive statistical
iterative reconstruction (ASIR) [9], and model-based iterative
reconstruction (MBIR) [10]. However, IR methods often yield
blotchy image appearance and longer computational time [11].
Although the application of IR in standard CT scans has been
improving due to enhanced computational power, its applica-
tion in CTP is very limited due to the high complexity and
significant computational overhead for processing dynamic
CTP image series. It is also possible to lower the radiation dose
by reducing the temporal sampling frequency of CTP, however,
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this approach yields insufficient temporal information for
accurate quantification of hemodynamic parameters [12].

During the past 3 years, deep learning (DL) techniques
have been explored for CT imaging to reduce radiation dose
[13]–[17], such as residual neural network [14] and generative
adversarial network (GAN) [16], [18], [19] based denoising.
The deep networks have been expanded to incorporate iterative
steps [20], [21] to improve the performance and robustness for
denoising low-dose CT images. More recently, DL methods
have been applied for low-dose CTP using Iterative Residual-
artifact Learning net (IRLNet) [22] and Spatial-Temporal
Image Restoration Net (STIR-Net) [12]. The advantages of DL
techniques, as compared to existing IR methods for low-dose
CT, include short computation time (nearly instantaneous once
trained) and better retainment of the texture and resolution of
CT images. However, DL methods are highly dependent on the
training datasets which may be specific to the CT scanners and
protocols used for data collection.

K-space Weighted Image Contrast (KWIC) is a technique
originally used in 4D dynamic MRI with radial trajectories
to shorten the scan time using sparse sampling [23]. Based
on the central slice theorem, CT sinogram data can be
converted to 2D Fourier space (equivalent to k-space in
MRI), making it feasible for the adaptation of KWIC to CT
perfusion with reduced dose through the sparse sampling of
projections followed by view-sharing. In our proof-of-concept
study, a specific sparse sampling scheme was employed to
achieve up to 75% dose reduction while maintaining both
high image quality and quantification accuracy of CTP scans
[24]. However, the implementation of the KWIC algorithm
requires rapid-switching pulsed X-ray at pre-specified rotation
angles–a hardware capability yet to be implemented by
commercial CT vendors.

The purpose of this study is to introduce a variant
of the KWIC algorithm termed k-space weighted image
average (KWIA) that preserves high spatial and temporal
resolutions as well as image quality of low-dose CTP
data (50-75% dose reduction), yielding images comparable
to those of standard CTP scans. There are three major
advantages and contributions of KWIA compared to existing
denoising methods for low-dose CTP: 1) KWIA does not
require modification of existing CT hardware, and can use
standard low-dose techniques such as tube current reduction;
2) KWIA is computationally simple and fast (non-iterative),
therefore doesn’t affect clinical workflow; 3) KWIA preserves
the texture as well as spatial and temporal resolution of
CTP images. In this paper, we first present the theoretical
framework of KWIA, and demonstrate its feasibility using a
digital phantom, a physical phantom, and clinical data.

II. THEORY

In a typical CT scan, the X-ray tube and detectors contin-
uously rotate around a center point. At each specific constant
angular interval, the X-ray tube emits a fan beam X-ray which
will be received by an array of detectors and processed to
form a fan beam projection signal. Based on the central slice
theorem, 1D Fourier transform (FT) can be performed along
each parallel beam projection, which can be obtained from

fan beam projections after rebinning, to form a ‘k-space’
like CT data. To meet the Nyquist theory of radial sampling,
the sampling rate on the periphery of this k-space should be
no less than the sampling rate on each projection to avoid
streaking. Thus, the number of projections in a CT scan Nproj ,
in theory, should satisfy

Nproj ≥ π

2
Ndetector (1)

In practice, the number of projections used in a CT scan
can be slightly lower than the theoretical number, since the
field-of-view (FOV) of CT images is generally smaller than
the width of the detector array. Assuming R is the radius of
the radial k-space region that satisfies the Nyquist theory, it is
determined by

R = Nproj

π
(2)

The most common practice for low dose CT includes
reduction of tube current and/or tube voltage. Without loss of
generality, we will focus on low dose CT with reduced tube
current in this paper (tube voltage reduction will be discussed
later). There is a direct proportional relationship between
the applied tube current and the square root of the SNR in
reconstructed CT images [25]. For example, reducing the tube
current by 1

2 will result in the SNR of CT images to be
√

2
2 of

the original SNR. However, the effect of SNR reduction is not
evenly distributed across the 2D FT or k-space. As shown in
Fig. 1, the center of the k-space (Ring 1) has effectively higher
SNR due to the averaging effect of higher sampling density of
projections. For the outer k-space, however, the progressively
sparser projections will lead to deficient SNR.

