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K-Nearest Neighbor Based Locally Connected
Network for Fast Morphological Reconstruction

in Fluorescence Molecular Tomography
Hui Meng, Yuan Gao , Xin Yang, Kun Wang , and Jie Tian , Fellow, IEEE

Abstract— Fluorescence molecular tomography (FMT) is
a highly sensitive and noninvasive imaging modality for
three-dimensional visualization of fluorescence probe dis-
tribution in small animals. However, the simplified photon
propagation model and ill-posed inverse problem limit the
improvement of FMT reconstruction. In this work, we pro-
posed a novel K-nearest neighbor based locally connected
(KNN-LC) network to improve the performance of morpho-
logical reconstruction in FMT. It directly builds the inverse
process of photon transmission by learning the mapping
relation between the surface photon intensity and the dis-
tribution of fluorescent source. KNN-LC network cascades
a fully connected (FC) sub-network with a locally con-
nected (LC) sub-network, where the FC part provides a
coarse reconstruction result and LC part fine-tunes the
morphological quality of reconstructed result. To assess
the performance of our proposed network, we implemented
both numerical simulation and in vivo studies. Further-
more, split Bregman-resolved total variation (SBRTV) reg-
ularization method and inverse problem simulation (IPS)
method were utilized as baselines in all comparisons. The
results demonstrated that KNN-LC network achieved accu-
rate reconstruction in both source localization and mor-

Manuscript received January 15, 2020; accepted March 26, 2020. Date
of publication April 3, 2020; date of current version September 30, 2020.
This work was supported in part by the Science and Technology of
China under Grant 2017YFA0205200, Grant 2015CB755500, and Grant
2016YFA0100902, in part by the National Natural Science Foundation of
China under Grant 61671449, Grant 81930053, Grant 81227901, Grant
81871442, and Grant 81527805, in part by the Chinese Academy of
Sciences under Grant KFJ-STS-ZDTP-059, Grant YJKYYQ20180048,
Grant XDB32030200, and Grant QYZDJ-SSW-JSC005. (Hui Meng and
Yuan Gao contributed equally to this work.) (Corresponding authors:
Kun Wang; Jie Tian.)

Hui Meng, Yuan Gao, Xin Yang, and Kun Wang are with the CAS Key
Laboratory ofMolecular Imaging, Institute of Automation, Beijing 100190,
China, also with the School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing 100049, China, and also with the Beijing
Key Laboratory of Molecular Imaging, Beijing 100190, China (e-mail:
menghui2015@ia.ac.cn; gaoyuan2014@ia.ac.cn; xin.yang@ia.ac.cn;
kun.wang@ia.ac.cn).

Jie Tian is with the CAS Key Laboratory of Molecular Imaging, Institute
of Automation, Beijing 100190, China, also with the Beijing Key Labora-
tory of Molecular Imaging, Beijing 100190, China, also with the Beijing
Advanced Innovation Center for Big Data-Based Precision Medicine,
Beihang University, Beijing 100191, China, also with the Engineering
Research Center of Molecular and Neuro Imaging of Ministry of Edu-
cation, School of Life Science and Technology, Xidian University, Xi’an
710126, China, and also with the Key Laboratory of Big Data-Based
Precision Medicine, Ministry of Industry and Information Technology,
Beihang University, Beijing 100191, China (e-mail: tian@ieee.org).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2020.2984557

phology recovery in a short time. This promoted the in
vivo application of FMT for visualizing the distribution of
biomarkers inside biological tissue.

Index Terms— Fluorescence tomography, machine
learning, brain.

I. INTRODUCTION

FLUORESCENCE molecular imaging (FMI) is a widely
applied optical imaging modality for numerous preclinical

applications [1]–[3]. FMI can provide highly sensitive, highly
specific and non-invasive measurements of fluorescent source
in biological tissue. However, due to the absorption and
scattering of light transmission [4]–[6], FMI can only obtain
the photon intensity on the object surface, which does not
report the three-dimensional (3D) distribution of fluorescent
source inside the object. Therefore, fluorescence molecular
tomography (FMT) has been developed to trace the fluorescent
source location and recover the distribution of fluorescence
probes [7]. However, the complexity of photon propagation
model and the ill-posedness of inverse problem still limit the
development of FMT reconstruction.

