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lterative Augmentation
Weakly-Supervised

of Visual Evidence for
Lesion Localization

In Deep Interpretability Frameworks:
Application to Color Fundus Images

Cristina Gonzalez-Gonzalo

Abstract— Interpretability of deep learning (DL) systems
is gaining attention in medical imaging to increase experts’
trust in the obtained predictions and facilitate their
integration in clinical settings. We propose a deep visu-
alization method to generate interpretability of DL clas-
sification tasks in medical imaging by means of visual
evidence augmentation. The proposed method iteratively
unveils abnormalities based on the prediction of a classi-
fier trained only with image-level labels. For each image,
initial visual evidence of the prediction is extracted with
a given visual attribution technique. This provides local-
ization of abnormalities that are then removed through
selective inpainting. We iteratively apply this procedure until
the system considers the image as normal. This yields
augmented visual evidence, including less discriminative
lesions which were not detected at first but should be
considered for final diagnosis. We apply the method to
grading of two retinal diseases in color fundus images:
diabetic retinopathy (DR) and age-related macular degen-
eration (AMD). We evaluate the generated visual evidence
and the performance of weakly-supervised localization of
different types of DR and AMD abnormalities, both qual-
itatively and quantitatively. We show that the augmented
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visual evidence of the predictions highlights the biomarkers
considered by experts for diagnosis and improves the final
localization performance. It results in a relative increase
of 11.2+2.0% per image regarding sensitivity averaged at
10 false positives/image on average, when applied to differ-
ent classification tasks, visual attribution techniques and
network architectures. This makes the proposed method a
useful tool for exhaustive visual support of DL classifiers in
medical imaging.

Index Terms—Interpretability, deep learning, visualiza-
tion, weakly-supervised detection, lesion localization, color
fundus imaging.

I. INTRODUCTION

EEP learning (DL) systems in medical imaging have

shown to provide high-performing approaches for diverse
classification tasks in healthcare, such as screening of eye
diseases [1], [2], scoring of prostate cancer [3], or detection of
skin cancer [4]. Nevertheless, DL systems are often referred
to as “black boxes” due to the lack of interpretability of
their predictions. This is problematic in healthcare applications
[5], [6], and hinders experts’ trust and the integration of
these systems in clinical settings as support for grading,
diagnosis and treatment decisions. There is thus an increasing
demand for interpretable systems in medical imaging that
could further explain models’ decisions. Defining an inter-
pretability framework as the combination of a DL system
to perform a classification task and a procedure for gener-
ating explainable predictions, several such frameworks have
been proposed in different medical applications and imaging
modalities [4], [7]-[17].

Among the integrated procedures, those based on visual
attribution have become very popular, such as the ones defined
and described in Table I: saliency [18], guided backpropa-
gation [19], integrated gradients [20], Grad-CAM [21], and
guided Grad-CAM [21]. These attribution methods provide
an interpretation of the network’s decision by assigning an
attribution value, sometimes also called “relevance” or “contri-
bution”, to each input feature of the network depending on its
estimated contribution to the network output [22]. This allows
to highlight features in the input image that contribute to
the output prediction and, consequently, the weakly-supervised
detection of objects. However, it has been shown for natural

For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE |
IMPLEMENTED VISUAL ATTRIBUTION METHODS
Name Definition Description

O Fcnn
Msar = =57 D

Saliency [18]
T OF cn

Meapp = 5;(1) s.t. Ri = 1Ri+1>01f1l>0R£+1’
= el fIH = ReLU(f!) and f! is
 the i-th feature map at convolutional layer /

Guided backpropagation [19] where RIT!

Integrated gradients [20] My =(I-D JUI W da

Mea-cam = ReLU(Y; alfh,

where ol = GAP(afglf’}(”), f!is the i-th feature map
at convolutional layer [ and GAP is the global average
pooling operation over the two spatial dimensions

Grad-CAM [21]

Guided Grad-CAM [2 1] ]\'[GG_C/\]\,] = ]\'1(;_(;/\3,1 ]W(;Bp

It indicates which local morphology changes in the image would lead to modifica-
tions in the network’s prediction.

It provides additional guidance to the signal backpropagated through ReLU activa-
tions from the higher layers, preventing backward stream of gradients associated to
neurons that decrease the activation of the output node.

The generated maps measure the contribution of each pixel in the input image to the
prediction. Instead of computing only the gradient with respect to the current input
value, this method computes the average gradient while the input varies linearly in
several steps from a baseline image (commonly, all zeros) to their current value.
The gradients backpropagated from the output to a selected convolutional layer are
used for computing a linear combination of the forward activation maps of that
layer. Only the pixels with positive influence on the output are maintained, and then
rescaled to the input size.

It combines guided backpropagation and Grad-CAM, in order to improve the
localization ability of the latter method.

images that these methods localize only the most discrimina-
tive parts of an object, instead of highlighting all parts that
are relevant for a complete explainability [23], [24].

When it comes to medical imaging, the integration of attri-
bution methods allows for the identification of regions discrim-
inant for the final diagnosis. This leads to weakly-supervised
localization of abnormalities, which can provide a clinical
explanation of the classification output without the need
for costly lesion-level annotations. Classification of disease
severity in color fundus (CF) images, the focus of this
paper, is one medical application where attribution methods
have been applied to generate explainable DL predictions
and weakly-supervised detection of retinal lesions. In [11]
and [12], saliency maps [18] were applied to justify deci-
sions on diabetic retinopathy (DR) and age-related macular
degeneration (AMD) classification tasks, respectively. In [13],
integrated gradients [20] was used to generate heatmaps for the
explanation of predicted DR severity levels. Class activation
maps (CAM) [25] were extracted in [14] and [15] also for
interpretability of DR diagnosis.