For CTP imaging, such k-space property and the time-
resolved image acquisition can be exploited for reducing
radiation dose. Here we introduce a new algorithm termed
k-space weighted image average (KWIA) to preserve high
spatial and temporal resolutions as well as the image quality
of low-dose CTP data (50-75% dose reduction). The proposed
KWIA method divides each 2D FT or k-space CTP data
into multiple rings. The central part of k-space (Ring 1) will
directly use the data from a single time frame (e.g. t1 in
Fig. 1), while outer k-space regions will be progressively
averaged between neighboring time frames to increase SNR
(e.g. Ring 2 will be averaged by 2 time frames t1 and t2, and
Ring 3 averaged by 4 time frames t0 to t3). Since the image
contrast is primarily determined by the central k-space region,
KWIA can preserve the high effective temporal resolution
of low dose CTP while maintaining high SNR and spatial
resolution by view-sharing in the outer k-space regions.

The KWIA reconstructed k-space data, S, can be expressed
by the following equation

Si,k =
� M−1

2 �∑

d=�− M−1
2 �

Wd,k Si+d,k (3)

where i is the image time frame, k is the distance from the
k-space center, M is the averaging window size, and Wd,k is
the weighting function. Note the averaging window shifts at
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Fig. 1. Schematic diagram of KWIA. Four time frames of CTP data
(t0−t3) with reduced radiation dose are acquired. Each 2D FT or k-space
can be divided into multiple rings. Outer rings can be averaged between
neighboring time frames to improve SNR.

the beginning and end of CTP time series to keep all averaged
images within range. The k-space is divided into discrete rings
and moving average is applied to each ring accordingly. As a
proof-of-concept study, we used a short averaging window size
of 1, 2, 4 for ring 1, 2, 3 respectively (based on the original
KWIC algorithm) to minimize potential temporal blurring.
Alternative window sizes and weighting functions will be
discussed below.

Since the number of received X-ray photons Nd , on a
detector, can be estimated as the Poisson distribution of the
number of incident photons (see section 3. B for detail), which
is the number of emitted photons Ne after attenuation, SNR
can be derived as follows.

SN R = Mean

SD
= Nee−li

√
Nee−li

=
√

Nee−li (4)

Thus, for a given Ne and amount of attenuation, the SNR is
proportional to the square root of the size of a detector, namely
resolution. Because of the inverse relation between resolution
and k-space coverage, SNR is inversely proportional to the
radius of a k-space region.

In order to compensate for the SNR loss using projection
data from low-dose CT, we can utilize a smaller center k-space
region to achieve adequate SNR, and the radius of Ring 1 (R1)
can be derived from Eq. 5:

R1 = Nproj

π
r SN R (5)

where rSNR is the relative SNR of low dose CTP versus
the full dose scan. The rest of k-space can be subsequently
divided into rings that will be progressively averaged between
neighboring time frames to increase SNR. The radius of Ring
n or Rn can be derived from Eq. 6:

Rn = R1 +
Ndetectors

2 − R1

Nrings − 1
(n − 1) (6)

where Nrings is the total number of rings, Ndetectors is the
number of detectors, and Rn is the derived radius for the
nth ring. In practice, the optimal number of rings and their
respective sizes can be determined empirically. The more
rings that are used, higher the SNR. However, the resultant
images could potentially be more susceptible to motion as

well as temporal smoothing (of fine structures) between time
frames. After applying KWIA, the k-space data is regridded
into Cartesian space followed by 2D inverse fast FT (FFT) to
generate CT images.

III. MATERIAL AND METHODS

A. KWIA Algorithm Implementation
The KWIA algorithm was implemented in Matlab (The

Mathworks Inc., Natick, MA, USA) and included 5 steps:
1) performing 1D FFT of parallel beam projections along the
detector row direction; 2) multiplication with a KWIA filter
that separates and weighs projections into sub-apertures or
rings; 3) stacking of KWIA filtered projections into a radial
k-space; 4) compensating for the weighting of radial data using
the VORONOI algorithm; 5) regridding of radial k-space into
2D Cartesian k-space; and finally 6) performing 2D inverse
FFT of the regridded k-space data into 2D images. In step 1,
the parallel beam CT projections were simulated from CTP
images using the ASTRA toolbox [26], [27] for digital phan-
tom and clinical data, while, for real scan of the phantom, fan
beam projections were acquired and then rebinned into parallel
beam projections. The VORONOI algorithm in step 4 was
used as an efficient and accurate estimation of the density com-
pensation for radial sampled k-space data [28]. Even though
the density weights along each radial projection in k-space
is just a ramp function, the VORONOI algorithm provides
more flexibility for potential implementation of KWIA in
more complicated CT geometries, such as 3D cone beam CT
(CBCT). For the regridding algorithm of step 5, we chose the
Kaiser-Bessel kernel with β = 16.25, window width = 7, and
oversampling rate = 2 as the convolution kernel to achieve the
optimal balance between side-lobe suppression and computa-
tion time [29]. Compiled Matlab programs and a sample CTP
dataset can be downloaded (https://loft-lab.org/index-5.html).