To alleviate the modeling error and solve the ill-posed
inverse problem in FMT reconstruction, many researchers have
developed different model-based methods. High-order approx-
imation models [8], [9] were proposed to describe the photon
propagation. Moreover, the priori knowledge such as structural
information (magnetic resonance imaging (MRI) or computed
tomography (CT)) with corresponding optical parameters was
utilized to build the photon propagation model [10], [11]. Fur-
thermore, numerous regularization terms [12]–[14] were added
to the optimization methods to alleviate the ill-posedness
of inverse problem. Although these methods improved the
performance of FMT reconstruction, the deviation between
simplified photon propagation model and actual process of
light propagation still limits the accuracy of FMT reconstruc-
tion. Moreover, the model-based method [15], [16] usually
solved the inverse problem by iterative optimization, which
was time consuming.

Recently, machine learning-based optical tomography
reconstruction [17]–[19] was proposed to avoid modeling of
photon propagation. Different from the model-based method,
this strategy models the inverse photon propagation directly
by learning the mapping relation between the surface photon
intensity and the distribution of light source [19]. Lin et al.
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proposed an end-to-end 3D deep encoder-decoder (3D-En-
Decoder) network to reconstruct fluorescent sources, and
achieved accurate locating results in regular phantom. How-
ever, because of the convolution operator, the input data of
Lin’s network need to be mapped to a mesh constructed
of size-fixed hexahedral elements, whereas the hexahedral
element cannot model the boundary of the imaging object with
complex surface accurately [20]. Besides, another machine
learning-based method, i.e., deep convolutional neural net-
work, gated recurrent unit, and multiple layer perception based
method (DGMM) was developed to improve the quality of
FMT reconstruction [18]. DGMM obtained accurate source
location, but the design of DGMM was based on strong priori
knowledge of fluorescent source, which limited the application
of DGMM for morphological reconstruction of FMT. Further-
more, a multilayer perceptron-based inverse problem simula-
tion (IPS) method was developed to improve the performance
of bioluminescence tomography (BLT) reconstruction [17].
This method achieved accurate in vivo BLT reconstruction, but
its over-sparse problem limited the morphological reconstruc-
tion. Thus, the morphological reconstruction of FMT based on
machine learning is still an urgent challenge to be solved.

In this study, we proposed a K-nearest neighbor based
locally connected (KNN-LC) network to overcome the over-
sparse problem and improve the morphological reconstruction
of FMT. KNN-LC network was constructed by two parts: fully
connected (FC) sub-network and locally connected (LC) sub-
network. The FC sub-network was trained to reconstruct a
coarse result, whereas the LC sub-network was used to fine-
tune the reconstructed source with residual learning strategy.
To assess the performance of KNN-LC network, numerical
simulation and in vivo studies in orthotopic glioma mouse
models were performed. Split Bregman-resolved TV (SBRTV)
regularization method [21] and IPS method [17] were used as
baselines for comparisons. The reconstruction results demon-
strated the superiority of KNN-LC network for localization
and morphology recovery of fluorescent sources.

The remainder of this paper is arranged as follows:
Section II introduces model-based and machine learning-based
reconstruction methods, KNN-LC network-based reconstruc-
tion method, the design of data collection and in vivo studies,
the implementation details and the evaluation index. The
results of numerical simulation and in vivo studies are shown
in Section III. The conclusion and discussion of KNN-LC
network are given in Section IV.

II. METHODOLOGY

A. Model-Based FMT Reconstruction

Model-based FMT reconstruction relies on the description
of light transmission in biological tissue. It commonly uses
diffusion approximation equation [22] as the photon propaga-
tion model. Based on the finite element analysis [23], [24],
a linear relation between the surface photon intensity and
the distribution of fluorescent source inside the object can be
constructed as follows:

� = AX (1)

where � represents the photon intensity on the object surface.
A is the system matrix, and X denotes the distribution of
fluorescent source inside the object.

The inverse estimation of (1) is usually ill-posed because
the problem is normally underdetermined. In order to solve
this ill-posed inverse problem, unconstrained optimization with
regularization strategies is widely used[14]. The unconstrained
optimization can be defined as follows:

min E(X) = 1

2
‖AX − �‖2

2 + λR(X) (2)

where R denotes regularization terms on X and λ is the
regularization parameter.

B. Machine Learning-Based FMT Reconstruction

Machine learning-based FMT reconstruction methods
[17], [25] use neural network to learn the nonlinear mapping
between the surface photon intensity � and the distribution of
fluorescent source X, which can be defined as follows:

min || fnn(�|θ) − X ||22 (3)

where fnn is the reconstruction neural network with network
weight θ . The input and output of network is surface photon
intensity � and reconstructed fluorescent source X, respec-
tively. Furthermore, the network weight θ is iteratively updated
during the network training guided by minimizing the mean
square error between the actual and reconstructed fluorescent
sources.