Although these interpretability frameworks have succeeded
at localizing abnormal areas related to the predicted diagnosis,
the aforementioned limitation of visual attribution methods
translates into the clinical domain. Since they localize only
the most significant regions, lesions that have less influence
on the classification result are ignored, although they could
be still important for disease understanding and grading [12],
[26]. For some medical imaging modalities and applications,
interpretability of abnormal predictions requires the localiza-
tion of different types of lesions of varying appearance and
histologic composition that can be simultaneously present and
be responsible for the predicted diagnosis. To overcome this,
in [11] and [12] different classifiers are used in parallel,
which yields localization of different types of abnormalities in
separate maps. This allows for differentiation of abnormalities,
but each input image must be processed several times and the
interpretability of the actual disease grading remains unclear.
Alternatively, to improve lesion localization, some frameworks
add customized postprocessing steps [11] or fine-tuning [15]
to the attribution methods; or propose tailored architectures
with additional interpretation modules [16], [17]. Nevertheless,
this conflicts with directly obtaining interpretability of the DL

system and hinders the adaptability and generalization among
DL classifiers and medical applications.

In this paper, we propose a novel deep visualization method,
as an extension to [27], that iteratively unveils abnormalities
responsible for anomalous predictions in order to generate a
map of augmented visual evidence for DL-based classifiers in
medical imaging. This is achieved by combining visual attribu-
tion and selective inpainting. The abnormal regions highlighted
by visual attribution are inpainted with surrounding local
information, guiding the attention to new relevant areas in
each iteration. This process also leads to a gradual decrease
in the classifier’s disease severity prediction, allowing to stop
the iterative augmentation once the classification converges to
a healthy prediction.

We introduce for the first time the use of selective inpainting
for weakly-supervised lesion localization, in order to overcome
the main limitation of visual attribution methods [12], [23],
[24], [26] and highlight less discriminative areas that might
also be relevant for the final diagnosis, locating abnormalities
of different types, shapes and sizes. In the proposed method,
we integrate an unsupervised technique [28] to perform the
selective inpainting.

Defined as a general approach, the proposed iterative
method is meant to be seamlessly integrated in diverse inter-
pretability frameworks with different DL classifiers and visual
attribution techniques, and without the need of additional
customized steps.

We apply the proposed method for the interpretation of
automated grading in CF images of two retinal diseases: DR
and AMD [29], [30]. For each diagnosis task, we classify
images by disease severity and analyze the interpretability per-
formance when the proposed iterative augmentation is applied.
We validate the initial and augmented visual evidence maps
qualitatively and, in contrast to most previous approaches,
we evaluate the performance for weakly-supervised localiza-
tion of DR and AMD abnormalities quantitatively. We show
that the method can be integrated with different visual
attribution techniques and different DL classifiers.

Our main contributions can be summarized as follows:

« We propose a novel iterative method for exhaustive

explainability of DL-based classification tasks in med-
ical imaging which combines the extraction of visual
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Overview of the proposed method applied to automated grading of diabetic retinopathy in color fundus images. The workflow to generate

the original prediction is depicted in green; the workflow for the proposed iterative visual evidence augmentation is depicted in blue. I, input image;
Fenn, convolutional neural network; ¥, prediction; thp,ed, prediction threshold; ¢, number of iteration; T, maximum number of iterations; .A, attribution

method; M, explanation map at iteration t; B, binary mask at iteration 14 inpainted image at iteration f, M, augmented explanation map.

attribution with selective inpainting, defining a sensible
stopping criterion based on the gradual decrease of the
predicted disease severity. It is the first time that inpaint-
ing is used in weakly-supervised lesion localization.

o Compared with our conference version [27], we present
an improved methodology in terms of generalizability,
validated both qualitatively and quantitatively. We present
a quantitative comparison of baseline visual attribution
methods for weakly-supervised lesion localization and an
extensive evaluation of the proposed method, analyzing
its agnosticism when applied to different classification
tasks (automated grading of DR and AMD in CF images),
visual attribution techniques, and network architectures.

e We perform the first quantitative validation of
weakly-supervised lesion-level detection for AMD
classification.

Il. METHODS

The first part of this section describes the proposed iterative
visual evidence augmentation, depicted in Fig. 1. The proposed
method iteratively unveils areas relevant for a final diagnosis,
so as to generate exhaustive visual evidence of classifica-
tion predictions and, consequently, weakly-supervised lesion-
level localization. The second part of the section describes
the image-level classification used to provide the DL-based
decisions to be interpreted.

A. lterative Visual Evidence Augmentation

Let I € R"™"3 be an image with size m x n pixels
(and 3 color channels) and a corresponding label y, Feup :
I — 3§ € R a convolutional neural network (CNN)
optimized for a classification task using a development set
T = {1, y1),..., (s, y9)}, and A+ R™"S3, Frpp) —>
M <€ R™*" an attribution method, such as the ones defined
in Table I. For a given I, a prediction § is obtained with
Fenn- If the image is considered abnormal (or referable in the
case of retinal images), an explanation map M is generated
by applying A, highlighting areas of I that are discriminant
for y.

The explanation map M is binarized to identify the areas
where selective inpainting is then applied, in order to remove
abnormalities that have been already localized. This procedure
is applied iteratively to increase attention to less discrim-
inative areas and generate an augmented explanation map
M, by increasing the normality of the input image in each
iteration. Algorithm 1 includes the pseudocode to calculate
the augmented visual evidence, and Fig. |1 shows an overview
of the proposed method.

In this work, normality is defined based on the predicted
value § = Fepp(@), such that an image is considered
normal (or non-referable in the case of retinal images) if
¥ < thprea. The prediction threshold thpreq is defined in
a validation subset of Z by means of Receiver Operating
Characteristic (ROC) analysis. The maximum number of
iterations 7 was set to 20. Regarding binarization of the
explanation maps, we use the Otsu method [31] to compute
thp;, and yield an adaptative thresholding. For selective
inpainting, we use the Navier-Stokes method [28] with a
radius i, of size 3, based on fluid dynamics to match
gradient vectors around the boundaries of the region to
be inpainted. The final augmented explanation map M is
obtained by an exponentially decaying weighted sum of the
iteratively generated maps M, with a = 0.6.

