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The SVD Beamformer: Physical Principles and
Application to Ultrafast Adaptive Ultrasound

Hanna Bendjador , Thomas Deffieux, and Mickaël Tanter

Abstract— A shift of paradigm is currently underway in
biomedical ultrasound thanks to plane or diverging waves
coherent compounding for faster imaging. One remaining
challenge consists in handling phase and amplitude aber-
rations induced during the ultrasonic propagation through
complex layers. Unlike conventional line-per-line imaging,
ultrafast ultrasound provides backscattering information
from the whole imaged area for each transmission. Here,
we take benefit from this feature and propose an efficient
approach to perform fast aberration correction. Our method
is based on the Singular Value Decomposition (SVD) of an
ultrafast compound matrix containing backscattered data
for several plane wave transmissions. First, we explain
the physical signification of SVD and associated singular
vectors within the ultrafast matrix formalism. We theoreti-
cally demonstrate that the separation of spatial and angular
variables, rendered by SVD on ultrafast data, provides an
elegant and straightforward way to optimize the angular
coherence of backscattered data. In heterogeneous media,
we demonstrate that the first spatial and angular singular
vectors retrieve respectively the non-aberrated image of
a region of interest, and the phase and amplitude of its
aberration law. Numerical, in vitro and in vivo results prove
the efficiency of the image correction, but also the accuracy
of the aberrator determination.Based on spatial and angular
coherence, we introduce a complete methodology for adap-
tive beamforming of ultrafast data, performed on successive
isoplanatism patches undergoing SVD beamforming. The
simplicity of this method paves the way to real-time adap-
tive ultrafast ultrasound imaging and provides a theoretical
framework for future quantitative ultrasound applications.

Index Terms— Adaptive Beamforming, Ultrafast Imaging,
Singular Value Decomposition, Aberration Correction.

I. INTRODUCTION

ALTHOUGH ultrasound imaging is a mature medical
imaging tool, new techniques are constantly explored

to further improve image quality and extend its clinical
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usefulness to new applications. The first objective of Ultra-
sound imaging is to build an accurate image of the medium
from ultrasonic backscattered signals through a process called
beamforming.

It can be expressed as an inverse problem between the
received ultrasonic echoes and the acoustic impedance dis-
tribution in the medium. This inverse problem is easily solved
when assuming the local speed of sound and density to be
constant in the medium.

This hypothesis is accepted in all conventional clinical
devices and led to the standard Delay-And-Sum beamforming
process. In practice, it consists in computing and correcting
the time-of-flight for different travel paths between each
pixel and each transducer array element. In order to form
high quality images at higher frame rates, ultrafast plane
wave compound imaging [1]–[7] was introduced. It gave
rise to a wide range of applications such as Shear Wave
Elastography, Ultrafast Doppler, Functional Neuroimaging or
Quantitative Ultrasound imaging [8]. However, similarly to
conventional imaging, image quality can still suffer from
sound speed heterogeneities in the medium; leading some-
times to non-negligible phase aberrations on propagating
wavefronts [9]. Such aberrations affect the image itself but
also the ensuing quantitative estimations in post-processing
steps.

In the last thirty years, many different approaches have
been developed to address this issue but this topic remains
highly relevant today despite longstanding research efforts.
Measurement of the transmit echo phase [10] in Computed
Ultrasound Tomography [11] informs on the arrival time of
the transmitted wave front and allows correction of small
aberrations compared to the PSF width. In conventional ultra-
sound, we are limited to the use of backscattered signals
and the ultimate goal of aberration correction is actually to
recreate an equivalent point-like scatterer for each pixel of
the image. Then, the phase and amplitude distortion of its
spherical backscattered echo retrieve the so called Green’s
function [12]. When no bright reflector is available but rather
a random distribution of Rayleigh scatterers, time-reversal
of this speckle noise [13], [14] can be used to virtually
recreate an artificial ultrasonic star, whose echo retrieves the
aberration laws. Though, it remains an iterative and quite
complex non real-time process. Other approaches studying the
spatial coherence of backscattered signals can be exploited
to optimize the summation of the different plane waves in
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beamforming [15]. In speckle noise environment which is
the vast majority of configurations assessed in Biomedical
Ultrasound, Van Cittert Zernike theorem states indeed that this
spatial coherence measures the focusing quality [16], which is
essential for an accurate ultrasound image. Founded on the
use of this theorem, coherence-based imaging methods [17]
were developed to improve image quality, especially Contrast-
to-Noise and Signal-to-Noise ratio, due to speckle reduction
techniques. All these methods improving spatial coherence
were shown to decrease aberration across an aperture. In par-
ticular, Dahl and Trahey [18] proposed an imaging technique
based on the pixel mapping of this spatial coherence of ultra-
sound signals. This short-lag spatial coherence method (SLSC)
consists in estimating the spatial coherence between closely-
spaced elements to create images demonstrating superior SNR
and CNR compared to conventional ultrasound images. SLSC
permits to improve the spatial coherence of backscattered
signals by using only data demonstrating a strong angular
coherence for different compounded transmissions without
trying to estimate the aberration law [19]. This efficient
approach requires the estimation of spatial coherence functions
on a pixel per pixel basis whose computational cost currently
hampers a real-time implementation [20]–[22]. It was also
recently expanded to angular coherence in the context of
compounded plane waves [23].

Here, we propose a different approach to improve the
ultrasonic image quality. Our method shares the common aim
to increase the angular coherence of signals coming from
each pixel for different transmits during plane wave com-
pound imaging. This new approach offers a fast and efficient
correction process, both retrieving an optimized ultrasonic
image and the local estimation of the amplitude and phase of
the aberrations. Additionally, it also filters out low coherence
signals from the data.

Moreover, the technique keeps the data in the conventional
beamformed data space allowing to subsequently perform any
conventional ultrasound estimation such as phase estimation,
power Doppler, or pulsed Doppler.

Importantly, we introduce the Ultrafast Compound Matrix
containing images, both beamformed in the receive mode
and phase delayed for transmit travel path compensa-
tion. We explain theoretically the physical meaning of its
Singular Value Decomposition. In complement to former
works applying SVD to subaperture or synthetic transmit
data [15], [24], [25], we hereby demonstrate a theoretical
link between the SVD of beamformed data from different
transmissions and the local ultrasonic aberrations. Finally,
we propose a complete real-time adaptive beamforming tech-
nique for ultrafast imaging based on the application of SVD
beamforming on subsets of the Ultrafast Compound Matrix
corresponding to isoplanatic patches. This SVD beamformer
merges Phase Aberration Correction (PAC) techniques and
coherence-based imaging approaches in a unique matrix for-
malism implementation. Results of this novel and fast method
in simulations, in vitro phantoms and in vivo liver experiments
are presented.