The comparisons between model-based and machine
learning-based FMT reconstruction are provided in the Sup-
plementary Material Section S.I. Supplementary materials are
available in the supplementary files / multimedia tab.

C. FMT Reconstruction Based on KNN-LC Network

KNN-LC network was inspired by IPS method [17], which
is the first machine-learning method used in BLT reconstruc-
tion. IPS utilized a FC network to learn the mapping relation
between � and X. The number of FC layers in IPS method was
set to four. The adjacent two layers in FC network were fully
connected, and activated by rectified linear unit (ReLU) [26] to
simulate the iterative process of iterative shrinkage threshold
method [27]. Although IPS method achieved accurate source
localization in BLT reconstruction, the over-sparse problem
heavily limited the morphological reconstruction.

To overcome the over-sparse problem, we proposed a KNN-
LC network that cascaded a LC sub-network to FC sub-
network, and residual learning [28] was adopted to train LC
sub-network. The whole FMT reconstruction using KNN-LC
network can be defined as

min ‖ fFC (�|θ1) − X‖2
2 + ξ ‖ fLC (X FC |θ2) − Xres‖2

2 (4)

where fFC and fLC denote the process of FC sub-network and
LC sub-network, respectively. θ1 and θ2 are the corresponding
network weights. X FC is the output of FC sub-network, and
Xres is the residual value between X FC and X. ξ ∈ [0, 1]
is a hyper parameter used to balance two losses, and its
value was set to 0.01 in our experiment. The task of FC
sub-network was to reconstruct a coarse result, whereas the
LC sub-network learned the residual mapping to improve the
quality of morphological reconstruction.
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Fig. 1. Structure of KNN-LC network. FC sub-network (blue columns)
performs a coarse reconstruction with the input of surface photon
intensity. LC sub-network (dark yellow columns) fine-tunes the coarse
result with information of KNN and residual learning. The red arrows in
the standard mesh indicate the K-nearest neighbors of one vertex. Red
circles in axial slices represent the ground truth of fluorescent source.

In each layer of LC sub-network, there is a one-to-one
correspondence between each node in LC layers and each
vertex in reconstructed results. The connection between output
nodes and input nodes of LC layers was built based on an
adjacency matrix, which was constructed based on Euclidean
distance of vertexes and used to regularize the LC sub-
network. Specifically, for each node, the K nearest neighbor
nodes were considered as its adjacent nodes, whereas the
others were set to be nonadjacent. LC sub-network only
connected each output node with its adjacent input nodes
and learned reconstructed intensity of neighbor nodes. The
adjacency matrix M is defined as

M = (mi, j )N×N (5)

mi, j =
{

1 i ∈ Sout & j ∈ Sin& j ∈ Sknn(i)

0 i ∈ Sout & j ∈ Sin& j /∈ Sknn(i)
(6)

where mi, j indicates the connection between nodes i and j .
Nodes i and j are connected if mi, j is 1, otherwise nodes i
and j are disconnected. Sout and Sin represent the node sets
of the output and input layers, respectively. Sknn(i) is the K
nearest neighbor set of node i . In this study, the value of the
nearest neighbor K was chosen to be 32 based on parameter
test.

KNN-LC network contains four FC layers and three LC
layers (Fig. 1). The network input is the photon intensity
of 1609 vertexes, which are distributed on the object surface.
Because we focused on the intracranial FMT reconstruction,
the network output was set as the photon intensity of 1721 ver-
texes in permissible region (brain). The number of nodes in
the hidden layers was set as 1721. Besides, a dropout function
with probability 20% was applied in FC layers to reduce the
over-fitting problem. The mean square error [29] and Adam
algorithm (learning rate: 0.001, β1 : 0.90, β2 : 0.99) [30] were
adopted as the loss function and the optimization function of
KNN-LC network, respectively. KNN-LC network was trained
with a batch size of 256 and 300 epochs.

The procedure of FMT reconstruction based on KNN-LC
network is provided in the Supplementary Material

TABLE I
OPTICAL PARAMETERS OF MAIN ORGANS

Section S.II. Besides, the reconstruction results of KNN-LC
networks with different FC and LC layers are presented in
the Supplementary Material Section S.III.A. The performance
of KNN-LC networks trained with different parameters
(batch size and epoch) on validation set is presented in
the Supplementary Material Section S.III.B. Furthermore,
the reconstruction results of KNN-LC networks trained with
different standard meshes are provided in the Supplementary
Material Section S.III.C. Supplementary materials are
available in the supplementary files / multimedia tab.