B. Digital Dynamic Phantom Simulation
A FORBILD digital phantom [30] with three time-varying

vessels inserted (10, 5 and 2.5 mm in diameter respectively)
was created to simulate a dynamic CT scan. Scanning para-
meters of the simulation are shown in Table I, and ring sizes
used for KWIA reconstruction are listed in Table II. A baseline
Poisson noise with an emitting X-ray photon number of
4.8 × 106, which is the same value estimated for clinical
CTP data in section 3. D, was added in the projection data
to simulate full dose CTP scan. Accordingly, 50% and 25%
dose CTP scans were generated using 2.4×106 and 1.2×106

as the emitting X-ray photon number, respectively. In addition,
the temporal variation of vessel signals followed a pre-defined
gamma variate function [31] (Eq. 7), where C(t) is the vessel
signal, C0 is a constant which was set to 1, t refers to time
and α is a parameter determining the signal changing rate
(α = 11). The digital phantom simulation used the same scan
time (54 seconds) and number of frames (27 frames) as our
clinical data. The peak vessel signal was set to appear at the
10th time frame.

C(t) = C0tαeα(1−t) (7)
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TABLE I
IMAGING AND RECONSTRUCTION PARAMETERS

TABLE II
KWIA RING SIZE (RADIUS) DEFINITION

For the simulation of low dose CTP using digital phantom,
we hypothesized that: (1) True compound Poisson process
can be well-estimated as Poisson distribution; (2) Electronic
noise, which is Gaussian distributed, can be ignored [32]–[34].
Thus, the noise model can be simplified as that, on a detector,
the detected number of photons follows the Poisson distribu-
tion of the number of received photons, which is attenuated
from the number of emitting photons while penetrating the
body. The reduction of tube current will proportionally reduce
the emitted photons. As a result, the detected number of
photons by a detector under the reduced tube current can be
determined by Eq. 8 [35], where Nd is the detected photon
number, Ne is the emitted photon number, li is the line integral
of attenuation coefficients corresponding to the detector i, α
and β represent the full dose tube current and reduced tube
current respectively.

Nd = Poisson(
β

α
Nee−li ) (8)

CTP scans with full dose, 50% dose, and 25% dose were
simulated accordingly. KWIA with 2 and 3 rings were then
applied to recover SNR of 50% dose CTP scans, while KWIA
with 3 and 4 rings were applied to recover SNR of 25% dose
CTP scans. To evaluate the performance of KWIA, the mean
signal and standard deviation (SD) of noise were measured
in a relatively uniform region to estimate SNR (blue circle in
Fig. 2 (a)). Contrast-to-noise ratio (CNR) was also estimated
using two regions (blue circle and purple circle in Fig. 2 (a))
with different mean values. The value of CNR was defined as
the ratio of the difference of mean signals between two regions

Fig. 2. FORBILD CT phantom with 3 vessels of different sizes.
(a) and (b) contains the full dose, low dose simulation, and 4 KWIA
simulation results. Two ROI were enlarged to emphasize SNR change.
And subtraction images (window level and window center were adjusted
for visual observation) were made to show the structural change.

to the square root of the sum of their variance. To evaluate
the impact of different vessel sizes on the temporal fidelity
of KWIA reconstruction, the region containing 3 time-varying
vessels was selected as an ROI to measure the time course,
as well as temporal parameters, including area-under-the-curve
(AUC), full width at half maximum (FWHM), and root mean
squared error (RMSE). To better demonstrate the SNR change,
subtraction images between a noiseless phantom image and
simulated low dose CTP and KWIA images were generated
and presented.

C. Physical CTP Phantom Scan
The purpose of the physical phantom study was to verify the

low dose simulation method, the SNR dependency of perfusion
metrics, and the feasibility of KWIA reconstruction on real
low dose CTP scans. A commercial CT perfusion phantom
(GAMMEX, Middleton, WI, USA) was scanned on a Siemens
SOMATOM Definition AS scanner with a fixed tube voltage
of 100 kVp and 3 different tube currents at 200, 120 and
60 mAs respectively. The GAMMEX CTP phantom consisted
of a homogenous scan disk (the imaged object shown in Fig. 4)
and 4 rods (as indicated by the yellow arrows in Fig. 4),
including an “artery”, a “vein” and 2 identical “brain tissue”
rods, that were made of several discs with variable densities.
When set in motion, the 4 rods can mimic the flow of a contrast
agent through a blood-tissue network over time. Therefore,
the phantom was capable of simulating blood flow through
an artery, a vein and two tissue regions [36]. During the
scan, three slices were imaged simultaneously in a total scan
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duration of 39 seconds with an interval of 1 second for each
time frame. After the scan, fan beam projection data collected
from scanner were rebinned into parallel beam projection data
for offline reconstruction with KWIA.

The scan with the highest tube current of 200 mAs was used
as the full dose, while the scans with 120 and 60 mAs were
treated as 60% and 30% dose respectively. KWIA with 2 and
3 rings were applied on the 60% dose scan, while KWIA with
3 and 4 rings on the 30% dose scan. For comparison, full
and low dose images were also reconstructed with standard
regridding reconstruction without KWIA. Detailed scanning
parameters are listed in Table I, and the sizes of rings used in
KWIA are listed in Table II.