II. THEORY AND PHYSICAL INTERPRETATION OF

ULTRAFAST ULTRASOUND BEAMFORMING

A. Basic Principles of Ultrasound Imaging Inverse
Problem

Considering a transducer array made of Ne elements, and
a medium containing a random distribution of K scatterers
(Rayleigh diffusion with K � Ne), we define a dimension-
less scattering amplitude βik characterizing the kth scatterer
illuminated by the i th transducer. Let hk,i be the temporal
impulse response defining the propagation between a trans-
ducer element i and a scatterer k. Thanks to spatial reciprocity,
the temporal impulse response h j,k defining the propagation
between the scatterer k and the transducer element j is equal
to hk, j . Let ei (t) be the emitted signal on the i th transducer,
the received signal on an element j can be expressed as:

s j (t) =
Ne∑

i=1

K∑
k=1

βik ∗ h j,k (t) ∗ hk,i (t) ∗ ei (t) (1)

where ∗ stands for the convolution operation [26]. As the
spatial resolution of the ultrasound image is limited by the
ultrasonic wavelength, it is convenient to introduce a discrete
representation of the ultrasound-formed image, with a spatial
pitch of the order of the ultrasonic wavelength. Each pixel
p = (px, pz) contains a subset of {K p} scatterers. For each
subset, we notice that the travel time, for a given scatterer
k, can be written as: τp,k = τp + �τk , with �τk � τp .
Equation (1) becomes:

s j (t) =
Ne∑

i=1

N x Nz∑
p=1

∑
k∈{K p}

βik ∗ h j,p
(
t − τp

) ∗ δ (t − �τk)

∗ h p,i
(
t − τp

) ∗ δ (t − �τk) ∗ ei (t)

=
Ne∑

i=1

N x Nz∑
p=1

h j,p (t) ∗ h p,i (t)
∑

k∈{Kp}
βikδ (t − 2�τk)

︸ ︷︷ ︸
γip(t)

(2)

where γip(t) is a backscattering function describing the reflec-
tion induced by the scatterers distribution in pixel p when
insonified by the transmit element i . Thus, the received signal
becomes:

s j (t) =
Ne∑

i=1

Nx Nz∑
p=1

γip (t) ∗ h j,p (t) ∗ h p,i (t) ∗ ei (t) (3)

The difference between the equation (3) and the equation (1)
lies in the introduction of a backscattering function γip (t)
for each pixel, instead of a simple scalar value βik for each
scatterer. This function characterizes the spatial dependence
of the scattering coming from a given pixel of the image.
This formalism no longer requires a Green’s function per
scatterer, but only one for each pixel. Since the number of
pixels (N = Nx Nz) is far below the number of scatterers in
the medium (K), this strongly simplifies the calculations.

Depending on the strength and distribution of scatterers in
each pixel of the ultrasonic image, the scattering functions
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γip (t) can be very different. If pixel p contains only a
strong point-like reflector, the scattering function γip (t) is
independent of the transmit element i . In that case, γip (t) =
γp (t) and all backscattered signals coming from pixel p are
coherent. Their spatial coherence function is thus a square
function. If the pixel p contains a random distribution of
Rayleigh scatterers, the function γip (t) is different for each
transmission coming from different transmit elements. The
spatial coherence function of backscattered signals coming
from pixel p is then a triangle function according to the Van
Cittert Zernike theorem [16].

The ultimate objective of ultrasound imaging is to solve the
inverse problem of ultrasound propagation, in order to retrieve
all γip (t) functions for each pixel p. Solving this problem
requires to retrieve all Green’s functions h pi (t) relating each
pixel p to each element i of the ultrasonic array. When pixel p
contains a point-like reflector, the Green’s function h pi (t) can
be retrieved by applying the concept of iterative time reversal
focusing [27] or using the decomposition of the time reversal
operator [26]. When pixel p contains a random distribution
of Rayleigh scatterers, it becomes much more complex to
estimate h pi (t). Indeed, due to the inherent speckle noise
nature of backscattered signals, the scattering function γip (t)
is dependent on the transmit element i . This fundamental limit
makes the inverse problem of ultrasound imaging difficult to
solve in speckle noise environment. Unfortunately, speckle
noise configuration corresponds to the vast majority of bio-
medical ultrasound imaging.

Indeed, in speckle noise, retrieving h pi (t) requires to recre-
ate a single virtual point-like reflector in each pixel p of
the image, and to separate the contribution of each pixel in
the backscattered signals. Recreating such a virtual point-like
reflector from speckle noise consists in increasing the spatial
coherence of its backscattered signals from a triangle function
to a square function. Thus, the problem of creating virtual
point-like scatterers can be seen as maximizing the spatial
coherence of backscattered signals coming from each focal
spot. For this reason, the ultimate goal of ultrasound imaging
can be seen as maximizing the spatial coherence function of
backscattered signals, coming from all pixels or focal spots.
Thus, this enables to retrieve each Green’s function associated
to each pixel (Fig.1).

B. Fourier Domain: Beamforming and Adjoint Operator

In the Fourier domain, convolution turns out to be a matrix
product and equation (3) can be rewritten as:

S (ω) = H (ω)�(ω) tH (ω)E(ω) (4)

For a sake of clarity, we will consider in the following
demonstration that S = S(ω0), where ω0 is the central
frequency of the transmitted pulse. We introduce the same
notation simplification for all vectors and matrices in the
following sections of the paper. Let us introduce a model of
the propagation between each element of the ultrasonic array
and each pixel of the image. This propagation model can be
defined as a propagation operator H0 as similar as possible to
the true propagation operator H. The beamforming operation

Fig. 1. Schematic description of the general aim of ultrasound imaging:
Most scattering in biomedical ultrasound comes from random distribution
of Rayleigh scatterers. i.e. the speckle noise. For each pixel, the inverse
problem, or beamforming, consists in retrieving from this speckle noise
the signature of an equivalent single point-like reflector. The scattering
of such point-like reflector gives access to the local Green’s function of
the pixel.

in the receive mode, consists in estimating

I = tH ∗
0 H� tH E (5)

I is a [Nx Nz , 1]-vector, corresponding to the image for a
transmission vector E. The symbol ∗ corresponds to the phase
conjugate operator.

In the case where H0 is equal to H , tH0
∗H ≈ Id where Id is

the Identity Matrix, and I = � tH E . Thus, the beamformed
image I corresponds to the exact image of �, where each pixel
has been multiplied by an amplitude and phase contained in the
vector t HE, describing the travel time path differences during
forward propagation from the array to the pixels.

