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Reconstruction in Cerenkov
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Abstract— Cerenkov luminescence tomography (CLT) is
a promising imaging tool for obtaining three-dimensional
(3D) non-invasive visualization of the in vivo distribution
of radiopharmaceuticals. However, the reconstruction per-
formance remains unsatisfactory for biomedical applica-
tions because the inverse problem of CLT is severely
ill-conditioned and intractable. In this study, therefore,
a novel non-negative iterative convex refinement (NNICR)
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approach was utilized to improve the CLT reconstruction
accuracy, robustness as well as the shape recovery capa-
bility. The spike and slab prior information was employed to
capture the sparsity of Cerenkov source, which could be for-
malized as a non-convex optimization problem. The NNICR
approach solved this non-convex problem by refining the
solutions of the convex sub-problems. To evaluate the per-
formance of the NNICR approach, numerical simulations
and in vivo tumor-bearing mice models experiments were
conducted. Conjugated gradient based Tikhonov regular-
ization approach (CG-Tikhonov), fast iterative shrinkage-
thresholdingalgorithm based Lasso approach (Fista-Lasso)
and Elastic-Net regularization approach were used for
the comparison of the reconstruction performance. The
results of these experiments demonstrated that the NNICR
approach obtained superior reconstruction performance
in terms of location accuracy, shape recovery capability,
robustness and in vivo practicability. It was believed that
this study would facilitate the preclinical and clinical appli-
cations of CLT in the future.

Index Terms— Cerenkov luminescence tomography,
sparse reconstruction, inverse problem, tumor.

I. INTRODUCTION

CERENKOV radiation emerges when a charged particle
moves faster than the speed of light in the propagation

medium [1]. It can be employed for in vivo animal optical
imaging as a new imaging modality named Cerenkov lumines-
cence imaging (CLI), first reported in 2009 [2]. Recently, CLI
has attracted lots of attention and been widely and successfully
used in preclinical and clinical studies, such as tumor detection
[3], [4], lymph node visualization [5], biomedical imaging with
Cerenkov luminescence endoscopy [6], cancer drug therapy
monitoring [7], human thyroid imaging [8] and tumor resection
margins assessment [9]. CLI combines the advantages of
optical imaging and radionuclide imaging, which is attractive
for biomedical applications [10]. There exist lots of clinically
available radioisotopes for CLI, such as 18F, 64Cu, 68Ga, 89Zr,
90Y and 198Au [11], which promotes the clinical applications
of CLI technology. As a planar imaging modality, CLI could
not achieve the depth information and three-dimensional (3D)
distribution of radioactive probes [12]. Therefore, Cerenkov
luminescence tomography (CLT), a novel 3D optical imag-
ing technique, has been developed by combining the CLI
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technology and the 3D anatomical imaging modality [13].
The 3D anatomical imaging modality, such as computed
tomography (CT) or magnetic resonance imaging (MRI),
provides a spatial outline of the imaging subjects. Based on
the outline and Cerenkov luminescence images, the 3D distri-
bution of Cerenkov source is acquired by solving the diffusion
equation [14]. It is considered that CLT is a highly promising
imaging modality for clinical applications owing to its semi-
quantitative analysis capability of in vivo radiopharmaceuticals
distribution [15].

However, it still remains challenging to acquire satisfactory
reconstruction performance of CLT effectively [16]. Most
energy of the Cerenkov radiation concentrates in the short
wavelength window of the spectrum, which is severely scat-
tered by the biological tissues [17]. Besides that, there also
exist plenty of noises in the CLT reconstruction process. The
inverse problem of CLT is severely ill-conditioned, resulting
in the high complexity of CLT reconstruction. In order to
acquire better reconstruction performance, some prior knowl-
edge could be applied to the CLT reconstruction process.
It can be divided into three types for the prior knowledge
used in the CLT reconstruction, including the animal structure
prior, the Cerenkov spectrum prior and the Cerenkov source
distribution prior. For the animal structure prior, the first CLT
reconstruction for small-animal imaging was conducted with
a homogeneous mouse model by assuming that the optical
properties were consistent and uniform [13]. Hu et al. first
employed the different properties of the biological tissues to
establish a heterogeneous mouse model, which reduced the
systematic error and showed a remarkable improvement of the
tumor location accuracy [12]. For the Cerenkov spectrum prior,
the multispectral reconstruction method divided the Cerenkov
spectrum into several sub-spectral bands to reduce the ill-
conditioned level of CLT reconstruction, which improved
the reconstruction accuracy comparing to hybrid spectrum
method [18]. Based on the multispectral method and the opti-
cal characteristics of each sub-spectral band, a more accurate
multispectral hybrid method was proposed by Liu et al [19].
Besides that, a modified weight multispectral reconstruction
strategy was presented by Guo et al., which greatly improved
the reconstruction accuracy and stability [20]. For Cerenkov
source distribution prior, the single photon emission com-
puted tomography (SPECT) was used as the prior distribution
of the source, which reduced the complexity of CLT [12].
In addition, the sparsity of the Cerenkov source was commonly
employed as the prior knowledge, which was often expressed
as the regularization method such as L2-norm regulariza-
tion (Tikhonov method) [13], L1-norm regularization (Lasso
method) [20] and Lp-norm (0 < p < 1) regularization
(non-convex method) [21]. However, these methods have their
inherent defects and the CLT reconstruction results need to be
further improved. L2-norm regularization was over-smoothed
and L1/Lp-norm regularization was over-sparse, which may
decrease the reconstruction accuracy and the shape recovery
capability of Cerenkov source. The shape recovery capability
of bioluminescence tomography and fluorescence molecular
tomography was improved successfully in several related
works [22], [23]. It was also significant for CLT to enhance the
shape recovery capability of Cerenkov source for analyzing the