SNR was measured in a uniform region (purple circle in
Fig. 4 (a)) in the scan disk of the CTP phantom, and CNR was
measured between the scan disk region and a uniform region
in brain tissue (blue circle in Fig. 4 (a)). The arterial input
function (AIF), venous outflow function (VOF) and tissue
signal curves were measured in ROIs of the artery, vein, and
brain tissue, respectively.

Quantitative CTP analysis was performed using in-house
MATLAB program for deconvolution based on the singular-
value decomposition (SVD) algorithm [37]. Post-processing
of CTP images yielded cerebral blood flow (CBF) maps. CBF
values in 2 brain tissue regions of the phantom were measured
for comparison across all the reconstructed perfusion maps.

D. Clinical CTP Data Simulation
Six clinical CTP datasets, treated as full dose cases in

this study, were acquired on a Toshiba Aquilion CT scanner.
Detailed parameters of the CTP scan are listed in Table I.
Poisson distributed noise was added to simulate the 50% and
25% low dose cases. The KWIA algorithm with 2, 3 and
4 rings was implemented and tested on the simulated low
dose CTP scans respectively using the same ring sizes as those
for digital dynamic phantom simulation (parameters listed in
Table II).

There were a few differences in how noise was added
between the clinical data and the digital phantom. In digital
phantom, Poisson noise was directly added on noiseless phan-
tom images. Given an emitted photon number Ne for the full
dose scan, the low dose scans can be simply simulated from
noiseless phantom images using β

α Ne in Eq. 8. In clinical data,
however, no noiseless images were available, which required
including additional noise on top of the full dose images
already containing some level of noise. Also, Ne of the full
dose images is an unknown parameter. The simulation process
can be described by Eq. 9 [38]:

Nβ
d = β

α
Nβ

e e−li + Poisson0(
αβ − β2

α2 Nα
e e−li ) (9)

where Nβ
d is the received X-ray photon number at dose β,

Nα
e is the emitted photon number at dose α, and Poisson0

refers to the Poisson distribution with zero mean. In this case,
the generated data will have the desired variance and mean of
β
α Nα

e . For Ne , we estimated it as 4.8 × 106 by measuring the
change of resultant SNR in reconstructed image. An accurate
estimation of Ne should allow the SNR to decrease linearly

with the square root of tube current reduction, which has been
validated by our physical phantom study.

The mean signal and noise SD were measured in a uniform
region (blue circle in Fig. 8 (a)) in grey matter to examine the
impact of KWIA on SNR. CNR was also estimated between
grey matter (blue circle in Fig. 8 (a)) and white matter (purple
circle in Fig. 8 (a)). The arterial input function (AIF), venous
outflow function (VOF) and tissue density signal curves were
measured in ROIs of the anterior cerebral artery, posterior part
of the superior sagittal sinus, and uniform grey matter region
without visible vessels, respectively.

Quantitative CTP analysis was performed in the same way
as the physical phantom study. The mean CBF value of the
whole brain were measured for all 6 datasets for comparison
across all the reconstructed perfusion maps.

E. Comparison of KWIA With Other Reconstruction
Algorithms

A comparison of KWIA with two other image reconstruc-
tion methods was performed on the clinical CTP data from
the perspective of noise suppression and CBF bias reduction.
The two methods included filtered back projection (FBP)
with ramp filter, the standard algorithm for clinical CT,
and simultaneous algebraic reconstruction regularized by total
variation (SART-TV) [39], a state-of-art technique for CT
denoising. The FBP was implemented using ASTRA toolbox
[26], [28], and TIGRE toolbox [40] was used for SART-TV
implementation. Among the 3 commonly used FBP filter func-
tions (Ram-Lak, Hann, Shepp-Logan), the Ram-Lak filter was
applied in the comparison study since low-pass windowing
functions like Hann and Shepp-Logan introduce trade-offs
between denoising and smoothing. Quantitative comparison
including SNR in GM (blue circle in Fig. 12) and WM
(purple circle in Fig. 12), CNR between GM and WM, and the
whole brain CBF measurements across 6 clinical datasets was
performed. To achieve performance-efficiency balance, default
hyperparameter values recommended by the TIGRE toolbox
were selected, including 100 as the number of iterations,
1 as the step size, 15 as the value of the parameter for
regularization strength, and 50 as the number of iterations in
TV regularization step.

IV. RESULTS

A. Digital Dynamic Phantom Simulation
Figure 2 shows the CT images (7th time frame) of 7

experimental conditions (full dose, 50% dose, 25% dose,
KWIA 50% 2 Rings, KWIA 50% 3 Rings, KWIA 25%
3 Rings, KWIA 25% 4 Rings), respectively. The insets show
two zoomed ROIs to highlight the SNR changes. In these two
ROIs, it can be seen that the SNR was degraded in 50% and
25% dose images compared to full dose images, which was
recovered by KWIA reconstruction. In addition, the subtracted
images between KWIA reconstructed images and full dose
images illustrate that no structured noise pattern or texture
changes were induced by KWIA reconstruction.