In experimental configurations due to diffraction limits, it is
known that tH0

∗H is not perfectly equal to the identity matrix,
but rather estimates the point spread functions. Indeed, in each
i th column of tH ∗

0 H , we find the point spread function of the
focusing in the i th pixel [28]–[31]. So, if H0 is almost equal
to H , we can introduce the Point Spread function Matrix Ps:

t H ∗
0 H =

⎡
⎢⎢⎣

⎤
⎥⎥⎦

0

0
= Ps (6)

where all columns of Ps describe the point spread functions
for each individual pixel focal spot of the experimental con-
figuration: the i th column vector of Ps corresponds to the
i th pixel’s PSF.

C. Conventional vs Plane Wave Imaging

In conventional imaging, the focusing in the transmit mode
is performed by successive transmissions of transmit vectors
Ei = tH ∗

0,p, where H0,p is the pth column of H0. tH ∗
0,p is

the phase conjugate of the Green’s function tH0,p and thus
represents a transmit vector focusing on pixel p. For each
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Fig. 2. Matrix description of beamforming in coherent compounding:
definition of the Ultrafast Compound Matrix R and the Plane wave
imaging matrix IPW. The Hadamard product describes the coherent
compounding before the final summation on the transmit angles: term-
to-term product with tH∗

0P∗ compensates phases delays and amplitudes
between transmitted plane waves.

transmit, the final image Im is the diagonal of the matrix I
defined in Fig. 2:

Im = diag(I ) = diag( tH ∗
0 H� tH tH ∗

0 ) (7)

In compounded plane wave imaging, the focusing is per-
formed by a set of Nθ > 1 plane wave transmissions. For
our matrix formalism, this requires to introduce a Matrix P
representing the change of referential basis between the canon-
ical space (array elements) and the plane wave space. So P is
a [N, Nθ ] matrix. The final image obtained in plane wave
compounding is thus quite similar to the conventional image
described in equation (7) with a potential filtering described
by P tP∗ when the number of plane waves is lower than the
number of elements:

Im = diag(IPW ) = diag( tH ∗
0 H� tH P tP∗ tH ∗

0 ) (8)

D. The Ultrafast Compound Matrix R

We now choose to introduce an important matrix in com-
pound plane wave imaging: the ultrafast compound data
matrix R. It contains the Nθ images beamformed in the
receive mode and individually time delayed pixel per pixel
depending on their transmit angle. R is thus a

[
Nx Nz , Nθ

]
matrix. It corresponds to the matrix of compounded plane
wave data right before the final summation on angles, which
is the last operation in ultrafast data beamforming to retrieve
the coherent compounded image. As done earlier, we note the
number of pixels N = Nx Nz . R can be written as:

R = ( tH ∗
0 H� tH P

) ◦ ( tH ∗
0 P∗) (9)

where ◦ stands for the matrix Hadamard product (Fig. 2).
Let us define Ae, the [Ne, Ne] matrix describing a physical

realistic aberrator in the canonical basis (array elements space).
Assuming that the aberrator does not dramatically affect
transmit focusing, the ultrafast compound matrix R can be
defined as follows:

R = ( tH ∗
0 H� tH Ae P

) ◦ ( tH ∗
0 P∗) (10)

We introduce Aθ as the angular aberration matrix describing
these aberrations in the plane wave basis. It is related to Ae

through the former matrix P of dimension (Ne, Nθ ) describing
the projection from canonical space to plane wave space.

As long as the number of independent angles Nθ (indepen-
dent meaning ∀i,∀ j

〈
Pi

∣∣ Pj
〉 = 0) is sufficient to describe any

kind of ultrasonic wavefield initially defined in the canonical
basis, the matrix P is invertible [29]. In that case, we have
Aθ = P−1 Ae P and the angular aberration matrix Aθ is related
to Ae thanks to:

P Aθ = Ae P (11)

Combining (10) and (11), the ultrafast compound matrix R
can be rewritten using the angular aberration matrix as:

Rθ = ( tH ∗
0 H� tH0 P Aθ

) ◦ ( tH ∗
0 P∗) (12)

However, when Nθ � Ne , P is no longer invertible and Aθ is
only an approximation of the true aberration projected on the
limited number of plane waves. In that case, Rθ 	= R and
Rθ is only an approximation of the true ultrafast compound
matrix R.

Let us now consider a homogeneous medium with a
phase aberrating screen in the canonical basis. Consequently,
the aberrator Ae is a [Ne, Ne] diagonal matrix. When P−1 is
defined and the phase aberrator does not contain very high
spatial frequency variations in the canonical space (which is
typically the case in medical ultrasound), Aθ can also be
approximated by a [Nθ , Nθ ] diagonal matrix. In the following
equation and under the previous hypothesis, we will note
A = Aθ , whose elements are a = diag (Aθ ) = (ai )i=1..Nθ

.
The Hadamard product is a distributive operator, which is

also commutative for diagonal matrices (commutative ring of
M (C)). Indeed, if A and B are {m∗n}-matrices, and D and
E diagonal matrices of respective size m and n, it can be
demonstrated that:
D (A ◦ B) E = (D AE) ◦ B = (D A) ◦ (B E) = A ◦ (DB E)

Thanks to this property, Equation (12) becomes:
R = ( tH ∗

0 H� tH0 P A
) ◦ ( tH ∗

0 P∗)
= ( tH ∗

0 H� tH0 P
) ◦ ( tH ∗

0 P∗) A

This results in R = M.A, where we define the matrix M as:
M = ( tH ∗

0 H� tH0 P
) ◦ ( tH ∗

0 P∗) (13)

Interestingly, the columns of the matrix M correspond to the
ideal image of the medium, without any aberration, for each
plane wave transmit. Note that the travel path differences in
the transmit phase have been compensated in M. The ability
to describe the matrix R as a product between ideal images M
and a diagonal Matrix A will be important in the next sections.

E. The Local Angular Coherence Matrix Cθ

In order to optimally correct ultrasound images, we intend
to maximize the coherence of backscattered echoes between
plane wave transmits, as in [23]. For this reason, we introduce
a Local Angular Coherence Matrix Cθ . First, we choose a
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Fig. 3. Measurement of the complex magnitude of the angular coherence
matrix Cθ module in a control region of interest using the Ultrafast
compound Matrix R̃ extracted from R. R̃ is acquired in (a) non-aberrated
and (b) aberrated speckle noise using 100 transmit compound angles.
On the right side, diagonal terms are averaged and plotted, representing
the angular coherence factor.

control region of interest (ROI) in the image where we would
like to control the angular coherence of backscattered signals.
We extract the local Ultrafast Compound matrix R̃ of this ROI.
The angular coherence of this region of interest is retrieved
by calculating the covariance matrix:

Cθ = tR̃∗.R̃ (14)

Fig. 3 shows the computation of Cθ using experimental data
in the case of a speckle environment in the region of interest.
We will later discuss the influence of the ROI size. We notice
that the anti-diagonal terms exhibit the triangle-shaped coher-
ence expected with Van Cittert Zernike theorem. When the
same medium is now imaged through an aberrating lens,
the coherence vanishes. This witnesses the strength of the
speckle coherence criterion in aberration correction. The com-
plex magnitude of this correlation matrix informs on the
angular coherence between ultrasonic images acquired with
different plane wave transmits summed over all pixels of the
region of interest. In speckle noise, as seen before, we expect
it to decrease linearly as the angle difference increases.