D. Data Collection

Because KNN-LC network is a data-driven method, suffi-
cient samples containing both surface photon intensity � and
fluorescent source X are extremely important. However, it is
unpractical to collect surface photon intensity by implementing
thousands of in vivo experiments. Besides, the actual distrib-
ution of fluorescent sources in mice is difficult to acquire.
In order to overcome these problems, we utilized the Monte
Carlo (MC) method [31], [32] to collect the training data.
MC has been widely used to simulate the photon transmission
in biological tissue [33], [34], which can provide both surface
photon intensity and gold standard of fluorescent sources.
In order to simulate the in vivo experiments, all simulation
samples were obtained using a standard mesh, which was
discretized from segmented CT data of a mouse head. The
standard mesh used in our experiment contained 13286 nodes
and 70412 tetrahedrons. The segmented organs mainly con-
tain muscle, skull and brain, and the corresponding optical
parameters [35] are listed in Table. I.

Considering the fluorescent sources can be anywhere in
mouse brain, the simulation samples should cover the brain
space as much as possible. 643 single-source samples with
the radius of 0.6 mm and the barycenter gap of 0.6 mm were
collected using Monte Carlo simulation (MOSE v2.3) [34].
The minimum and maximum depths of single-source samples
were 1.3 and 4.4 mm, respectively. For training KNN-LC
network, 100 single-source samples were randomly selected
as the validation set, and the remaining 543 samples were
used as the training set.

Furthermore, in order to minimize the overfitting and
improve the network performance, data augmentation with
little calculation was adopted. Dual-source samples and big-
source samples were assembled by selecting and adding the
corresponding data of single-source samples. The surface
photon � and the fluorescent source X of the assembled source
samples were calculated as follows:

�ass =
∑
i∈Sn

�i (7)

Xass =
∑
i∈Sn

Xi (8)
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where �ass and �i represent the surface photon of assembled
sample and the i th single-source sample, respectively. Sn is
the set of selected single-source samples and n is the number
of selected samples. Dual-source samples were created by
randomly selecting two samples (n = 2) from the single-source
samples. Big-source samples were constructed by centering on
a single-source sample and assembling n nearest single-source
samples (n = 10, 20, 30, 40, and 50). Besides, the nearest two
assembled source samples (n = 10) were assembled to obtain
more irregular shaped big-source samples.

In total, we simulated 543 single-source samples and assem-
bled 7258 samples (4000 dual-source samples and 3258 big-
source samples) to construct the training set. Similarly, another
100 simulated single-source samples, and 900 assembled
samples (400 dual-source samples and 500 big-source sam-
ples) were collected to construct the validation set. Besides,
three dual-source samples with different barycenter gaps,
one ellipsoid shaped source sample and three big spher-
ical source samples with different depths were produced
using MOSE platform to further verify the performance
of KNN-LC network.

E. In Vivo Experiment

To evaluate the utility of KNN-LC network, in vivo FMT
reconstruction in orthotopic glioma mouse models was imple-
mented. All animal experiments were performed under the
guidelines of the Institutional Animal Care and Use Com-
mittee at Peking University. The orthotopic glioma mouse
models were established following the protocols of [15], and
200 μL Tf-IRDye800 [15] were injected into each tumor-
bearing mouse through the tail vein. Six hours after the injec-
tion, the surface fluorescence images and CT data were first
collected using a pentamodal imaging system [36], [37] and
the MRI data (M3TM, Aspect Imaging, Israel) was obtained
subsequently.

In the process of optical image acquisition, the excitation
light was produced by a 750 nm continuous wave semicon-
ductor laser with 450 mW output power. The fluorescence
images were captured using an electron multiplying charge
coupled device (EMCCD) camera (iXonEM + 888, ANDOR,
UK) with 0.5 s exposure and 4 × 4 binning. A bandpass
filter with 820 ± 25 nm was utilized to collect the emission
light. After the acquisition of optical images, CT data was
collected to provide structural information. The fluorescence
images were first mapped to the corresponding CT data, and
then registered to the standard mesh [17]. Next, T2-weighted
MR images were scanned with the following parameters: TE
50 ms, TR 6000 ms, slice spacing 0.1 mm, and slice thickness
0.8 mm [6].