B. Image-Level Classification

The proposed iterative visual evidence augmentation must
be built upon a DL classifier that reaches acceptable per-
formance, so as to achieve reliable interpretability. Fc,,
was therefore optimized for each classification task: clas-
sification of CF images for detection of DR (FLR) and
AMD (FAMD)

Prior to classification, every CF image goes through a
preprocessing stage, where the bounding box of the field
of view is extracted, then rescaled to 512 x 512 pixels,
and lastly, contrast-enhancement based on [32] is applied
to reduce local differences in lighting and among images.
The contrast-enhanced image is used as input for the
classifier.
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Algorithm 1 Iterative Visual Evidence Augmentation
1: Input: Input image I

2: Trained CNN classifier F,,

3 Prediction threshold t/ peq

4: Maximum number of iterations T

5 Selective inpainting radius 7;)

6: Output: Augmented explanation map M

- Initialize t =0 and I' =1
: Calculate initial prediction y = Fgp, (I')

o

o

: while (3 > thpreq) & (t <T) do
10 M = AT, Foun)
11:  Binarize M’ by thresholding:
B’(x,y): 1, ifMt()f,Y)thbin,
0, otherwise
12:  Inpaint I’ given mask B':
I' = Selective inpainting(I', B, rinp)
13:  Calculate new prediction § = Fe,, (I')
4 t=t+1
15: end while

16: Compute augmented explanation map M:

M=, e M

The CNNs were based on the VGG-16 architecture [33],
pre-trained on ImageNet. They were adapted to input images
of size 512 x 512 by applying a stride of 2 in the first
layer of the first convolutional block, and using a valid
instead of padded convolution for the first layer of the last
convolutional block. Dropout layers (p = 0.5) were added in
between the fully-connected layers. We followed a regression
approach in which the output of a network consists of a single
node, representing a continuous value which is monotonically
related to predicted disease severity. The loss was defined
as the mean squared error between the prediction and the
reference-standard label. For each classification task, the opti-
mal classifier F.,, was selected regarding the performance
on a validation set by means of receiver operating charac-
teristic (ROC) analysis, computing the area under the ROC
curve (AUC), in order to assure good discrimination between
referable and non-referable cases. Additionally, the ability to
discriminate between disease stages was measured by means
of the quadratic Cohen’s weighted kappa coefficient (k) [34].
Sensitivity (SE) and specificity (SP) were computed at the
optimal operating point of the system, which was considered
to be the best tradeoff between the two values, i.e., the point
closest to the upper left corner of the graph. This allowed for
extraction of the optimal threshold thp,.q for referability in
the corresponding validation set.

[1l. DATA
A. Image-Level Classification

The Kaggle DR dataset [35] was used for training,
validation and testing of FCDmIf. Images were acquired

by different CF digital cameras with varying resolution.

Each image was graded by DR severity by a human
reader, regarding the International Clinical Diabetic Retinopa-
thy (ICDR) severity scale [36], with stages 0 (no DR),
1 (mild non-proliferative DR), 2 (moderate non-proliferative
DR), 3 (severe non-proliferative DR), and 4 (proliferative
DR). Categories 0 and 1 are considered non-referable DR
and categories 2 to 4 referable DR. This database is divided
in two sets: the Kaggle training set (35,126 images from
17,563 patients; one photograph per eye) and the Kaggle
test set (53,576 images from 26,788 patients; one photograph
per eye).

The classifier for AMD, FAMD | was trained, validated and
tested on the Age-Related Eye Disease Study (AREDS) dataset
[37]. AREDS was designed as a long-term prospective study
of AMD development and cataract in which patients were
examined on a regular basis and followed up to 12 years. The
AREDS dbGaP set includes digitized CF images. In 2014, over
134,000 macula-centered CF images from 4,613 participants
were added to the set (for each patient-visit available, one
photograph per eye with their corresponding stereo pairs).
We excluded images regarding the criteria in the AREDS
dbGaP guidelines [37], and 133,820 images were used in
this study. We adapted the grading in AREDS dbGaP, which
is based on the AREDS severity scale for AMD [38], for
reference grading: stage 0 (no AMD), 1 (early AMD), 2
(intermediate AMD), and 3 (advanced AMD, with presence of
foveal geographic atrophy (GA) or choroidal neovasculariza-
tion (CNV)). Categories 0 and 1 are considered non-referable
AMD; categories 2 and 3, referable AMD.

B. Interpretability and Weakly-Supervised Lesion-Level
Detection With Iterative Visual Evidence Augmentation

DiaretDB1 [39] was used for the assessment of the inter-
pretability and weakly-supervised detection of DR abnor-
malities. This dataset consists of 89 CF images with
manually-delineated areas performed by four medical experts.
Four different types of DR lesions were annotated: hem-
orrhages, microaneurysms, hard exudates and soft exudates.
As proposed in [39], we defined the reference standard
as binary masks containing areas labelled with an average
confidence level of 75% between experts.

For the assessment of the localization of AMD lesions,
we used CF images from the European Genetic Database
(EUGENDA), a large multi-center database for clinical and
molecular analysis of AMD [40]. AMD severity is defined for
each image according to the Cologne Image Reading Center
and Laboratory (CIRCL) protocol [40]. We generated a dataset
divided in two groups. The first group consists of 52 images
with non-advanced AMD stages [41]. Two trained graders
manually outlined all visible drusen (without sub-dividing
types) in each image, and the binary masks generated during
consensus were used as reference standard. In order to assess
lesion detection in advanced AMD cases, we created a second
group with 12 images with advanced AMD (6 images with
advanced dry AMD and 6 images with advanced wet AMD).
One professional grader manually delineated in each image all
visible AMD-related lesions. To define the reference standard,
we generated two binary masks for each image in this group:



GONZALEZ-GONZALO et al.: ITERATIVE AUGMENTATION OF VISUAL EVIDENCE FOR WEAKLY-SUPERVISED LESION LOCALIZATION

3503

drusen (including hard, soft distinct, soft indistinct and optic
disk drusen) and advanced-AMD lesions (including CNYV,
GA and subretinal hemorrhages). In total, 64 images with
manually-annotated abnormalities constituted our EUGENDA
dataset.