F. The Singular Value Decomposition of the Ultrafast
Compound Matrix

The estimation of the angular aberration matrix A is essen-
tial to perform proper adaptive imaging. From the definition
of A, assumed to be diagonal, R A∗ corresponds to the cor-
rected image. We just demonstrated that its angular covariance
has to be optimal. So, compensating for the aberrations
consists in finding the correction vector X that maximizes
the angular covariance of the image RX. This solution will
verify X = diag(A∗). We are trying therefore to maximize

the Rayleigh quotient:

J (X) =
t (RX)∗ . (RX)

X∗.X
=

tX∗ (
tR∗ R

)
X

‖X‖
One notable property of the Rayleigh quotient is that it is

maximized by the first eigen vector of the matrix
(

tR∗ R
)
.(

tR∗ R
)

being a Hermitian matrix, we also know that its eigen
vectors are the singular vectors of the matrix R. So, this
demonstrates that the first singular vector of R maximizes
the angular covariance of the beamformed data, and thus
corresponds to the aberration correction diag(A∗). This
demonstrates the striking importance of the Singular Value
Decomposition of the Ultrafast Compound Matrix:
R = U S tV ∗. The Rayleigh quotient optimization tells
us that diag (A∗) = V1, where V1 is the first singular vector,
ie the first column of V.

If we approximate tH0
∗H ≈ Id , we consider the PSF being

limited to the focal point and not affecting neighboring pixels,
the previous matrix M in equation (12) becomes:

M = (
� tH0 P

) ◦ ( tH ∗
0 P∗) = �. tH0 P ◦ tH ∗

0 P∗

= �.

⎡
⎣ 1 − 1

| | |
1 − 1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

�1 − �1

�2
... �2

...
...

...
�N − �N

⎤
⎥⎥⎥⎥⎦ (15)

All columns of M are identical, and we can write:

R = m ta =
⎡
⎢⎣

m1
...

mN

⎤
⎥⎦ .

[
a1 · · · aNθ

]
(16)

where m is the vector of the columns of M.
Such angular and spatial variables separation in equa-

tion (16) exactly corresponds to the definition of the SVD.
Indeed, let’s write the SVD of our ultrafast compound
matrix R: R = U S tV ∗ = ∑N

i=1 sii ui
tv∗

i where S is a diagonal
matrix.

As R = m ta, we have here:
s11 = |m̄| . |a| , sii = 0 ∀i > 1

v1 = a∗
|a| ; u1 = m̄

|m̄| (17)

v1 is the phase conjugate of the aberration vector a. u1 is the
normalized image in a non-aberrated medium: all pixels are
seen the same way for each plane wave transmission. In this
case, it is trivial that the decomposition of R is the SVD since
all further singular vectors are zero, and thus orthogonal to
the first one.

If we no longer consider the PSF being a spatial Dirac,
and add speckle noise in the media, tH0

∗H 	= Id and
the columns of M are no longer identical. There is thus an
angular dependence of the imaged medium with respect to
the insonification angle. We can introduce the averaged PSF:
mi = 1

Nθ

∑Nθ
j=1 mij . The elements of M can be written:

mij = m (i) + �mi
(
θ j

)
,∀i = 1..N,∀ j = 1..Nθ .

If we consider the angular dependence of the point spread
function to be reasonable, by assuming |�mi ||m| � 1, we can
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Fig. 4. Singular Value Decomposition of the Ultrafast Compound
Matrix. Absolute value of angular Coherence matrix of R shows speckle
decorrelation, whereas singular vectors exhibit individually an optimized
angular coherence.

write:
R = M.A = [

m (i) + �mi
(
θ j

)]
i j .A

= [
a j m (i) + a j�mi

(
θ j

)]
i j

= m. ta + �M.A (18)

And we finally get:

R = |m| . |a| .
[

m

|m| .
a

|a| + �M.A

|m| . |a|
]

(19)

with
∣∣∣ m
|m| .

a
|a|

∣∣∣ = 1 and
∣∣∣�M.A
|m|.|a|

∣∣∣ � 1.

Again, we know that the first singular vector of this SVD,
with the highest singular value, represents the best linear
fit for the rows of R. Each row of R contains the Nθ

scattering complex amplitudes of one pixel seen by each
individual transmit. This first singular vector maximizes the
resemblance between the rows of R and the fit. In other words,
the coherence between the images seen from different angles is
maximized. Physically, this is equivalent to a maximization of
the energy of R rows which corresponds to the highest energy
of all singular vectors. As we know, due to the speckle noise
features that the term �M.A is negligible compared to m. ta,
we can again identify:

s11 = |m| . |a| ; u1 = m

|m| ; v1 = a∗
|a| .

The first singular vector of R is containing in v1 the phase
conjugate diag(A∗) of the aberrator. Additionally, u1 contains
the normalized image of the medium where the aberration
has been corrected. All pixels behave as individual point-like
reflectors with no angular dependence in transmission. For
each singular vector i , one can compute the coherence matrices
Cθ (ViU∗

i ), defined in part II-E. The mathematics of the SVD
operation imply that these matrices are constant and equal
to 1 as seen in Fig. 4. It means that, by definition, for each
singular vector, all transmitted angles “see” the same image.

Interestingly, if we compute the Singular Value Decom-
position of R̃, and re-calculate Cθ considering only the first
singular vector V1, it gives a uniform matrix equal to 1 (Fig. 4).
This means that all pixels of the singular image V1 are seen the
same way for all plane wave illuminations angles due to the
separation of variables achieved by the SVD. The vector U1
contains the amplitude and phase delays between transmits,

that are required to achieve a constant coherence on the receive
signal. In other words, it contains the aberration correction law
of the medium acting the same way on each pixel of the region
of interest. For this reason, an important point is to understand
the optimal size of the control region for SVD as it is closely
linked to the concept of isoplanatic patches [28], [32].