Table III lists the SNR values of the seven experimental con-
ditions respectively. The SNR of 50% and 25% dose images
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TABLE III
THE DIGITAL PHANTOM SNR AND CNR MEASUREMENT

IN DIFFERENT CONDITIONS

Fig. 3. The gamma variate dynamic time curves (full dose and 4 KWIA
cases) of 3 vessels with different sizes in digital phantom.

TABLE IV
RMSE, AUC, AND FWHM MEASUREMENT FOR 3 VESSELS WITH

DIFFERENT SIZE CONTAINED IN FORBILD PHANTOM

were about 73% and 52% of that in full dose images, which are
consistent with theoretical prediction. KWIA, however, was
able to recover the SNR of 50% and 25% dose images to be
comparable to that of the full dose images. Consistent with our
prediction, increased number of rings in KWIA reconstruction
led to greater SNR. The CNR results of low dose simulation
are consistent with our prediction as well, and KWIA was able
to recover CNR to full dose level.

Temporal signals of the 3 vessels with different sizes (2.5,
5, and 10 mm in diameter) are shown in Fig. 3. In 10 mm

Fig. 4. Scans of the CTP phantom. (a) and (b) contains the full dose
(200 mAs), low dose (120 mAs and 60 mAs), and 4 KWIA reconstruction
results. An ROI was enlarged to emphasize SNR change. And subtraction
images (window level and window center were adjusted for visual
observation) were made to show the structural change.

(Fig. 3 (a)) and 5 mm (Fig. 3 (b)) vessels, no apparent dif-
ference between KWIA and full dose curves can be observed.
This shows the capability of KWIA to preserve high temporal
resolution. However, slight reduction in the maximum peak
can be observed in 2.5 mm (Fig. 3 (c)) vessel of KWIA images,
likely due to temporal blurring caused by the averaging of
high frequency k-space data between neighboring time frames
in KWIA.

To quantitatively estimate the effect of temporal blurring,
temporal parameters including AUC, FWHM, and RMSE were
calculated and shown in Table IV. There is up to about 1%
difference in AUC and 7% difference in FWHM, respectively,
for the smallest vessel. The RMSE is generally small (< 0.01)
for 5 and 10 mm vessels, and increases up to 0.027 for the
2.5 mm vessel. The RMSE is smaller with higher dose and
fewer rings used.

B. Physical CTP Phantom Experiment
Figure 4 shows images (11th time frame) of the CTP

phantom scans at a single slice within the scan disk with
7 experimental conditions, including full dose (200 mAs),
60% dose (120 mAs), 30% dose (60 mAs), 60% dose with
KWIA 2 and 3 Rings, 30% dose with KWIA 3 and 4 Rings,
respectively. The zoomed insets illustrate SNR changes, while
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TABLE V
THE PHYSICAL PHANTOM SNR AND CNR MEASUREMENT IN

DIFFERENT CONDITIONS

Fig. 5. AIF, VOF and brain tissue signal curves of full dose and low
dose images reconstructed with KWIA. No apparent difference can be
observed all curves. The second peaks in AIF and VOF represent the
second-pass of contrast bolus.

the subtracted images show residual noise patterns between the
full dose and rest experimental conditions respectively. Similar
to the simulated digital phantom study, a greater level of noise
can be observed with real 60% and 30% dose scans, which
were recovered to be comparable to that of the full dose scan
with KWIA. There are residual edge signals in the subtracted
images between low doses and full dose images, due to slight
displacement of the phantom between scans. Nevertheless,
the consistency of the residual noise pattern and edge signals
across the low dose and KWIA reconstructed images suggests
that KWIA does not introduce structured noise pattern or
texture changes.

Table V lists the SNR and CNR measurements of the phan-
tom images under seven experimental conditions respectively.

Fig. 6. CBF maps (ml/100g/min) of the CTP phantom. Bias is introduced
in the low dose CBF maps, which is corrected by KWIA.

Fig. 7. Bar plots of the mean CBF values for the physical phantom
(a) and the clinical data (b) in full dose, low dose, and 4 KWIA conditions.
For physical phantom, each condition includes 2 measurements in 2
tissue regions. And for the clinical data, each condition contains 6 whole
brain measurements from 6 clinical datasets. Error bars indicate standard
deviation.

The measured SNR and CNR values of low dose scans strictly
follow the theoretical value predicted by Eq. 4, which validates
our low dose simulation performed in section 3. B and 3. D.
It can be seen that KWIA is able to recover SNR and CNR
of low dose scans to be comparable with that of the full dose
scan. The more rings used in KWIA, the greater SNR and
CNR recovery.

Figure 5 shows AIF, VOF and brain tissue signal curves.
No apparent differences can be observed between time curves
of full dose and low dose images reconstructed with KWIA
suggesting that that no temporal blurring was introduced by
KWIA.