tumor quantitatively. Recently, Mousavi et al. proposed a novel
iterative convex refinement (ICR) approach to encourage the
sparsity for signal recovery [24]. This work conveyed us a new
idea to encourage the sparsity of Cerenkov sources reasonably
for sparse reconstruction in CLT, which has the potential
to overcome the over-smooth or over-sparse weaknesses in
traditional CLT reconstruction approaches. Additionally, since
the 3D distribution of Cerenkov source is non-negative in
practice, the solution vector of the inverse problem is required
to be non-negative as well.

In this study, a novel non-negative iterative convex refine-
ment (NNICR) approach was proposed to improve the CLT
reconstruction accuracy, enhance the shape recovery capability
and strengthen the reconstruction robustness. For the NNICR
approach, the spike and slab prior was utilized to encourage the
sparsity, which transformed the inverse problem of CLT into a
non-convex optimization problem. A series of non-negative
convex problems were solved by the interior-point convex
quadratic programming algorithm to approach a sub-optimal
solution of the non-convex problem. This iteration process
was named as the non-negative iteration convex refinement.
The non-negative constraint was designed according to the
non-negativity of the Cerenkov source distribution. To our
knowledge, this study first introduces the spike and slab prior
to the optical reconstruction, and transforms this non-convex
problem into a sequence of convex sub-problems. The spike
and slab prior could encourage the sparsity of Cerenkov source
better and therefore the NNICR approach is expected to obtain
the reasonably sparse reconstruction source and improve the
CLT reconstruction accuracy as well as the shape recovery
capability.

To evaluate the performance of the NNICR approach,
numerical simulations and in vivo experiments were
implemented. Conjugated gradient based Tikhonov reg-
ularization approach (CG-Tikhonov) [13], fast iterative
shrinkage-thresholding algorithm based Lasso approach (Fista-
Lasso) [25] and Elastic-Net regularization approach [16]
were used for comparison. Compared with these traditional
approaches, the reconstruction results of NNICR showed sig-
nificant improvement in terms of location accuracy, shape
recovery capability, robustness and in vivo practicability.

II. MATERIALS AND METHODS

A. Cerenkov Photon Propagation Model

Absorption and scattering effects exist in the process of
Cerenkov photon propagation in biological system, which can
be analytically modeled by the radiative transfer equation
(RTE). It is nearly impossible to solve the RTE analytically,
since it has several interdependent variables. Thus, the RTE
is commonly simplified as the diffusion approximation model
by assuming that the scattering effect is predominant over the
absorption effect in the detectable Cerenkov spectrum used for
CLT [21], [26]. The diffusion equation and the Robin boundary
condition in CLT can be jointly formulated as [27], [28]:{

−∇ [D (r) · ∇� (r)] + μa (r) · � (r) = S (r)

� (r) + 2A (n) [v (r) · D (r)] = 0, r ∈ ∂�
(1)
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where ∇ denotes the vector differential operator and ∂� is the
boundary of the biological system. � (r) is the energy flow
per unit area defined as � (r) = ∫

4π ϕ
(
r, ŝ

)
d� · μa (r) is

the absorption coefficient at position r. A (n) is a parameter
merely depending on the medium refractive index defined as
A (n) = 1+R f

1−R f
, in which R f is the inner reflection coefficient.