IV. EXPERIMENTAL SETUP
A. Image-Level Classification
The DR classifier FPR was trained on the 80% of the

cnn
Kaggle training set (28,098 images) and validated on the
remaining 20% (7,028 images) for 400 epochs. Regarding
training configuration, we used the Adam optimizer [42] with a
learning rate of 0.0001; data augmentation and class balancing
were applied during the training phase to reduce overfitting.

In order to assess the integration of the proposed iterative
visual evidence augmentation with different classification
network architectures, we performed an additional validation
with the Inception-v3 architecture [43] for the classification
task of DR grading. As for this alternative DR classifier,
fCanf,m, a dropout layer (p = 0.5) was placed between
the final global average pooling layer and the regression
node, and it was trained for 100 epochs with the training
configuration used previously.

For AMD classification, we applied five-fold
cross-validation: the 4,613 patients in the AREDS dataset were
randomly divided in five groups, and all the images of each
patient were included in the corresponding group. Each fold
had an average number of 26,764 images. Three folds were
used for training, one for validation and one for testing, with
rotation of the folds. In total, five different classifiers were
trained for 80 epochs each, using the previously mentioned
training configuration. We selected as FAMD the model which

cnn
yielded best performance on its corresponding test fold.

B. Interpretability and Weakly-Supervised Lesion-Level
Detection With Iterative Visual Evidence Augmentation

The images in the DiaretDB1 dataset and in the EUGENDA
dataset were classified for DR and AMD severity, respectively,
with the corresponding image-level classifier. Images whose
disease severity prediction was over thp..q were considered
as referable cases and consequently eligible for interpretabil-
ity and evaluation of weakly-supervised lesion detection.
Similarly to [13], visual evidence of non-referable predictions
does not provide meaningful information, since the proposed
augmentation aims to unveil iteratively abnormalities while the
prediction decreases until non-referability is reached.

The binary masks with annotated lesions were used to
assess if the obtained visual evidence highlighted actual
abnormalities, and to compare between initial and augmented
visual evidence. Free-response ROC (FROC) curves were used
for the evaluation of weakly-supervised lesion localization
in each dataset and obtained as follows: the points in the
interpretability maps with highest confidence values were
iteratively located and a circular area of detection with radius r
was defined around. If this area overlapped with any annotated
lesion in the reference standard, that lesion was considered a
true positive detection; otherwise, a false positive detection.

TABLE Il
QUANTITATIVE RESULTS ON THE KAGGLE TEST SET
IN THE LEADERBOARD OF THE KAGGLE DR
DETECTION COMPETITION [35]

# Method K

1 Min-Pooling 0.84957
2 0_O 0.84478
3 Reformed Gamblers 0.83936
11 [RU.nl] AI for an Eye 0.80536
- FOR o3 0.80192
12 Ryan Munion 0.79638
19 Bingyuan Liu 0.76797
- FDOR 0.76738
20 Ilya Kavalerov 0.76522

Metric: &, quadratic Cohen’s weighted kappa coefficient.

The values of the map within the detection area were then
masked out, and each lesion in the reference standard detected
as true positive was considered only once. For the localization
of DR lesions, we defined r = 7px (1.4% image dimensions);
for AMD, r = 10px (1.9% image dimensions). From each
FROC curve, we extracted the value of sensitivity averaged
over all images at a rate of 10 false positives per image
on average (SE@10FP). Data bootstrapping [44] was used
to assess statistical significance of the obtained metric in
each experiment. We computed the 95% confidence intervals
(CI), as well as the p-values between initial and augmented
SE@10FP values (ratio between bootstrap dataset samples in
which the initial performance does not increase after augmen-
tation and the total number of bootstrap dataset samples).

In order to analyze the adaptability of the proposed iterative
augmentation to different interpretability methods, we imple-
mented different visual attribution techniques, included in
Table I: saliency [18], guided backpropagation [19], integrated
gradients [20], Grad-CAM [21], and Guided Grad-CAM [21].
Regarding Grad-CAM, due to the extremely coarse maps gen-
erated by this method when the gradient information from the
last convolutional layer is used [21], we used the information
from a shallower convolutional layer (when using VGG-16: the
output of the the third block’s last convolutional layer (Block
3 conv 3); when using Inception-v3: the output of the second
Inception reduction module (Mixed 8)).

V. RESULTS
A. Image-Level Classification
The DR classifier F2® obtained an AUC of 0.93, with a

cnn
SE of 0.86 and SP of 0.88, on the Kaggle test set. The model
achieved a x of 0.77 for discrimination between DR stages. For
the alternative classifier based on the Inception-v3 architecture,
.7-'515,1.03, AUC on the Kaggle test set was 0.93, SE and SP
were 0.86 and 0.90, respectively, and x was 0.80.! Table II
allows to compare the obtained results on the Kaggle test set
with those obtained by other entries in the leaderboard of the

Kaggle DR detection competition [35].

IThe ROC analyses of the DR classifiers can be found in Fig. S1 (available
in the supplementary files/multimedia tab).
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Fig. 2. Example of visual evidence generated with different methods for one image of DiaretDB1, predicted as DR stage 3 with the DR classifier
based on VGG-16. For each method: initial visual evidence (left) and augmented visual evidence (right).

TABLE IlI
QUANTITATIVE RESULTS FOR AMD DETECTION ON THE AREDS SET

Method AUC SE SP K K1
0.85 0.92 0.77
DCNN-A WS PP [2] 0.94 ©01)  (0.01) ©.01)
0.91 0.92 0.87 0.78
Ours (overall performance) 0.97 ©01)  (0.01) (©01) (0.01)

Metrics: AUC, area under the receiver operating characteristic curve; SE,
sensitivity; SP, specificity; x and x;, quadratic and linear Cohen’s weighted
kappa coefficients. Values in parentheses indicate standard deviations. DCCN-
A, deep convolutional neural network, algorithm A; WS, with stereo pairs;
PP, patient partitioning.