Strikingly, the Singular Value Decomposition of the Ultra-
fast Compound matrix gives access, with its first singular
vector, to the knowledge of the aberrating screen. We notice
that selecting the first vector out of the SVD is equivalent
to filtering the images and re-phasing them with the phase
conjugate of the aberrator A∗. Indeed, SVD filtering creates
angular coherence for each point of an aberrated medium. This
is the definition of creating a virtual reflector in each pixel
location. This is actually the mathematical explanation for
the bright reflector virtual creation in speckle noise described
in [13]. The interesting and unique aspect of our method
stands in the physical understanding of the way to re-create
coherence in aberrated signal. The SVD-beamformer is a
straightforward and non iterative solution for this complex
problem addressed in [13].

One should note that the aberration was here assumed
to have an effect only in the transmit mode, for a sake
of simplicity in the former mathematical developments. The
aberration in the receive mode can be taken into account by
re-writing Equation (9) in:

R = ( tH ∗
0 P∗

0 �A tP0
tH P A

) ◦ ( tH ∗
0 P∗)

where P0 is the orthonormal [Ne, Ne]-matrix, changing from
canonical to plane wave basis with rank (P0) = Ne .

In ultrafast imaging, rank (P0) is often much greater than
rank (P) as Ne � Nθ in most cases. Then, likewise, we can
write:

R = M.A = m. ta + �M.A, and the SVD retrieves as well
the aberration matrix.

III. METHODS

A. Acquisitions

Ultrasound acquisitions were performed using a
256-channel programmable research scanner (Verasonics
Research Systems). We developed customized sequences
to drive a 192-element linear probe, at a central frequency
of 6.25 MHz and pitch size of 0.2 mm (SL10-2 probe,
Supersonic Imagine, Aix-en-Provence, France). Plane waves
steered at angles between −18◦ and +18◦ were transmitted
to insonify the media. In order to guarantee the highest level
of information, 100 angles at Pulse Repetition Frequency
(PRF) = 10 kHz were acquired along with subsets of
steering angles for higher frame rate images. A phantom
containing reflecting pins, hyperechoic and anechoic cysts
(CIRS 054GS – 1540 m/s) was used to assess our method,
successively without and with a shaped-surface silicone
aberrating lens.

B. Correction Method

Classical Delay-And-Sum beamforming - at dx = λ,
dz = λ/2 - was performed on plane wave data for each
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Fig. 5. Fast aberration correction and filtering with SVD. Ultrafast compound matrix R retrieves IQ data beamformed for each transmit angle.
Isoplanatic patches are defined within the imaged area. SVD is performed on each patch of the image, and the first eigen vector gives directly the
rephased image. Final corrected image is computed by assembling corrected patches.

steered transmit. Resulting IQ signals were stored in a
3D-matrix R: the ultrafast compound matrix containing (x,z)-
images for each angle θ (Fig. 5①). Summation along the
third dimension, gives simply the conventional plane wave
compounded B-mode image.

Matrix R is reshaped into a 2D Casorati Matrix form with
a [Nx Nz , Nθ ] dimension. The Singular Value Decomposition
is then performed on delimited spatial ROIs called “control
patches”, each corresponding to a smaller Ultrafast Compound
matrix R̃. We can adapt the dimension of the control ROIs
with respect to the isoplanatism limited extension induced
by the aberrator. SVD of each R̃ matrix is performed and
provides the separation of spatial and angular variables. For
each singular value, the SVD consists actually in the product
of images V(x,z) and angular vectors U∗(θ) weighted with
singular values λ. The decomposition is filtered, keeping only
the image with the highest singular value. For each angle,
the corrected image of each ROI is thus corresponding to
λ1.V1(x,z). Summing data on the different angles retrieves
this corrected image (Fig. 5②). The IQ signals have been
rephased with the complex U1(θ) correction vector containing
the phase and amplitude corrections. As described in part II.,
the first eigen vector guarantees a maximization of the angular
coherence. This coherence is indeed a constant square function
equal to 1, since all angles “see” the same outcome from the
object.

We studied four experimental cases for comparison:
the classical ultrafast compound imaging in homogeneous
medium, the SVD-beamforming using experimental data
incorporating a numerical aberration and finally in vitro and
in vivo experimental data containing physical aberrations. The
classical ultrafast compound in homogeneous medium was

considered as the goal to reach for the aberrated images
correction by the SVD beamformer.

We call numerical aberration, the introduction at emission
on acquired data, of a known angular delay law (Fig. 6) and
we evaluated the consistency between the phase aberration
determined with our method, and the expected one. We also
introduced physical aberrations: between the probe and the
phantom, we placed a silicone aberrating lens and applied
the SVD beamformer to compensate this near-field aberrator
in the corrected image (Fig. 7). Finally, in vivo experiments
were conducted in the human liver where aberrations are more
spatially distributed.

In all experiments, many patch sizes were tested and the
final result was obtained with the largest patch keeping the
consistency of the aberrator in both x and z dimensions.

Quantification of the image quality can be found in the
angular coherence matrix, which mathematically becomes
constant and maximal between all angles after correction.
Though, we can also provide classical estimators such as lat-
eral resolution – computed by the half width lateral resolution
of a reflecting pin intensity, and contrast defined by: = μi

μo
,

where μi = s2
i and μo = s2

o are the mean square intensities
respectively inside (i) and outside (o) an anechoic cyst.

IV. RESULTS

A. SVD Beamforming in Speckle Noise With Numerical
Aberrators

If one computes the angular coherence in speckle for a
casual B-mode image, limited to a control region, the obtained
matrix exhibits a triangle profile: covariance is maximal along
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Fig. 6. (a) Bmode image of a CIRS 054-GS phantom anechoic cyst.
(b) Example of image after introduction of an angular numerical aber-
ration in transmit. (c) Same image as (b) after SVD-beamformer.
(d) Example of simulated angular aberration: SVD-beamforming result
is compared to the true aberration introduced. (e) Example of sim-
ulated canonical laws: SVD-beamforming result is projected in the
element-space and then compared to the true canonical aberration
introduced.

the diagonal – auto-coherence - and vanishes linearly down to
zero when the angular spacing increases (Fig. 3).

Van Cittert Zernike theorem stipulates actually that the
shape of the spatial coherence is driven by the inverse Fourier
transform of the focal spot intensity. The focal spot intensity
varies as sinc2, which is the Fourier Transform of a triangle
function. Indeed in speckle, one obtains a linear decrease
in spatial coherence as much as the lag between elements
increases. This theory is transposable when it comes to angular
coherence and transmit angular lag, as demonstrated in refer-
ence [23]. This explains the evolution of angular coherence of
backscattered signals with respect to the lag in transmitted
angles. When it comes to an aberrated image, speckle is
highly decorrelated and the angular coherence of backscattered
signals sinks very quickly from an angle to the next one. After
SVD filtering of the image, this effect is totally recovered,
and even further since the angular coherence of each block
is constant equal to 1. Even if this result seems certain
mathematically, it illustrates that the SVD provides an image,
for which all pixels are being seen the same way by all transmit
angles.