D (r) represents the medium diffusion coefficient defined as:

D (r) = 1

3 [μa (r) + (1 − g) · μs (r)]
(2)

in which g is known as the medium anisotropy factor and
μs (r) is the scattering coefficient. The finite element method
(FEM) framework is employed for the discretization of the
diffusion equation in CLT such that it can be depicted as the
linear equation as:

AX = � (3)

where A denotes the optical transport system matrix, X is the
distribution of optical source and � represents the luminous
flux of the vertexes. Actually, the inner vertexes in � and
the corresponding rows in A should be removed because only
the luminous flux of the surface vertexes can be measured in
practice, as follows:

AS X = �S (4)

where AS is the measured system matrix, �S is the measured
vector. Let nS be the number of surface vertexes, nV be
the number of all vertexes, and thus A ∈ RnS×nV . Using
the sparse distribution of radiopharmaceuticals as the prior
information, the inverse problem can be formulated as a
minimal optimization problem:

min ‖X‖0

s.t.
∥∥As · X − � s

∥∥
2 < ε (5)

where ‖X‖0 denotes the L0-norm of X and ε is a small value.

B. Non-Negative Iterative Convex Refinement for CLT

In this section, a novel NNICR approach was put for-
ward to solve the inverse problem of CLT. Introducing the
prior information to capture the sparsity of Cerenkov source
distribution was a typical example of optical reconstruction
strategies, which could enhance the reconstruction accuracy
and robustness in CLT. L0-norm induced prior is closest to the
sparsity definition, but it is a NP-hard problem, which cannot
be solved directly. The most widely used examples to express
the sparsity are Gaussian prior (L2-norm minimization) and
Laplacian prior (L1-norm minimization, also known as lasso
method). In this study, a novel suitable sparsity promoting
prior called as spike and slab prior was induced into the CLT
reconstruction, which was widely used in sparse reconstruction
and Bayesian inference [29]. The spike and slab prior assumes
that every regression coefficient Xi can be modeled as the joint
of two densities as:

Xi ∼ (1 − wi ) δ0 + wi Pi (Xi ) (6)

where wi controls the structural sparsity of the signal and
ranges from 0 to 1. δ0 is the indicator function at zero (spike)
and Pi (slab) is a suitable prior distribution for non-zero
value of Xi . If wi is close to zero, Xi tends to remain zero.

Since the indicator function is an unbounded Dirac function,
any inference from the posterior density for Eq. (6) is ill-
defined. Approximation of spike term with a narrow Gaussian
function is a commonly used method. The slab term is often
defined as a Gaussian function:

Pi (Xi ) ≈ N
(

0, σ 2λ−1
)

(7)

where N (·) denotes the Gaussian function and σ 2λ−1 repre-
sents the variance of the Gaussian function. Inspired by the
Bayesian compressive sensing theory, a hierarchical Bayesian
framework is employed to estimate the Cerenkov source dis-
tribution, which is precisely formulated as follows [30], [31]:

�S|AS, X, γ , σ 2 ∼ N
(

As · X, σ 2 I
)

(8)

X |γ , λ, σ 2 ∼
p∏

i=1

γiN
(

0, σ 2λ−1
)

+ (1 − γi ) δ0 (9)

γ | k ∼
p∏

i=1

B (κi ) (10)

where B (·) is the Bernoulli distribution and γ is the binary
indicator variable for every element of X . Thus, Xi = 0 if γi

is zero, otherwise Xi follows Gaussian distribution with mean
0 and variance σ 2λ−1. The parameter γi controls the sparsity
level of X by activating γi or not. Based on the maximum a
posteriori (MAP) theory [32], the optimal X, γ are acquired
as the following equation:(

X∗, γ ∗) = arg max X,γ

{
f
(

X, γ |AS,�
S
, k,λ, σ 2

)}
(11)

According to related work [24], the MAP estimation problem
(11) is equivalent to the following minimization optimization
problem:(

X∗, γ ∗) = arg minX,γ

∥∥∥�S − AS ∗ X
∥∥∥2

2

+ λ ‖X‖2
2 +

nV∑
i=1

ρiγi (12)

where ρi is a parameter defined as:

ρi = σ 2 log

(
2πσ 2 (1 − κi )

2

λκ2
i

)
(13)