Regarding AMD classification, the overall performance in
the AREDS dataset corresponded to an AUC of 0.97, with SE
of 0.91 and SP of 0.92 at the optimal operating point; k¥ was
0.87. Table III includes a comparison of the metrics obtained
on the whole AREDS set with those obtained in the state of the
art [2]. The model with best performance on the corresponding
test fold and selected as FAMD obtained an AUC of 0.97, with

cnn

SE of 0.92 and SP of 0.93, and a x of 0.88.2

2The ROC analysis on the whole AREDS set, the ROC analysis of the
optimal model, and the performance for each individual model can be
found in Fig. S2, Fig. S3 and Table SI (available in the supplementary
files/multimedia tab).

B. Interpretability and Weakly-Supervised Lesion-Level
Detection With Iterative Visual Evidence Augmentation

FDR considered 75 images of the DiaretDB1 to have
referable DR. Initial and augmented visual evidence were
extracted for these cases. Fig. 2 shows one example from the
DiaretDB1 set with the initial and augmented maps for all
the implemented visual attribution methods. Table IV includes
the quantitative assessment of weakly-supervised localization
of four types of DR lesions (hemorrhages, microaneurysms,
hard and soft exudates) for the different methods. It contains
the SE@10FP values for each type of DR lesion, compar-
ing between initial and augmented visual evidence.> Fig. 3
illustrates the FROC curves for the initial and augmented
visual evidence per type of lesion generated with guided
backpropagation, which is the method that reached the highest
average performance, as observed in Table VII.

When ]-'C?“If’ iv3 Was used as DR classifier, 67 images in
the DiaretDB1 dataset were graded as referable DR. The
quantitative results of weakly-supervised detection per DR
lesion for the different visual evidence methods can be found
in Table V, with and without iterative augmentation.

3 An additional example from DiaretDB1 for qualitative assessment can be
found in Fig. S4 (available in the supplementary files/multimedia tab).
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SE@10FP (95% Cl) VALUES FOR WEAKLY-SUPERVISED LESION LOCALIZATION OF DR LESIONS USING VGG-16 ARCHITECTURE

Integrated
gradients

Grad-CAM

Guided Grad-CAM

Block 3 conv 3

Block 3 conv 3

0.41 (0.32-0.51)

0.58 (0.49-0.68)***

0.43 (0.28-0.53)

0.37 (0.25-0.48)

0.66 (0.51-0.75)
0.71 (0.61-0.78)*

0.29 (0.19-0.40)

0.11 (0.04-0.22)

0.25 (0.16-0.35)

0.11 (0.04-0.21)

0.32 (0.20-0.45)
0.37 (0.25-0.50)

0.64 (0.49-0.73)

0.43 (0.31-0.56)

0.63 (0.48-0.72)

0.43 (0.32-0.57)

0.56 (0.44-0.69)
0.68 (0.57-0.78)***

0.83 (0.66-0.98)

0.58 (0.38-0.81)

0.70 (0.47-0.97)

TABLE IV
DR lesion Visual evidence Saliency Guided .
backpropagation
Hemorrhages Initial 0.41 (0.31-0.53) 0.65 (0.54-0.75)
Augmented 0.50 (0.41-0.61)* 0.74 (0.67-0.80)***
Microaneurysms Initial 0.39 (0.26-0.52) 0.42 (0.29-0.54)
Augmented 0.33 (0.22-0.45) 0.50 (0.37-0.62)*
Hard exudates Initial 0.32 (0.22-0.43) 0.57 (0.42-0.69)
Augmented 0.38 (0.28-0.49)* 0.62 (0.50-0.74)*
Soft exudates Initial 0.45 (0.21-0.63) 0.67 (0.44-0.88)
Augmented 0.58 (0.36-0.80) 0.93 (0.71-1.00)***

0.98 (0.94-1.00)*** 0.60 (0.33-0.81) 0.90 (0.75-1.00)*

Evaluation performed in cases classified as referable DR in the DiaretDB1 dataset (75/89 images). Shade indicates higher performance after iterative augmentation;
bold indicates highest performance per lesion type. P-values: p < 0.05 (*); p < 0.01 (¥%); p < 0.001 (***).

TABLE V
SE@10FP (95% Cl) VALUES FOR WEAKLY-SUPERVISED LESION LOCALIZATION OF DR LESIONS USING INCEPTION-V3 ARCHITECTURE

DR lesion Visual evidence Saliency Guided Integrated Grad-CAM Guided Grad-CAM
backpropagation gradients Mixed 8 Mixed 8

Hemorrhages Initial 0.24 (0.15-0.33) 0.67 (0.57-0.76) 0.40 (0.31-0.52) 0.07 (0.04-0.11) 0.60 (0.51-0.71)
Augmented 0.32 (0.23-0.44)***  0.76 (0.67-0.83)***  0.55 (0.43-0.65)*** 0.09 (0.04-0.16) 0.64 (0.51-0.76)
Microaneurysms Initial 0.23 (0.12-0.36) 0.55 (0.44-0.68) 0.24 (0.13-0.37) 0.00 (0.00-0.00) 0.50 (0.37-0.63)
o Augmented 0.24 (0.13-0.37) 0.59 (0.46-0.69) 0.22 (0.11-0.37) 0.03 (0.00-0.10)%*#* 0.44 (0.32-0.59)
Hard exudates Initial 0.17 (0.09-0.26) 0.58 (0.50-0.73) 0.71 (0.58-0.85) 0.39 (0.27-0.53) 0.66 (0.54-0.77)
) Augmented 0.20 (0.10-0.29) 0.62 (0.55-0.78) 0.70 (0.55-0.84) 0.31 (0.20-0.42) 0.65 (0.52-0.81)
Soft exudates Initial 0.13 (0.00-0.32) 0.50 (0.23-0.77) 0.60 (0.38-0.79) 0.03 (0.00-0.18) 0.57 (0.35-0.80)
Augmented 0.23 (0.02-0.45) 0.73 (0.54-0.93)* 0.83 (0.71-0.98)** 0.03 (0.00-0.12) 0.63 (0.41-0.88)