Figure 6 shows quantitative CBF maps of the CTP phan-
tom with seven different experimental conditions. It can be
observed that an increasing bias was introduced in the CBF
map with decreasing radiation dose (from full dose to 60% and
30% dose). The bias was corrected with KWIA reconstruction
(see Fig. 7 (a)), and the resultant CBF maps were visually
similar to that of the full dose scan.

C. Clinical CTP Data Simulation
Figure 8 shows a representative image (15th time frame)

of clinical CTP data, including simulated 50% and 25%
doses and KWIA reconstructed images. The insets show two
zoomed ROIs to better illustrate the SNR difference. The SNR
reduction from full dose to 50% and 25% dose can be clearly
observed, whereas this SNR reduction can be successfully
recovered to be comparable to full dose level with KWIA
reconstruction. The subtraction images between KWIA and
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Fig. 8. Clinical CT images, 25% and 50% dose simulation from original
dose, and KWIA reconstructions. (a) and (b) contains the full dose,
low dose simulation, and 4 KWIA reconstruction results. Two ROI were
enlarged to emphasize SNR change. And subtraction images (window
level and window center were adjusted for visual observation) were made
to show the structural change. Visible SNR and CNR reduction can be
observed in 50% and 25% dose simulation cases, and KWIA’s ability of
SNR recovery can also be visually captured. In ROIs, the SNR changes
can be seen more clearly, the performance of noise reduction in ROI
1 and contrast recovery in ROI 2 can be demonstrated with KWIA.
No structural difference can be detected from subtraction images.

full dose images show no structured noise pattern or texture
changes introduced by KWIA reconstruction. Due to possible
motion occurring between frames, some low-level ringing
artifacts can be observed in subtraction images.

Table VI shows quantitative measurements of grey and
white matter ROIs across the 7 experimental conditions. The
SNR of simulated 50% dose images was 75% (WM) and
71% (GM) (70.7% in theory) of full dose SNR, and 54%
(WM) and 50% (GM) (50% in theory) for 25% dose images.
On 50% dose images, KWIA reconstruction with 2 and 3 rings
improved SNR to 92% and 100% of full dose level respectively
for white matter, and 89% and 95% respectively for grey
matter. On 25% dose images, KWIA reconstruction with 3 and
4 rings improved SNR to 89% and 95% of full dose level
respectively for white matter, and 74% and 84% for grey
matter. As for noise SD, simulated 50% dose images increased
SD to 1.38 (WM) and 1.37 (GM) (1.41 in theory) times of
full dose level, and simulated 25% dose images increased SD

TABLE VI
QUANTITATIVE MEASUREMENT OF SNR AND CNR IN CLINICAL DATA

Fig. 9. Dynamic contrast curves for venous (a), arterial (b), tissue ROI
(c), and an about 1 mm wide small vessel (d) of full dose case and
KWIA simulation cases. No apparent differences can be observed in all
4 signals. In arterial, tissue, and the small vessel signals, KWIA simulation
with 25% dose reduction tends to have a greater difference than KWIA
simulation with 50% dose reduction.

to 1.84 (WM) and 2.05 (GM) (2 in theory) times of full dose
level. KWIA reconstruction also decreased noise SD to full
dose level. The CNR measured between WM and GM was
0.38 (0.39 in theory) for 50% dose and 0.28 (0.28 in theory)
for 25% dose. KWIA also showed its ability to significantly
improve CNR.

The VOF, AIF, and tissue signal curves of full dose and
4 KWIA reconstructions are presented in Fig. 9 (a), (b),
and (c), respectively. The signal curves of 4 KWIA
reconstructions closely follow those of the full dose images.

To evaluate the potential impact of KWIA on small ves-
sels due to the averaging of high spatial frequency signals,
Fig. 9 (d) shows the dynamic signal curves of a small vessel
with a width about 1 mm. No apparent temporal smoothing
was observed for this small vessel with KWIA reconstructions.

Quantitative CBF maps of a clinical case are shown in
Fig. 10. Reduction of radiation dose to 50% and 25% intro-
duced a substantial bias in the quantification of CBF maps,
which was larger at 25% compared to 50% dose. However,
the CBF maps of KWIA reconstructions were able to sub-
stantially correct the bias, especially in KWIA 50% 3 Rings
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Fig. 10. CBF maps (ml/100g/min) of 2 clinical CTP cases. From top to
bottom are full dose, 50% and 25% dose with regridding reconstruction,
as well as KWIA 50% with 2 and 3 Rings, KWIA 25% with 3 and 4 Rings
respectively.

and KWIA 25% 4 Rings which are visually comparable with
the full dose images and show improved contrast between
grey and white matter. The quantitative CBF values of the
7 conditions are displayed as bar plots in Fig. 7 (b). Finally,
CBF values measured in whole brain between full dose and
each low dose or KWIA case are demonstrated by the Bland-
Altman plots in Fig. 11. CBF biases or mean differences were
obvious in low dose conditions (8.6 and 27.2ml/100g/min for
50% and 25% respectively), which were minimized or reduced
in all KWIA reconstructions. However, there was a small bias
(∼ 7ml/100g/min) between CBF values calculated with full
dose and KWIA 25% 4 Rings CTP data. Low dose conditions
also showed wider limits of agreement or 95% confidence
interval of CBF differences (10.4 and 13.7 ml/100g/min
for 50% and 25% dose respectively) compared with their
corresponding KWIA reconstructions with the same dose
(7.0 and 7.6 ml/100g/min for KWIA 50% with 2 and 3 rings,
respectively, and 9.1 and 7.8 ml/100g/min for KWIA 25%
with 3 and 4 Rings, respectively). The variability of scatters
was consistent across the graph, suggesting that the change of
difference does not depend on the average.