Eq. (12) offers greater generality in capturing sparsity of X
and has broad applicability in sparse recovery and image
restoration. However, it is a non-convex mixed-integer pro-
gramming involving the binary indicator variable γ and is
not easily solvable using traditional convex optimization meth-
ods. Several ways are attempted to simplify the optimization
problems. Yen et al. changes the last term of Eq. (12) to
ρ ‖X‖0 and the optimization problem is solved by using
majorization-minimization algorithm [29]. A relaxation of
L0-norm to L1-norm will simplify the optimization problem to
the widely used Elastic-Net regularization approach. However,
these indirect approaches would reduce the accuracy of the
solutions. The NNICR is developed to solve Eq. (12) directly
to obtain the non-negative Cerenkov source distribution. The
central idea of the NNICR approach is to generate a series of
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convex optimization sub-problems and refine the solution of
previous iteration by solving a modified non-negative convex
optimization sub-problem. At iteration n of NNICR, the indi-
cator variable is replaced with the normalized ratio as:

γ n
i = Xi

μn−1
i

(14)

where μn−1
i is the average value of optimal X∗

i obtained from
iteration 1 to n-1 and defined as follows:

μn−1
i = 1

n − 1

n−1∑
k=1

Xk
i (15)

Xi

μn−1
i

is expected to converge to γi , if the solution X con-

verges to a point in R
nV . In each iteration, NNICR solves

a non-negative convex quadratic programming problem as
follows [24]:

Xn = arg minX≥0

∥∥∥� S − AS X
∥∥∥2

2

+ λ ‖X‖2
2 +

nV∑
i=1

ρi
Xi

μn−1
i

(16)

where X converges to a sub-optimal solution of Eq. (12).
At the termination where the solution converges, the final
ratio

X∗
i

μn
i

is equal to zero if X∗
i = 0 and converges to 1 if

X∗
i 	= 0. Hence, the ratio

Xi
μn

i
matches the value of γi in

both cases. Therefore, γi could be replaced with Xi
μn

i
and thus

the non-convex problem is changed to a series of convex
optimization problems. These sub-problems can be solved by
the interior-point convex quadratic programming algorithm
[33], [34]. This algorithm using the logarithmic barrier func-
tion during minimization, which leads to the intrinsic non-
negativity of each sub-problem and the NNICR approach
achieves the non-negative reconstruction results finally. More
details about the interior-point convex quadratic programming
algorithm are provided in the Supplemental Materials. There-
fore, the NNICR approach for solving the inverse problem
of CLT can be summarized in Algorithm 1. In addition,
the convergence analysis of the NNICR approach is also
provided in the Supplemental Materials.

Algorithm 1 NNICR Approach for CLT
Preprocess

1) Segment CT data into different tissues.
2) Map the CLI images to the CT data.

Input: Calculate the measured system matrix AS and mea-
sured vector �S.
Initialization: Let μ0 = (

AS)T
� S, iteration index n = 1.

Repeat
Step 1: Utilize the interior-point convex quadratic program-
ming algorithm to solve Eq. (16).
Step 2: Update μn

i by Eq. (15).
Step 3: Increase iteration index n = n + 1.
Until

∥∥Xn − Xn−1
∥∥ ≤ tol.

Output: X∗ = Xn−1.

Fig. 1. Numerical simulation settings. (A) The torso section of the
digital mouse model used for numerical simulations. (B) The tetrahedral
mesh of the digital mouse model applied in the inverse problem of CLT.
(C) Two spherical sources (S1 and S2) were implanted into the liver area.
(D) Cylindrical source (S) was implanted into the liver area. The 3D view
and axial view were displayed.

TABLE I
OPTICAL COEFFICIENTS USED IN THE EXPERIMENTS

C. Numerical Simulations

Several numerical simulations based on a heterogeneous
digital mouse model [35] were conducted to assess the recon-
struction performance of the NNICR approach. CG-Tikhonov,
Fista-Lasso and Elastic-Net approaches were used for com-
parison. More details about the parameter selection process of
these approaches were provided in the Supplemental Materials.
The torso section of the digital mouse model with a height
of 26 mm was chosen and divided into seven tissues, including
bone, heart, stomach, liver, kidney, lung and muscle (Fig. 1A).
The empirical optical properties of different tissues at wave-
length 650 nm used for all the numerical simulations and in
vivo experiments were displayed in Table I [21]. The selected
torso section of the digital mouse model was discretized into
a uniform tetrahedral mesh by Amira 5.2 (Visage Imaging,
Australia), which consisted of 10770 mesh nodes and 55735
tetrahedral elements (Fig. 1B) in the reconstruction process.
Three simulation experiments were conducted in order to
verify the performance of NNICR approach comprehensively.
Firstly, the dual-source simulation was designed to evaluate the
location accuracy. Secondly, the cylindrical source reconstruc-
tion was employed to verify the location accuracy and shape
recovery capability. Thirdly, the anti-noise simulation was
conducted to test the reconstruction robustness. In addition,
CG-Tikhonov approach, Fista-Lasso approach and Elastic-Net
approach were used for comparisons. All processes of the
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TABLE II
CERENKOV SOURCE SETTINGS IN NUMERICAL SIMULATIONS

simulations were implemented on a personal computer with
Intel(R) Core(TM) i7-4790K CPU @ 4.00Hz and 16.0GB
RAM.