Evaluation performed in cases classified as referable DR in the DiaretDB1 dataset (67/89 images). Shade indicates higher performance after iterative augmentation;
bold indicates highest performance per lesion type. P-values: p < 0.05 (*); p < 0.01 (*%); p < 0.001 (***).
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Fig. 3.  Lesion localization performance of initial and augmented
visual evidence per type of lesion in referable DR predictions from the
DiaretDB1 dataset, when using the DR classifier based on VGG-16 and
guided backpropagation for visual attribution.

o
o
o
)

FAMD oraded 40 images in the EUGENDA set as referable
AMD. Visual interpretability was extracted for these cases.
Fig. 4 includes one example for qualitative evaluation of
weakly-supervised AMD lesion localization in this set for
all the implemented visual attribution methods, showing the
initial and final visual evidence after iterative augmentation.
The quantitative assessment of localization of drusen and
advanced-AMD lesions can be found in Table VI. In order
to analyze the influence of the advanced AMD cases in lesion
localization performance, separate quantitative evaluation was
carried out on the 52 images with non-advanced AMD

stages in the EUGENDA set and results were also included
in Table VI.*

The global adaptability of the proposed method across
classification tasks, network architectures and visual attri-
bution methods can be observed in Table VII. There is a
global relative increase of 11.24+2.0% SE@10FP per image
in lesion-level localization performance after applying the
proposed iterative visual evidence augmentation.

V1. DISCUSSION

The main highlights of this paper can be summarized as

follows:

1) We proposed a novel iterative approach based on
the combination of visual attribution and selective
inpainting to generate exhaustive interpretability of the
predictions made by DL-based classifiers in medical
imaging.

2) We introduced for the first time the use of selec-
tive inpainting for weakly-supervised lesion localization.
We applied selective inpainting on the relevant regions
unveiled by visual attribution. Small modifications in the
image based on surrounding local information allow to
guide the attention of the classifier to new relevant areas
in the next iteration.

3) We defined a sensible stopping criterion for the iterative
process: the method leads to a gradual decrease in the
predicted disease severity until the image is considered
as healthy/normal by the classifier.

4) We introduced a method that requires no modifications
during or after the training phase of the classifier, neither

4 An additional example from the EUGENDA set for qualitative assessment
can be found in Fig. S5 (available in the supplementary files/multimedia tab).
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®
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Fig. 4. Example of visual evidence generated with different methods for one image of EUGENDA, predicted as AMD stage 2 (ground-truth label:
AMD stage 2). For each method: initial visual evidence (left) and augmented visual evidence (right).

TABLE VI

SE@10FP (95% CI) VALUES FOR WEAKLY-SUPERVISED LESION LOCALIZATION OF AMD LESIONS USING VGG-16 ARCHITECTURE

DR lesion Visual evidence Saliency Guided Integrated Grad-CAM Guided Grad-CAM
backpropagation gradients Block 3 conv 3 Block 3 conv 3
All EUGENDA (40/64 classified as referable AMD)
Drusen Initial 0.22 (0.17-0.28) 0.38 (0.33-0.43) 0.37 (0.32-0.42) 0.03 (0.01-0.05) 0.25 (0.20-0.31)
Augmented 0.26 (0.21-0.32)***  0.44 (0.39-0.50)***  0.45 (0.40-0.50)*** 0.02 (0.01-0.03) 0.26 (0.20-0.33)
Advanced lesions Initial 0.92 (0.72-1.00) 0.83 (0.63-1.00) 0.98 (0.95-1.00) 0.27 (0.00-0.50) 0.88 (0.76-0.97)
Augmented 0.92 (0.72-1.00) 0.89 (0.75-1.00) 0.97 (0.90-1.00) 0.38 (0.11-0.65) 0.88 (0.68-1.00)
Non-advanced EUGENDA (28/52 classified as referable AMD)
Drusen Initial 0.22 (0.17-0.30) 0.42 (0.37-0.48) 0.40 (0.35-0.46) 0.02 (0.01-0.05) 0.27 (0.22-0.34)
Augmented 0.27 (0.21-0.34)** 0.51 (0.45-0.57)***  0.50 (0.44-0.56)%** 0.01 (0.00-0.02) 0.28 (0.21-0.37)

Shade indicates higher performance after iterative augmentation; bold indicates highest performance per lesion type. P-values: p < 0.05 (*); p < 0.01 (*¥); p < 0.001

additional integration of postprocessing steps in the
interpretability framework.

5) We  extensively  validated the method for
weakly-supervised lesion localization and analyze
its adaptability when applied to different classification
tasks, visual attribution techniques and network
architectures.

Qualitative assessment of the visual evidence generated by
the different implemented interpretability methods shows that
each DL classifier is able to learn visual features relevant to
the classification task at hand during the training process. For
those images classified as referable, most visual features cor-
respond to actual abnormalities. The selective inpainting step

in the proposed iterative augmentation modifies the abnormal
regions highlighted by visual attribution with surrounding local
information, guiding therefore the attention of the classifier to
new relevant areas in each iteration. This allows to emphasize
and refine the delineations of detected abnormalities, as well as
to unveil abnormalities that were not highlighted at first but are
still related to referable stages and relevant for final diagnosis,
independently of anomaly appearance. Consequently, selective
inpainting also leads to a gradual decrease in the classifier’s
disease severity prediction, allowing to stop the iterative
augmentation once the classification converges to a healthy
prediction. Visual evidence augmentation can be especially
observed in severe cases, where the augmented maps differ
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TABLE VIl
AVERAGE LESION LOCALIZATION PERFORMANCE (SE@ 10FP (95% Cl)) FOR EACH VALIDATED CLASSIFICATION
TASK AND NETWORK ARCHITECTURE

Classification task Visual evidence Saliency Guided Integrated Grad-CAM Guided Grad-CAM
and architecture backpropagation gradients