D. Comparison With Other Reconstruction
Algorithms

Figure 12 displays the CTP images and CBF maps of full
dose FBP (gold standard), 3 simulated 50% dose (Fig. 12 (a))

Fig. 11. Bland-Altman plots for comparisons of whole brain CBF values
measured between full dose and low dose conditions as well as low dose
with KWIA reconstructions.

and 3 simulated 25% dose (Fig. 12 (b)) reconstructed by FBP,
KWIA and SART-TV respectively. The SNR and CNR values
for CTP images, and mean CBF values for CBF maps are listed
in Table VII. The 50% and 25% dose FBP images exhibit large
image degradation (26% (GM) and 20% (WM) SNR reduction
for 50% dose, and 54% (GM) and 60% (WM) SNR reduction
for 25% dose) and CBF overestimation (19% increase for
50% dose, and 48% increase for 25% dose), whereas KWIA
yielded excellent reconstruction results comparable to the full
dose FBP (92% (GM) and 96% (WM) of full dose FBP for
50% dose, and 82% (GM) and 88% (WM) of full dose FBP
for 25% dose) without introducing smoothing effect or loss
of spatial resolution. The CBF bias due to 50% and 25%
dose, which were 10.6 and 27.2 ml/100g/min respectively,
was largely suppressed by KWIA to 2.3 and 9.1 ml/100g/min
respectively. SART-TV showed stronger denoising effect than
KWIA with SNR and CNR higher than those of full dose
FBP images. However, there was a slight over-correction of
CBF bias using SART-TV (-4.3 and -1.4ml/100g/min for 50%
and 25% respectively) and the reconstructed images appeared
smoothed. It might be possible to achieve better performance
of SART-TV by tuning hyperparameters to balance denoising
power and spatial smoothness. However, the tuning process of
SART-TV is constrained by the prolonged computation time,
which further limits the use of SART-TV in clinical CTP scans.

Table VII also lists the execution time (ET) of reconstructing
a 512-by-512 image from a 728-by-1152 sinogram using FBP,
KWIA, and SART-TV respectively. With the same imple-
mentation environment (MATLAB, Intel i5-9400F), it took
11.2 seconds for KWIA to reconstruct an image which was
similar to the reconstruction time of 9.3 seconds required by
FBP. In comparison, SART-TV took 265.8 seconds with a
graphic processing unit (MATLAB, GTX 1660 Ti).
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Fig. 12. Reconstructed images (top row of (a) and (b)) and CBF maps
(bottom row of (a) and (b)) with full dose FBP, 50% dose FBP, 25% dose
FBP, KWIA 50% 3 Rings, KWIA 25% 4 Rings, 50% dose SART-TV, and
25% dose SART-TV. Insets with magnified regions of images show SNR
and spatial smoothness of each reconstruction method.

TABLE VII
QUANTITATIVE COMPARISON AMONG FBP, KWIA, AND SART-TV

V. DISCUSSION

Projection imaging data such as CT can be related to the
spatial frequency domain (e.g., k-space in MRI) through the
central-slice theorem by performing 1-D FT of each projection
of an object, which is equivalent to a line through the center
of the 2-D FT plane (i.e., k-space). By converting the CT
sinogram into “k-space” data, we can adapt many innovative
MRI reconstruction algorithms to preserve high spatial and
temporal resolutions of undersampled CT data. In a previ-
ous study, we introduced an innovative image reconstruction

algorithm based on k-space weighted image contrast (KWIC)
[23], [41] for radiation dose reduction of CTP [24]. Our
preliminary results showed that KWIC was able to reduce the
radiation dose of existing CTP methods by 50-75% without
compromising imaging speed or quality. However, the original
KWIC algorithm requires rapid-switching pulsed X-ray at pre-
specified rotation angles – a hardware capability not available
on most commercial CT scanners.