For the dual-source reconstruction simulation, two spherical
sources with a radius of 1 mm and the same intensity were
implanted in the liver of the digital mouse model (Fig. 1C).
The center coordinates of the two sources were (7.5, 22,
12) mm and (7.5, 15, 12) mm, respectively. Thus, the center-
to-center separation between the two sources was 7 mm. The
sources (S1 and S2) were displayed with blue color in 3D view
and axial view. A cylindrical source with a radius of 1 mm
and a height of 2 mm was set inside the mouse abdomen for
the second numerical simulation (Fig. 1D). The center of the
cylinder was (7.5, 20, 12) mm. Furthermore, the cylindrical
source implanted mouse was also used for the anti-noise
performance test. Gaussian noise with a ratio of 10% was
added to the surface flux signals as the noise interference.
Each anti-noise test was run three times. The same intensity
was set in order to compare the location accuracy, shape
recovery capability and anti-noise performance of the proposed
algorithm fairly. Summarily, the Cerenkov source settings of
all numerical simulations were listed in Table II.

D. In Vivo Experiments

All the experimental female BALB/c nude mice (4-6 weeks,
15-20 g) were purchased from the Beijing Vital River Labora-
tory Animal Technology Co. Ltd. All the animal experiments
were conducted under the protocols approved by the Institu-
tional Animal Care and Use Committee, Chinese Academy of
Sciences. All surgical and imaging procedures were performed
under isoflurane gas anesthesia and all efforts were made
to reduce the pain of experimental mice. 4T1 breast tumor
cells were cultured and employed to establish the 4T1 breast
cancer xenografts. The radiotracer [18F]-Fluoro-2-deoxy-d-
glucose (18F-FDG) used for in vivo experiments was provided
by the Department of Nuclear Medicine, Peking University
Cancer Hospital, Beijing, China.

In this study, two in vivo experiments, including the
single-tumor reconstruction and dual-tumor reconstruction,
were conducted to verify the performance of the NNICR
approach. In the single-tumor reconstruction experiment,
4T1 breast cancer cells (∼1 × 107) were subcutaneously
injected to construct the single breast tumor-bearing mouse.
The tumor was allowed to grow for one week. Then,
800±50 μCi 18F-FDG was injected into the tumor-bearing
mouse via the tail vein under the anesthesia with 2% isoflu-
rane. 40 min later, the surface white images and Cerenkov

luminescent images were acquired by the electron-multiplying
charge-coupled device (EMCCD) of our CLT imaging system
after the injected 18F-FDG accumulated to the bladder and
tumor [36]. In addition, the micro-CT module achieved the 3D
structural images. These images were employed to accomplish
the reconstruction of CLT. In the dual-tumor reconstruction
experiment, two adjacent breast tumors with a distance of
∼10 mm were constructed by injecting ∼1 × 107 cells,
respectively. Other experimental operations were similar to
those of the single-tumor reconstruction. The CLI signal of
the bladder area was blocked with a small black cardboard
to compare the dual-tumor reconstruction performance. The
positron emission tomography (PET) images were obtained to
verify the real tumor areas. Lastly, the tumors were taken out
from the mice and the hematoxylin and eosin (H&E) stain was
performed to verify the property of the resected tissues.

E. Evaluation Metrics

Several evaluation metrics were used to quantify the recon-
struction performance. Location error (LE) was used to evalu-
ate the position accuracy. First, weighted location (WL) refers
to the reconstructed coordinate obtained by weighting the
coordinates of all nodes with reconstructed source energy,
which is formulated as follows:

W L (X) =
n∑

i=1

Xi nodei (17)

where nodei = (xi , yi , zi ) is the coordinate of the i-th node,
and X is the reconstructed source vector. LE is defined as the
distance between the weighted location of the true source and
that of the reconstructed source as:

L E = ‖W L (X r) − W L (X t )‖ (18)

where X r and X t are the distribution vectors of the recon-
structed source and the true source, respectively. Dice coeffi-
cient is used to access the overlap level of the reconstructed
area and the actual area:

Dice = 2
|A ∩ B|

|A| + |B| (19)

where A and B are reconstructed source area and the true
source area, respectively. Dice coefficient (DC) reflects the
shape similarity degree of two objects, and it ranges from
zero to one. The higher Dice coefficient is, the higher shape
similarity of two objects is. The root mean square error
(RMSE) is used to measure the difference between the true
values X and the reconstructed values Y [36]:

RM SE =
√∑N

i=1 (X (i) − Y (i))2

N
(20)

where N is the number of samples. Smaller RMSE means that
the reconstructed values are closer with the true values.
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Fig. 2. Results of the dual-source reconstruction. The reconstructed sources using four different approaches were displayed in 3D view, axial view
(Z = 12 mm), Coronal view (X = 7.5 mm) and sagittal view (Y = 15 mm, Y = 22 mm). The true Cerenkov sources were depicted with blue spheres in
the 3D view and white cycles in the slice view. Zoom-in view of the reconstruction results providing a closer look at the distribution of optical signals
was put aside the original images.

III. RESULTS

In this section, the reconstruction performance of the
NNICR approach was evaluated in terms of location error,
shape similarity, robustness and in vivo practicability using
numerical simulations and in vivo experiments. This section
shows the results of four experiments, including dual-source
reconstruction, cylindrical source reconstruction, anti-noise
performance test and in vivo reconstruction.

A. Dual-Source Reconstruction

The reconstructed Cerenkov dual spherical sources using
different approaches were illustrated in 3D, axial, sagittal and
coronal views, respectively (Fig. 2). In 3D view, the actual
sources were shown in blue and the reconstructed areas
were shown with the red meshes. It is obvious that the
center of the 3D mesh reconstructed by the NNICR approach
is closer the true sources than other approaches. In slice
views, the true Cerenkov source areas were denoted with the
white circle or rectangle and the color regions represents the
reconstructed Cerenkov source areas by different approaches.
It is clearly shown that the reconstructed sources by NNICR
approaches are closer to the centers of true sources in all

TABLE III
QUANTITATIVE COMPARISON IN DUAL-SOURCE RECONSTRUCTION

slice views. To analyze the results quantitatively, the LE of
S1, S2 and total (S1+S2) and the RMSE were calculated and
summarized in Table III. Quantitative analysis demonstrated
that the reconstruction result of NNICR had the minimum
LE of 0.40 mm for S1 and 0.66 mm for S2 compared
with the other approaches. In addition, the NNICR approach
obtained the smallest RMSE of 3.54. NNICR was proved to
improve the reconstruction accuracy successfully compared
with CG-Tikhonov, Fista-Lasso and Elastic-Net approaches.

B. Cylindrical Source Reconstruction

We compared the reconstruction performance of the NNICR
approach with other approaches using the cylindrical source
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Fig. 3. Results of cylindrical source reconstruction. (A) The reconstructed Cerenkov sources using four different approaches were showed in 3D
view, axial view (Z = 12 mm), coronal view (X = 7.5 mm) and sagittal view (Y = 20 mm). Zoom-in view of the reconstruction results providing a closer
look at the distribution of optical signals was put aside the original images. (B) The Cerenkov intensity distribution of the reconstruction results along
the y-axis of actual Cerenkov source center (the white dotted line in the axial view). (C) The LE of reconstruction results using different approaches.
(D) The DC comparison of four approaches.

simulation in terms of the shape recovery capability (Fig. 3).
The reconstructed sources were also displayed in 3D, axial,
sagittal and coronal views to provide more details (Fig. 3A).
It was found that the reconstructed source by NNICR approach
was more similar to the true source and had fewer image
noises. The 3D mesh of reconstructed source by NNICR had
the better overlap with the true source. The Cerenkov intensity
distribution of the reconstruction sources along the white dot-
ted line in the axial view also revealed that NNICR approach
showed the highest similarity to the true source (Fig. 3B).
The quantitative comparison was conducted using LE and DC
(Fig. 3C-D). NNICR and Fista-Lasso had much smaller LE
compared with CG-Tikhonov and Elastic-Net (Fig. 3C). The
LE of NNICR was the least among four approaches. In terms
of the shape recovery capability, CG-Tikhonov provided an
over-smooth reconstruction, while the reconstruction result of
Fista-Lasso was too sparse. The DCs of CG-Tikhonov and
Fista-Lasso were 0.15 and 0.44, respectively, smaller than
Elastic-Net and NNICR (Fig. 4D). The NNICR approach still
offered the best shape recovery capability, with DC of 0.77.
Besides that, the RMSE of CG-Tikhonov, Fista-Lasso, Elastic-
Net and NNICR were 3.49, 2.63, 2.68 and 1.96, respectively.
The NNICR approach obtained the smallest RMSE, indicating
that the reconstructed values of NNICR was closer to the

true values. The results of cylindrical source reconstruction
demonstrated that NNICR approach showed the superiority
for the best location accuracy and shape recovery capability.