DR. VGG-16 Initial 0.39 (0.29-0.48) 0.58 (0.47-0.66) 0.54 (0.46-0.61) 0.39 (0.30-0.48) 0.56 (0.45-0.67)

i Augmented 0.45 (0.37-0.54)* 0.70 (0.61-0.75)*** 0.61 (0.55-0.66)** 0.38 (0.29-0.47) 0.67 (0.59-0.73)**
DR, Inception-v3 Initial 0.19 (0.13-0.27) 0.58 (0.49-0.69) 0.49 (0.40-0.58) 0.12 (0.09-0.18) 0.58 (0.50-0.67)
’ Augmented 0.25 (0.16-0.33) 0.68 (0.60-0.77)** 0.58 (0.49-0.68)** 0.11 (0.08-0.16) 0.59 (0.50-0.72)
AMD. VGG-16 Initial 0.57 (0.47-0.63) 0.61 (0.51-0.70) 0.68 (0.65-0.70) 0.15 (0.01-0.27) 0.57 (0.50-0.62)
’ Augmented 0.59 (0.48-0.65)* 0.67 (0.60-0.72) 0.71 (0.67-0.74)** 0.20 (0.06-0.33) 0.57 (0.46-0.64)

Shade indicates higher performance across lesion types after iterative augmentation; bold indicates highest performance across lesion types per classification task and

architecture. P-values: p < 0.05 (¥); p < 0.01 (¥%); p < 0.001 (¥**).

more from the initial ones due to a larger number of iterations
needed to reach non-referability.

A. Adaptability of Iterative Visual Evidence Augmentation

As observed in Table VII, the method can be adapted to
different visual attribution methods. Nevertheless, it can be
observed that iterative augmentation works better when the
visual attribution is not coarse, but well localized. Appropriate
localization in the initial visual evidence allows to unveil
abnormalities of different types, shapes and sizes, such as
the ones related to retinal diseases. This can be observed
when guided backpropagation is used for visual attribution.
Iterative augmentation improves localization performance for
AMD lesions (Table VI), as well as for all DR lesions
(Table IV, Table V, Fig. 3), where it reaches the highest
average performance (Table VII). This corresponds with sharp
and localized visual evidence, as observed in Fig. 2 and Fig. 4.
Fig. 5 includes additional examples for qualitative assessment
of weakly-supervised lesion detection when this method is
applied.

On the other hand, as observed in Fig. 2 and Fig. 4, the maps
generated using Grad-CAM are hardly detailed, even when
a shallower convolutional layer is used for implementation.
This was also reported in [15], where CAM were applied
with specific fine tuning to improve DR lesions localization.
Higher level of coarseness prevents these methods from being
a suitable option for interpretability of classification tasks
that require precise lesion localization and, in these cases,
augmentation does not help, as shown also quantitatively in
Tables IV, V and VI. Guided Grad-CAM, due to the combi-
nation with guided backpropagation, provides more localized
visual evidence and good detection performance especially
for most DR lesions, although not better than using guided
backpropagation alone, as seen in Table VII.

As for saliency maps, which are more localized than
Grad-CAM, augmentation shows visually and quantitatively
improvement for detection of most lesions, although final
sensitivity values are not high. These maps were used in [11],
but adjustment of the training loss and customized, complex
postprocessing steps were required to reduce the inherent
noise.

Integrated gradients yields better general performance than
saliency and Grad-CAM, but maps are more noisy than those
obtained with guided backpropagation. Iterative augmenta-
tion enhances the localization of AMD lesions, reaching the
highest average performance, as seen in Table VII, and certain

DR lesions. However, the coarseness and noise of the maps
hinders the augmentation’s performance for extremely small
lesions, such as microaneurysms. Integrated gradients was
used in [13], showing support for DR graders, improving
confidence and time on task, although no quantitative results
of lesion localization were included.

Regarding the adaptability of the proposed method to
different architectures, the results in Table V show that
weakly-supervised localization of lesions can be generated
with different and deeper networks, such as Inception-v3, and
improved by means of iterative augmentation.

B. Quantitative Validation of Weakly-Supervised
Lesion-Level Localization

When it comes to quantitative validation for
weakly-supervised DR abnormalities detection, only a few
of the proposed interpretability frameworks in the literature
perform it, such as the one proposed by Quellec et al [11],
even though it allows to better understand if the generated
visual evidence contains the biomarkers considered by the
experts for diagnosis. Additionally, the detection criteria used
to generate FROC curves, i.e., interpretation of true positive
and false positive detections, usually differs across validation
studies. Nevertheless, these curves still allow for certain
comparison among methodologies. For our quantitative
analysis, we generated FROC curves and extracted the
corresponding SE@10FP values as a metric indicative for
performance, with additional data boostrapping to analyze the
statistical significance of the obtained values.

Table VII shows that the proposed iterative augmentation
improves detection across averaged DR lesions for differ-
ent visual attribution methods and network architectures.
Regarding specific lesion detection, Tables IV and V show
that augmentation yields improved localization especially for
hemorrhages and soft exudates, reaching higher SE@10FP
values than those obtained in [11] (hemorrhages: 0.71, soft
exudates: 0.90). As for hard exudates, augmentation only
improves localization for certain attribution techniques, and a
SE@10FP higher than the highest value reached in our paper
is achieved in [11] (0.80). Although augmentation also shows
improvement in localization of microaneurysms for some
techniques, these lesions remain harder to detect, mainly due
to its extremely small size. This was also quantitatively shown
in [11], although their method achieved higher SE@ 10FP
(0.61). The higher detection performance of [11] for some
of the lesions might be due to the use of an ensemble of
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Fig. 5. Examples of visual evidence generated with guided backpropagation for two images in the DiaretDB1 dataset, predicted as DR stage 2 (first
row) and 3 (second row), and for two images in the EUGENDA dataset, predicted as AMD stage 2 (third row; ground-truth label: AMD stage 2) and

predicted as AMD stage 3 (fourth row; ground-truth label: AMD stage 3).

classifiers optimized for the weakly-supervised detection of
each lesion type. However, their validation showed that cus-
tomized modifications in the classification’s training procedure
and additional postprocessing were required to improve the
visual evidence generated by their framework. This decouples
the generated maps from the interpretability of the classifier’s
prediction. Our method, on the other hand, can be seamlessly
integrated in interpretability frameworks, without customized
training or postprocessing steps, with varying visual attribution
techniques and network architectures.