Compared to the raw image, the numerically aberrated
image showed a strong degradation (Fig. 6 (a) and (b)),
that is fully recovered after SVD-beamforming correction
(Fig. 6 (c)). The lateral resolution, evaluated on reflecting
pins, is effectively improved from 1.02 mm to 0.88 mm. Also,

Fig. 7. (a) Bmode images of a CIRS 054-GS phantom reflecting pins
and anechoic cyst. (b) Images after propagation through an aberrating
lens. (c) Images after SVD-beamformer. (d) Aberrating laws: extracted
from SVD-beamforming on a patch, and from the closest pin echo.

the contrast on the anechoic cyst in speckle is enhanced up
to 11.7 dB, and reaches the contrast of the non-aberrated
image. When the simulated law is directly defined in the
plane wave space, the SVD-beamformer result is shown to be
very consistent with the introduced phase change (Fig.6 (d),
r2 = 99%). When the simulated aberration law is defined in
the canonical space, we used synthetic aperture acquisitions to
reconstruct the realistic aberration. Then, we built the ultrafast
compound matrix and extracted the phase of the first angular
singular vector. This gave us an angular aberration law, which
was projected in the element space to be compared with the
true numerical aberration (Fig. 6 (e)). Both laws are in very
good agreement with a coefficient of determination r2 = 98%.
This validates the ability of our method, on simulated exam-
ples, to retrieve realistic aberrations initially defined either in
canonical or in plane wave basis.

Even if the numerical aberration is not fully distributed
in the medium but rather a phase screen, we did per-
form the SVD-beamforming on different geometrical patches.
We selected in the images different patches containing only
speckle (no reflectors nor anechoic areas). Fig. 6 (d) and (e)
show that the phase laws extracted from this patch-SVD
(corresponding to V∗

1) are consistent with the expected numer-
ical aberrations. This demonstrates that the efficiency of
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TABLE I
RESUME OF THE RESULTS OF SVD BEAMFORMER ON IN VITRO

ABERRATED PHANTOM, WITH 50 ABERRATING PHASE SCREENS

TESTED. SPECKLE BRIGHTNESS ABERRATION CORRECTION

WAS ALSO IMPLEMENTED TO COMPARE THE

CORRECTION EFFECTS

the aberration law extraction does not rely on the pres-
ence of coherent targets within the patch and only requires
speckle.

We further tested 50 different numerical aberrators to assess
the ability of SVD beamforming to correct strong and highly
variable dephasing screens. We used, as numerical aberration
laws, some randomized linear combinations of linear, par-
abolic and sinusoidal phase laws. The order of magnitude was
chosen to be consistent with typical in vivo aberrating layers,
up to few tens of microseconds. The correlation length of the
tested phase laws varied randomly from 5 to 20 angles.

We added to the results a comparison with another existing
aberration correction: we indeed implemented Speckle Bright-
ness approach as described in [19]. A first speckle brightness
value was calculated on the aberrated image. For a given array
element, the RF signal was delayed of 0.2λ at emission and
reception in beamforming. Speckle brightness was then re-
calculated on the obtained image. If the speckle brightness
increased, the RF delay was incremented of +0.2λ (−0.2λ
if it decreased). The process was iterated until a maximal
value of speckle brightness was reached. This was repeated
for each element of the transducer. Finally, beamforming
with optimal delays gave the corrected image. We performed
both methods on the exact same set of aberrated data and
retrieved the results in Table I. First we observe, with the
r2 value, that the SVD beamformer is very efficient to recall
the aberration law. Also, both contrast (−9.5 dB) and resolu-
tion (−22.8%) improve significantly with SVD beamforming.
These improvements clearly outperform speckle brightness
method. The low standard deviations demonstrate that the
SVD beamforming approach gives confident results regardless
the numerical aberration.

B. SVD Beamforming in Speckle Noise With Physical
Aberrators

These improvements of the SVD beamformer are visi-
ble as well on physically aberrated data (Fig. 7). As the
non-negligible thickness of the aberrator tends to decrease the
isoplanatic angle, the SVD processing is now performed on
many different isoplanatic patches. After SVD beamforming,
reflecting pins resolution improved from 2.1mm to 1.3mm,
and contrast increased by 8.5 dB+/− 1.9 dB.

We were also able to compare the aberration law extracted
from the SVD patch correction and its true estimation -
obtained by using the backscattered wavefront coming from
the closest pin. We found again a very good agreement
(r2 = 95%) between those two angular aberration laws. In the
case of a thick aberrating lens, smaller isoplanatic patches
were used to perform the correction, in order to keep the
aberration correction as optimal as possible on the patch spatial
extension. An interesting issue remains in the optimization of
this patch size in order to perform the most efficient possible
correction. In order to investigate this point, we designed
patches around a central point of five different sizes, and
performed correction on each of them with SVD beamforming
(Fig. 7).

C. Influence of the Patch Size on Aberration Correction

In order to validate our method, and identify the patch
sizes providing a realistic result, we considered a speckle
phantom image containing a single reflecting pin at its center
(Fig. 8. (a)).

First, we used the backscattered signal coming from the
reflecting pin at the center of our image. From these RF
data, we extracted the aberration delay law in the element
space. We used the matrix P defined in part II.C. to project
the canonical law into the plane wave basis. This gave us an
estimation of the physical aberration encountered in the region
surrounding the reflector, and is displayed on Fig. 8.(f).

Then, we defined a small patch (25λ × 30λ, Fig. 8 (b)),
a median patch (35λ × 45λ, Fig. 8 (c)), and a large patch
(50λ × 100λ, Fig. 8 (d)) surrounding the reflector. For the
SVD-beamforming operation, we excluded the reflecting pin
area at the center of the patch in order to rely only on
speckle noise. For the small, and median patches, the phase
of the first angular singular vector retrieves the same result
in terms of aberration and image correction. That means that
for these patch sizes, the patch is seeing the same aberrator
and the SVD-beamformer provides an optimal correction
and estimation of the aberration. When increasing the patch
size, we observe a change in the phase. The spatial extent
becomes then too large to ensure a correct solution for the
SVD beamformer. Indeed, the aberration can no longer be
considered similar for all pixels of the patch, and it is logical
that the SVD performance degrades. In the opposite case, for a
too small patch, the number of pixels would not be sufficient
for the SVD to extract the correct aberration law. One can
see that for the smaller patch sizes, the physical aberration
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Fig. 8. (a) B-mode image of a phantom containing speckle and one
reflecting pin. (b) Small patch definition: [25λ × 30λ] region excluding
the central reflecting pin (c) Median patch definition: [35λ× 45λ] region
excluding the central reflecting pin (d) Large patch definition: [50λ×100λ]
region excluding the central reflecting pin (e) Normalized eigenval-
ues distribution for each patch size (zoomed for low eigen indices).
(f) Angular aberration laws extracted from SVD beamformer for a small
patch compared to the experimental canonical aberration obtained from
the central pin and then projected in plane wave space.

estimation is in good agreement with the SVD-Beamformer
results.