C. Anti-Noise Performance Test

The effects of Gaussian noise with a level of 10% on recon-
struction performance of four approaches were compared and
displayed in Fig. 4. Independent simulations were conducted
three times for each approach. The reconstructed results of one
simulation were shown in 3D and axial view (Fig. 4A). The
reconstructed sources deviated from the center of true source
more due to the influence of Gaussian noise. The quantitative
analysis was expressed as mean ± Standard Deviation (SD).
The adding noise in CLT reconstruction increased the LE
(Fig. 4B) and reduced the DC (Fig. 4C) for all reconstruction
approaches. It was found that NNICR still had the best recon-
struction performance with the lowest LE of 0.61 ± 0.023 mm
and the highest DC of 0.62 ± 0.015. The results of anti-
noise performance test revealed that NNICR was robust to
the influence of noise.

D. In Vivo Reconstruction

To evaluate the practicability of the NNICR approach for in
vivo imaging, the in vivo CLT reconstruction was conducted
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Fig. 4. Results of anti-noise performance test. (A) The reconstructed Cerenkov sources using four different approaches were showed in 3D view
and axial view (Z = 12 mm). (B) The LE of reconstruction results. (C) The DC of reconstruction results.

Fig. 5. The single tumor (T) and bladder (Bladder) reconstruction results. (A) The reconstruction results of CG-Tikhonov, Fista-Lasso, Elastic-Net
and NNICR were displayed in 3D view and axial slice view. Axial slice 1 showed the tumor area (T), and axial slice 2 showed the bladder area.
(B) The results of PET. (C) The photograph of the tumor and its H&E staining results. (D) The obvious signals existed in the CLI results of the tumor
and bladder areas.

using the single-tumor and dual-tumor bearing mice. Firstly,
the tumor and the bladder was reconstructed and compared in
Fig. 5. The reconstructed CLT results (color area) were merged
with the CT images and displayed in 3D view and axial slice
view, where ‘T’ and ‘Bladder’ represented the tumor area and
the bladder area, respectively (Fig. 5A). The PET images were
shown in 3D and axial views (Fig. 5B). The tumor and bladder
were located in two axial slices, respectively. The results of
CLI showed that there existed obvious signals in the tumor
and bladder areas. Secondly, the process of the dual-tumor
reconstruction was similar to that of the single tumor and
bladder reconstruction (Fig. 6). Two reconstructed tumors were

merged with CT images and the real tumors were represented
by T1 and T2 (Fig. 6A). 3D view and axial slice view of PET
images were also displayed (Fig. 6B). The sizes and H&E
staining images of all tumors were also shown in Fig. 5C and
Fig. 6C. Fig. 5D showed that the obvious signals existed in
the bladder and tumor areas in the CLI image.

According to the in vivo reconstruction results, all the blad-
der and tumors were successfully reconstructed by four dif-
ferent approaches. However, for CG-Tikhonov and Elastic-Net
approaches, the reconstructed results were still over-smooth
and had lots of noises. For Fista-Lasso approach, the recon-
structed results were too sparse and thus the reconstructed
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Fig. 6. The dual-tumor (T1 and T2) reconstruction results. (A) The reconstruction results of CG-Tikhonov, Fista-Lasso, Elastic-Net and NNICR were
displayed in 3D view and axial slice view. (B) The results of PET. (C) The photograph of the tumors and their H&E staining results.

TABLE IV
COMPARISON OF LOCATION ERROR FOR in vivo

RECONSTRUCTION (mm)

tumors were much smaller than the real tumors. The NNICR-
based reconstruction results were compared with the corre-
sponding PET images and the photograph of the tumors.
Besides, the centers of the real tumor were roughly estimated
by the PET images and the LEs were calculated and listed
in Table IV. NNICR approach showed the best accuracy with
the least LE. Lastly, the H&E staining results revealed that
the reconstructed areas were indeed tumor tissues. The results
of in vivo reconstruction demonstrated that NNICR approach
showed the best practicability for in vivo imaging of tumor-
bearing mouse.