To the extent of our knowledge, we provide the first
quantitative evaluation of weakly-supervised localization of
AMD lesions in CF images. As observed in Table VI,
advanced-AMD lesions, which should never be missed in grad-
ing settings, are initially detected with most interpretability
techniques. Augmentation improves drusen detection, although
general performance is lower than for DR lesions. This might
be related to different aspects. On one hand, AMD grading and
annotation of related lesions pose several difficulties to human

experts [45], which transfers to the training of DL systems.
On the other hand, there is a wide variety of drusen types
[46] that are grouped in the presented validation. Table VI
illustrates improvement in drusen detection when advanced
cases are excluded, i.e., drusen present in advanced AMD
stages are harder to unveil, as well as harder for experts
to grade [45]. Interpretability of AMD detection will benefit
from a validation with further differentiation of drusen types.
This would help identify classification burdens and consequent
aspects for training optimization.

C. Limitations and Future Work

Regarding the selective inpainting step in the proposed
method, when it comes to small and compact lesions, the sur-
rounding information used to inpaint usually belongs to
healthy areas of the image, facilitating the inpainting process
and the classification’s convergence. On the other hand,
the neighbouring areas of large and diffuse abnormalities
tend to include both healthy and unhealthy information.
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Fig. 6. Detailed comparison between the input image and the resulting
inpainted image after applying iterative augmentation to the visual
evidence generated for an image in the DiaretDB1 dataset using guided
backpropagation as attribution method. lyg, original image; I, input
image; thp,ed, prediction threshold; t, number of iteration; Mt, explanation
map at iteration £, It, inpainted image at iteration t; M, augmented
explanation map.
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Fig. 7. Visualization of the iterative augmentation process applied to
the visual evidence generated for an image in the EUGENDA dataset
using guided backpropagation as attribution method. I g, originalimage;
I, input image; thp,ed, prediction threshold; f, number of iteration; Mt,
explanation map at iteration £ It, inpainted image at iteration t M,
augmented explanation map.
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The classifier’s attention is then maintained on a given region
for several iterations, which contributes to a refinement in
lesion detection, but might also introduce certain overseg-
mentation. Regarding the classification’s convergence, this
results in an increased required number of iterations, or lack
of convergence, in the case of images with large, advanced
lesions.

Another limitation of using selective inpainting is the impos-
sibility to ensure if the modified images are within the original
distribution used to train the classifier. Currently, we assume
that the training set includes enough variability so as to
allow the small local changes in the images introduced by
this process to fall within its distribution and the classifier’s
predictions to be meaningful. As an indicator, we can observe
the proportion of images that converge to a healthy prediction
after applying the proposed iterative process. Regarding DR
detection, 83% of the processed referable images converged
to a healthy prediction, averaged across visual attribution
methods and network architectures. As for AMD detection,
an average of 70% images converged, increasing to 74% when
advanced AMD cases were excluded. Fig. 6 and Fig. 7 allow
to analyze this aspect qualitatively, by visually inspecting the
inpainted images after each iteration and at the end of the
process.’ However, future work would benefit from integrating
techniques, such as approaches to leverage the uncertainty
in the classifier’s decisions [47], to quantitatively determine
if inpainted images fall within the original distribution and
ensure the classifier’s predictions are meaningful.

In this work, we used an unsupervised inpainting technique
[28] which yielded satisfactory visual results and fast process-
ing times during iterative augmentation. Future work might
include more advanced inpainting techniques, at pixel-level
or patch-level, or also trainable with healthy images, such as
generative models [48] or context encoders [49].

There are other methods for visual evidence that we have
not implemented but that might be interesting to consider for
future comparison and integration of iterative augmentation.
For instance, layer-wise relevance propagation and its variants
[50], [51]. They can be directly applied to a trained classifier
to extract interpretability of the predictions and might benefit
from iterative augmentation.

Although the proposed method allows to generate an aug-
mented map of visual evidence agnostic to anomaly type and
appearance for each prediction, differentiation among detected
abnormalities can be useful for a complete explainable diagno-
sis. In [12], saliency maps were extracted from three different
AMD-related classifiers (presence of late-AMD, drusen, and
pigmentary abnormalities), yielding one interpretability map
per classification task. An ensemble of classifiers for DR
grading was used in [11], where one model provided the
final DR grade and other models were optimized to provide
a map for a given DR lesion type. These solutions allow for
separate and optimized interpretability of predictions related to
disease grading with respect to a certain lesion type. However,

5 Additional examples from the DiaretDBl and EUGENDA sets for
qualitative assessment can be found in Fig. S6-Fig. S9 (available in the
supplementary files/multimedia tab).

each input image must be processed several times and with
multiple maps there is no global and direct interpretation of
the actual disease classification. In the future, interpretability
of a given classification task will benefit from using the
knowledge contained in the corresponding trained network
also for differentiation of the lesions included in the visual
evidence maps.

The integration of other techniques might improve the
usability of the proposed method and help increase trust in the
output of the DL classifiers where applied. For example, quan-
tifying and providing information about the uncertainty of the
system’s decisions [47], as previously mentioned, or exploiting
the features learned by the system not only for visual evidence
of decisions but also for semantic interpretation [52]. This
would allow for better understanding of the features learned
by the classifier in the training process and their impact on
the final predictions, leading to identify different types of
lesions and how they relate to disease severity, as well as new
biomarkers significant for disease diagnosis.

VII. CONCLUSION

We proposed a deep visualization method for exhaustive
visual interpretability of DL classification tasks in medical
imaging. The method allows to iteratively increase attention
to less discriminative areas that should be considered for
final diagnosis, while being adaptable to different classi-
fication tasks, network architectures and visual attribution
techniques. We showed that visual evidence of the predic-
tions can achieve weakly-supervised lesion-level detection and
include the biomarkers considered by the experts for diagno-
sis. Augmented visual evidence improves the final detection
performance, being agnostic to anomaly type and appearance
and performing better with sharp and localized initial visual
attribution. This makes the proposed method a useful tool for
supporting the decisions of medical DL-based classification
systems, in order to increase the experts’ trust and facilitate
their final integration in clinical settings.
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