For this case, we are thus able to identify a typical patch
size for aberration correction. It is actually the highest size for
which the phase laws remain consistent. This optimization of
the patch size can be done by looking at the singular value
distribution of the SVD for different sizes. Fig. 8 (e) shows
that the singular value distribution drops rapidly to zero for a
correct patch size, whereas in the case of too large patches,
the slope at the origin is less steep. The ratio between the
first and second singular value of the Ultrafast Compound
Matrix can be considered as an interesting parameter to choose
the size of isoplanatic patch. In the case of the time reversal
operation HtH∗, such ratio was shown of particular impor-
tance as it affects the convergence of iterative time reversal
processing [26], [33].

D. Influence of the Number of Plane Wave Transmissions

The previous results showed that, for an appropriate patch
size, the SVD beamformer allows us to retrieve both the
aberration law and the image correction. Though, this last

Fig. 9. Impact of lowering the amount of plane wave transmits on
SVD beamforming for an aberrated pin phantom (1 = result of the
compound, 2 = result of SVD beamformer). (a) 100 plane wave images,
(b) 10 plane waves images, (c) 5 plane wave images, (d) Evolution of
the resolution and contrast after correction with SVD beamforming on
different amount of plane waves. Contrast was estimated on an anechoic
inclusion acquired with the same aberrator.

effect should decrease when less plane waves are transmit-
ted. The SVD operation is indeed more efficient when the
decomposition basis is larger. Therefore, we tested different
acquisitions with various amount of plane wave transmits on
aberrated phantoms. Fewer angles gives less angular frequency
components to describe the phase law, but we still see an
improvement in the first singular vector image. Fig. 9 shows
in (a), (b), (c) the comparison of the aberrated image, and the
SVD-beamformed image for different amount of plane wave
transmits. We estimated, with the same aberrator in both cases,
the lateral resolution on the pin phantom, and the contrast on
an anechoic inclusion.

We compared, on the graph (d) of Fig. 9, the correction
efficiency as a function of transmitted plane waves. For all
configurations with different number of plane wave transmis-
sions, the SVD beamformer improves the image quality both
for contrast and resolution. Contrast improvement decreases
progressively, whereas there is a clear drop of resolution
improvement around 6 transmits. Still, one can note that even
for as low as 5 plane waves, the resolution keeps getting
better with the SVD correction even if it is less remarkable
on contrast. It is therefore a matter of trade-off between the
frame rate expected (amount of transmitted plane waves) and
the efficiency of the correction. The chosen configuration will
essentially depend on the clinical application.
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Fig. 10. In vivo B-mode results on liver. Acquisitions of 41 trans-
mitted plane waves: (a) Classical compound beamforming showing
red-squared region. (b) Renormalized Bmode of the anechoic vessel
area. (c) Result of SVD-beamforming on the whole image. (d) Result of
SVD-beamforming in the region of interest.

E. In Vivo SVD Beamforming in the Human Liver

Finally, we tested our SVD beamforming on in vivo
data. The ultrasound emission sequences were calibrated with
the acoustic measurement system from Acertara Acoustic
Laboratories. Both the spatial peak time-average (ISPTA)
and the Mechanical Index (MI) were shown to be, in all
considered cases, below FDA Track 3 Recommendations
(ISPTA = 720mW/cm2 and MI = 1.9). Indeed, maximum
values obtained with our sequences were respectively ISPTA =
254.2 mW/cm2, and MI = 0.819.

This allowed us to perform our acquisitions on liver of
a healthy volunteer. Fig. 10 shows Bmode comparison of
classical compounded image, and SVD-beamformed image.
The overall quality of the image improves with a contrast
enhancement of 4.78 dB. Interestingly, some structures that
were difficult to image in classical compound, tend to be
more visible in the corrected image. These preliminary in
vivo results show the reliability of the proposed method to
correct more spatially distributed aberrators. This is therefore
a promising first step towards clinical use of SVD-beamformer
for adaptive imaging of patients.

V. DISCUSSION

The results presented above demonstrate that the SVD
beamformer is a reliable and efficient technique to correct
images and retrieve simultaneously the phase aberration law
from ultrafast data acquired using plane wave compounding.
In vitro experiments in tissue mimicking phantoms have shown
both a 9.5 dB+/− 0.9 dB rise in contrast for simulated
aberrations and a 8.5 dB+/− 1.9 dB contrast rise for physical

TABLE II
CALCULATION TIMES FOR AN IMAGE - BEAMFORMED AT

λ/2 - ACQUIRED AT A CENTRAL FREQUENCY OF 6.25 MHz
AND A SAMPLING FREQUENCY OF 25 MHz, AT 5cm DEPTH

WITH A 192-ELEMENT PROBE. CALCULATIONS WERE

COMPUTED ON A PC WITH AN INTELCOREI7-5820K
CPU (3.30GHz), 32 GO RAM, ON A GRAPHICS

PROCESSING UNIT: GEFORCE GTX 1080 TI

aberrations. The lateral resolution was also improved in both
cases respectively from 0.7mm to 0.57mm in the simulated
aberrations case, and from 2.1mm to 1.3mm with the physical
aberration. Another simple way to assess the accuracy of our
method in retrieving the aberration pattern was to beamform
raw data while correcting the phase and amplitude aberrations
determined by SVD, and to re-perform the SVD beamforming
process on this new set of corrected data. As expected, this
resulted in a flatten phase distribution, as if no aberration had
distorted the corrected backscattered signals. This showed also
that a single round of correction was required whereas existing
methods often imply iterative processes. Of particular interest
is the simplicity and straightforward implementation of this
SVD beamforming. Using parallel computation devices, and
high-end processors, the implementation time of our method
is significantly low enough to perform real-time aberration
correction. It depends on the number of transmit angles in
the data, but also on the size of the isoplanatic patches for
Singular Value Decomposition. We showed in Fig. 9, that for
a reasonable amount of plane waves, and for a patch size of
tens of λ in axial and lateral directions, the computation speed
is yet high enough to correct in real-time the beamformed data
which is a major advantage of this SVD beamformer.