IV. DISCUSSION AND CONCLUSION

CLT has been considered as a promising imaging modality
for 3D visualization of the distribution of radioactive probes
inside living animals. But the unsatisfactory reconstruction
resulting from the severe ill-conditionedness has limited the
biomedical applications of CLT. In this study, a novel NNICR
reconstruction method was proposed to achieve better CLT
reconstruction performance. First, the optimization function is
constructed by using the spike and slab prior to encourage

the sparsity of Cerenkov source. Then, the complex non-
convex problem can be solved by refining the solution of
previous iteration by leveraging a modified non-negative con-
vex problem. Comparing with L1-norm and L2-norm regu-
larization, the NNICR approach could control the sparsity of
Cerenkov source better based on the prior information gen-
erated in the previous iteration. In addition, the non-negative
constraint in each iteration also ensures the non-negativity of
Cerenkov source, reducing the error and benefiting the CLT
reconstruction a lot.

To evaluate the performance of the NNICR approach,
numerical simulations and in vivo experiments were con-
ducted. CG-Tikhonov, Fista-Lasso, and Elastic-Net were used
for qualitative and quantitative comparisons. The experi-
mental results can be concluded as the following. Firstly,
the dual-source simulation showed that NNICR approach
could improve the location accuracy. Secondly, the cylindrical
source simulation revealed that NNICR also had the advantage
of source shape recovery capability compared with the con-
ventional approaches. Thirdly, the NNICR approach showed
the good robustness in the anti-noise performance test. Lastly,
the single-tumor and dual-tumor in vivo experiments validated
that NNICR showed great practicality for tumor detection of
living animals, which demonstrated the potential of NNICR
for CLT reconstruction in preclinical researches.

It is also worth mentioning that NNICR encourages the spar-
sity of Cerenkov source better than conventional approaches.
According to the qualitative results of all experiments,
CG-Tikhonov approach and Elastic-Net approach generated
the over-smoothed solution and Fista-Lasso resulted in the
over-sparse solution in CLT reconstruction. These approaches
may not be suitable for recovering the shape of the Cerenkov
source. NNICR showed the best shape recovery capability
with the DC of 0.77. Additionally, it was also interesting



3216 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 10, OCTOBER 2020

that a reduction in the location error may not increase the
Dice coefficient. When the shapes or sizes of two regions
differ greatly, the Dice coefficient is small even if the location
error is not large. For example, in the dual-source recon-
struction simulation, Fista-Lasso approach achieved lower
location error and lower Dice coefficient compared with
Elastic-Net approach. Besides that, CLT reconstruction results
by the NNICR approach had the least noises. These advan-
tages of NNICR would promote its application for CLT
reconstruction.

In this study, according to the sparsity of the Cerenkov
source, we proposed the NNICR algorithm for CLT recon-
struction. The spike and slab prior used in the NNICR
approach encouraged the sparsity level of the Cerenkov source
better and the convex iterative process could achieve the
solution effectively. Therefore, the NNICR approach benefited
us to obtain the reasonably sparse reconstruction results of
CLT, and thus improved the reconstruction accuracy and
enhanced the shape recovery capability of CLT. The results of
numerical and in vivo experiments validated the effectiveness
of the proposed approach. To our knowledge, it was the first
time to introduce the spike and slab prior to the optical
reconstruction as well. However, although NNICR performed
well in CLT reconstruction, it still had some drawbacks.
Firstly, the time complexity of NNICR was higher than
the comparison approaches. Since NNICR needs to solve a
series of non-negative convex problems, it may take several
minutes to accomplish one CLT reconstruction with a personal
computer. Taking the dual-source reconstruction simulation as
an example, the reconstruction times for CG-Tikhonov, Fista-
Lasso, Elastic-Net and NNICR were 51.83s, 32.43s, 65.54s
and 184.71s, respectively. Therefore, time-consuming is a
disadvantage of the NNICR approach. Furthermore, the shape
recovery capability of NNICR in in vivo experiments was
shown only with the qualitative analysis because of the lack of
the standard for determining the distribution of tumors in living
animals. Even the location error analysis was also a rough
result. More quantitative analysis methods for evaluating the
results of in vivo experiment could be developed in the future.
Lastly, the clinical application of CLT based on the NNICR
approach deserved further researches in the future.

In conclusion, a novel NNICR approach was proposed
to improve the reconstruction performance of CLT in this
paper. The NNICR approach is designed according to the
combination of the mathematical theory in paper [24] and the
physical properties of Cerenkov sources. Compared with sev-
eral conventional approaches, NNICR performs better in terms
of location accuracy, shape recovery capability, robustness
and in vivo practicability. We believed that this study would
promote the preclinical and clinical applications of CLT and
facilitate the development of the theoretical study in optical
tomography.
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