In order to address this limitation, here we introduce a novel
algorithm termed k-space weighted image average (KWIA)
that preserves image quality (SNR and CNR), spatial and
temporal resolutions, as well as quantification accuracy of low-
dose CTP data (50-75% dose reduction) to be comparable to
those of standard CTP scans. Unlike KWIC which requires a
modified CT hardware, KWIA can be implemented by simply
reducing the tube current. In this work, we demonstrated the
feasibility of KWIA using both digital phantom and clinical
CTP data with simulated low doses, as well as a physical
CTP phantom with real low dose scans. Compared to existing
low dose CT techniques such as iterative reconstruction, our
approach is unique and has several advantages: 1) It is based
on Fourier based CT image reconstruction, does not make
assumptions of noise characteristics, and preserves the texture
and resolution of CT images; 2) It has a low computational
overhead and doesn’t affect the clinical workflow; and 3) It
does not require modification of existing CT hardware, and
therefore has a low barrier for clinical adoption. The k-space
noise at different frequencies is averaged when converting
into image space through FT [42], therefore KWIA improves
the SNR of CTP images without affecting the resolution,
texture or other characteristics. Previous studies have shown
that the accuracy of CTP quantification is highly dependent
on the noise level of CT images [43], [44]. Overestimation
of perfusion often occurs in the presence of substantial noise
using singular value decomposition (SVD) based deconvolu-
tion analysis. By recovering the SNR of low dose CTP images,
KWIA was able to correct the bias of perfusion quantification
with 50-75% dose reduction.

Only the applications of KWIA on 2D parallel beam and
fan beam CT were evaluated in this study. Nevertheless,
the theoretical principle of KWIA is applicable to low dose
3D cone beam CT (CBCT). Specifically, the central slice
theorem for 3D CBCT geometry states that 1D FT of any 1D
Radon data of a 3D object, which can be obtained indirectly
with Grangeat’s method, is identical to the same radial line in
the 3D k-space [45]. Across different time frames, KWIA will
be able to partition, weight and average these radial lines from
the center of the 3D k-space to the periphery, if a complete
3D Radon space can be obtained in CBCT. Previous studies
have also shown the reliability and efficiency of Fourier
based reconstruction for 3D CBCT [46]. Alternatively, for
CBCT with circular geometry, where only the middle plane
defined by the X-ray source trajectory has a complete set of
Radon data, approximate reconstruction [47] can be applied
on the projection data of the off-middle planes which can
be converted to k-space for KWIA processing (with the
caveat that the larger the cone angle, the less accurate the
approximation is).
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Despite KWIA’s potential to reduce CTP dose, it has a few
limitations. KWIA improves image SNR by averaging high
frequency k-space data with neighboring time frames, and is
therefore potentially more sensitive to patient head motion than
standard CTP scans. Another potential drawback of KWIA is
the temporal blurring of dynamic signal changes of fine vessels
and/or structures. As shown in Fig. 3, slight temporal blurring
can be observed in 2.5 mm vessel of KWIA images, but not in
vessels with 5 and 10mm sizes. Nevertheless, significant tem-
poral blurring of clinical CTP data with KWIA reconstructions
was not observed. The AIF and VOF curves reconstructed with
KWIA also matched well with those of standard CTP data,
and no apparent temporal signal deviations were observed for
a vessel with ∼1mm size. The potential temporal blurring of
KWIA may depend on various parameters such as the rate of
signal change and sampling rate of CTP, which merit further
evaluation. In addition, iterative reconstruction algorithms such
as SART-TV may have stronger denoising capability than
KWIA. Nevertheless, KWIA is more advantageous in terms
of the ease and robustness for implementation, computational
speed, and retainment of texture and resolution. Comparison
of KWIA with other iterative reconstruction and deep learning
based denoising methods should also be performed in future
studies. Lastly, the CBF bias reduction performance of KWIA
was only evaluated by the CBF maps generated from standard
SVD CTP analysis in this study. Alternative CTP analysis with
denoising capabilities such as Bayesian probabilistic method
need to be tested using KWIA reconstructed CTP images [48].

In this work, KWIA was applied to simulated low dose CTP
data with reduced X-ray tube current which has a relatively
straightforward relationship with SNR. It is also possible to
reduce tube voltage, the square of which is generally acknowl-
edged to be proportional to the received radiation dose [49].
The temporal window size or footprint of KWIA was kept
as short as possible to minimize potential temporal blurring in
this study. Nevertheless, the windowing function for averaging
neighboring time frames as well as the number and size of
rings in KWIA could be further optimized based on trade-offs
between SNR improvement and the loss of temporal resolu-
tion. Alternative functions such as inverse NUFFT (iNUFFT)
may be applied for regridding reconstruction. In the future,
deep learning based approaches may be combined with KWIA
to further improve its robustness in the presence of patient
head motion or other artifacts (e.g. streaking due to photon
starvation). Lastly, KWIA may be directly applied on CTP
data acquired with standard radiation dose to reduce noise and
enhance image contrast.

VI. CONCLUSION

In this research, we presented a new low dose CTP tech-
nique termed KWIA, with a constant reduced tube current
and projections averaging in outer k-space. The proposed
technique was evaluated using a digital phantom, a physical
phantom and clinical CTP data, and it can achieve considerable
dose-savings (50-75%) without compromising the image qual-
ity and perfusion metrics. Due to its robustness and simplicity,
KWIA may provide a promising method for reducing radiation
exposure to patients undergoing CTP exams.
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