We believe that the computation time could be even further
reduced by optimizing the parallelization of the algorithms.
This allows us, already, to consider novel applications such as
real-time adaptive functional imaging, motion-correction on
cardiac imaging, or transcranial Doppler imaging of the brain.

Also, we present here computation times for small number
of angles. Though, too few transmit angles will inexorably lead
to a weaker performance of Singular Value Decomposition,
Fig. 9 shows the performance of the correction depending on
the number of transmitted plane waves. Interestingly, the SVD
beamformer improves the image quality – both in terms
of resolution and contrast - up to a quite small number
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of angles (typically 10 to 20 angles). Even in the extreme
case of N=5 plane waves, the SVD beamformer leads to an
improvement of resolution nevertheless without any contrast
gain anymore. In this case, it is due to the lower number
of available orthonormal basis vectors insufficient to fully
describe the aberrator.

For transcranial imaging, it could seem limitative that our
method only corrects in emission. Though, due to time-reversal
symmetry of the wave equation, the aberration is also symmet-
ric. It is therefore possible to correct in emission, as well as in
reception by re-beamforming the data while taking the aberra-
tion delay into account in both propagation ways. To consider
the aberration phase in reception, the delay law would need to
be expressed in the canonical basis. This can be obtained by
a change-of-basis thanks to the matrix P introduced in II-C.
We performed tests on simulated delay laws, and observed that
the law remains highly consistent down to a dozen transmit
angles. For lower number of angles, the projection of the
estimated angular aberration in the canonical basis fails to
reach the true aberration. This is a limitation, for now, to the
ultrafast character of the adaptive beamforming when both
transmit and receive correction are desired.

Another limitation of our technique relies on the assumption
of near field phase screen aberrator. Despite longstanding
research in the field of aberration corrections, this assumption
has been shown insufficient to correct phase aberration in a
way that is significant meaningful for diagnostic image quality
in vivo. The use of a near screen phase screen layer fails
to model spatially distributed aberrations which is the vast
majority of cases in biomedical applications. Nevertheless,
in the case of reasonable medium heterogeneities such as soft
tissues, the description of a complex distributed aberrator as a
large set of phase screen aberrators corresponding to spatially
distributed isoplanatic patches permits to model aberrations
more complex than a near-field aberrator. The optimization
of the number of isoplanatic patches and their overlapping
for the final image reconstruction was not discussed in the
manuscript but it is also an interesting problem with room
of further improvements. The size of the isoplanatic region
depends on geometric parameters (such as depth, aperture)
and aberration characteristics (such as correlation length).
Indeed, the more distributed the aberrator is, the smaller
the isoplanatism angle is and consequently the smaller the
isoplanatic patch should be. For smaller isoplanatic patches,
the standard deviation in the aberration estimation increases
as less pixels are available to stabilize the SVD processing.
Though, we observed on Fig. 8 that there is a trade-off to
find between the stability of the angular aberration correction
and the size of the patch chosen for SVD to perform an
efficient correction. To date, we decided to choose a typical
20λ × 40λ patch size for the SVD beamforming of data
with our silicone aberrating lens and its geometry. For the
in vivo liver experiment, we chose a 10λ × 70λ patch size.
The determination of the ideal patch size highly depends on
experimental conditions and could be refined in further works.
A 50% overlapping between patches was chosen and the final
image was reconstructed by choosing for each pixel the mean
value of the same pixel in the several overlapping patches.

Fig. 11. (a) Raw aberrated image of reflecting pins in speckle.
(b) Corrected image after SVD-beamforming. (c) Image only rephased
with the aberration extracted from SVD-beamforming (no filtering).
(d) Difference between images (b) and (c), normalized by image
(c) intensity.

This enables to avoid spatial discontinuities at the frontier
between patches. Other weighting methods before summation
over the different patches could be studied in further works in
order to optimize the computation time.

Since it is the common configuration in clinical ultrasound
applications, we used in this work a λ-pitch linear array.
However, it has been shown that using λ/2-pitch probes can
decrease the number of required emissions in plane wave
imaging, and improve the image quality by reducing grating
lobes in the near-field of the ultrasonic probe [34]. As it would
also reduce the field of view for a similar number of elements,
the probe choice depends mostly on the clinical application.
Further work will thus be needed to fully investigate the capa-
bility of the SVD-beamformer for different probe geometries
such as curved or phased arrays.

One important point to notice is that the SVD beamformer
also goes beyond a phase and amplitude aberration correction.
Indeed, for each patch, the final SVD image corresponding
to the first singular vector U1 does not correspond to the
simple phase delaying and summation of the initial data.
In other words, the SVD processing performs a more com-
plex aberration correction than just a phase screen aberrator
correction. Fig. 11 illustrates this important point. It compares
the corrected image provided by SVD with the corrected
image provided when applying only a phase correction delay
during the conventional coherent compounding process. The
difference between both corrected images in terms of normal-
ized amplitude (Fig. 11 (c)) is non negligible. It shows that
SVD beamforming improves also the speckle grain. There
is therefore a filtering effect of the SVD beamformer that
retrieves only the most coherent data from different plane wave
transmits.

In our study, we considered a simple scattering
regime for the backscattered signals. This hypothesis is
sufficient in most configurations of biomedical ultrasound.
Nevertheless, the discrimination between signals resulting
from simple and multiple scattering could be performed at
a non-negligible supplemental computational cost before
our SVD beamforming method by studying the propagation
matrix singular vectors [35].

In the case of a non-aberrated medium, for a correct image,
the first angular eigen vector out of SVD exhibit obviously a
constant phase at 0. Though, if there is a mismatch between
the beamforming sound speed and the medium sound speed,
the phase immediately shows a hyperbolic trend – either
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convex or concave depending on the sign of the error. So,
the phase of the eigen value straightforwardly informs on the
sound speed accuracy in the patch of interest. The frame-
work of this SVD beamformer processing is thus particularly
adapted for quantitative imaging, and particularly acoustic
sound speed mapping.

VI. CONCLUSION

The SVD Beamformer provides a fast and adaptive method
for beamforming whilst correcting phase and amplitude aber-
rations. On a theoretical point of view, applying the SVD
on a particularly suited ultrafast compound Matrix R gives
a straightforward solution to the aberration correction prob-
lem. This technique for adaptive ultrasound imaging reunites
Phase Aberration Correction and Coherence-based imaging
in a single correction operation. Selecting the first image
singular vector is sufficient to maximize the angular coherence
between transmitted insonifications and enhances the image
quality, without compromising very high frame rate imaging.
We propose for the first time a physical meaning to the
mathematical SVD operation in the context of ultrasound
image formation. Future work will focus on the application
of this technique for quantitative ultrasound imaging.
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