After the in vivo multimodality imaging, mice were sacri-
ficed and the frozen sections of mouse head were acquired
using freezing microtome (CM1950, Leica, Germany). Then,
the fluorescence images of frozen sections were captured
by a live cell imaging system (AF6000 Modular System,
Leica, Germany) equipped with a highly sensitive CCD camera
(Princeton Instruments, ProEM 1024B). Finally, the frozen
sections were stained with hematoxylin and eosin (H&E).

All these ex vivo fluorescence images and H&E stained images
were used as the gold standard of probe distribution and tumor
area, respectively.

F. Implementation Details and Evaluation Index

The training and test of IPS and KNN-LC networks were
implemented using Pytorch and Python 2.7. All computer
operation was performed on a personal computer with a RTX
2080 Ti GPU and a 3.40 GHz Intel Core i7 CPU.

To quantitatively assess the performance of FMT
reconstruction using different methods, the barycenter
error (BCE) [17] and Dice index [15] were chosen as the
evaluation indexes. BCE calculates the deviation between the
barycenters of the reconstructed source and the actual source,
which is defined as follows:

SCt =
⎛
⎝∑

i∈st

Ci × xi

⎞
⎠/∑

i∈st

xi (9)

BC E = ‖SCre − SCac‖2 (10)

where SCt is the weighted center coordinate of source st .
Ci and xi represent the coordinate and intensity of the i th
vertex in st , respectively. ‖·‖2 denotes the operator of Euclid-
ean distance. SCre and SCac are the barycenter coordinate
of the reconstructed source and actual source, respectively.
Furthermore, Dice index was adopted to assess the accuracy
of morphology recovery in FMT reconstruction.

Dice = 2 |X ∩ Y |
|X | + |Y | (11)

where X and Y are the point sets of the reconstructed and
actual fluorescent sources, respectively. The higher the Dice
index, the better the morphological reconstruction.

III. RESULTS

In this section, the performance of KNN-LC network was
evaluated using numerical simulation and in vivo experiments.
SBRTV and IPS methods were used as baselines. This section
is structured as follows: The first part presents the comparisons
of reconstruction results in validation set. The second and
third parts present the performance of our proposed method
in reconstructing MC simulated samples. The dual source
samples in the second part and big-source samples in the third
part were used to evaluate the locating accuracy and mor-
phological reconstruction performance of KNN-LC network,
respectively. In the fourth part, in vivo FMT reconstruction
of probe distribution in glioma mouse models were carried
out to verify the practicality of KNN-LC network. Last,
the reconstruction times of three methods were collected to
evaluate the reconstruction efficiency.

A. Validation Data Reconstruction

The performance of KNN-LC network was compared with
SBRTV and IPS methods by reconstructing different samples
in validation set. To quantitatively compare the performance of
reconstruction results, the mean and standard deviation (SD) of
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TABLE II
QUANTITATIVE RESULTS (MEAN ± SD) OF SMALL-SOURCE

RECONSTRUCTION IN VALIDATION SET

TABLE III
QUANTITATIVE RESULTS (MEAN ± SD) OF DUAL-SOURCE

RECONSTRUCTION IN VALIDATION SET

Fig. 2. Quantitative comparison of parameter K test in validation set.
The average BCE of single-source reconstruction (a) and dual-source
reconstruction (b). The average BCE (c) and the average Dice (d) of
big-source reconstruction.

TABLE IV
QUANTITATIVE RESULTS (MEAN ± SD) OF BIG-SOURCE

RECONSTRUCTION IN VALIDATION SET

BCE and Dice are presented in Table II (single-source recon-
struction) and Table III (dual-source reconstruction). Both
tables showed that KNN-LC network obtained the minimum
BCE, which proved the capability of KNN-LC network in
achieving accurate source localization. Furthermore, in big-
source reconstruction (Table IV), KNN-LC network achieved
the minimum BCE (0.14) and the highest Dice (0.87), which
indicated the superiority of KNN-LC network for morpholog-
ical reconstruction. These results demonstrated that KNN-LC
network achieved more accurate source localization and mor-
phology recovery than the other methods.

Furthermore, the value of nearest neighbor K was deter-
mined based on the results of KNN-LC network in validation
samples. Fig. 2 shows quantitative reconstruction results of
KNN-LC network with different K. Fig. 2(a) and Fig. 2(b)
present BCE of single-source and dual-source reconstructions,

Fig. 3. FMT reconstruction results of dual sources with different
barycenter gaps. (a-c) show the true and the reconstructed sources
given by different methods when barycenter gap is 4.6, 3.8 and 3.0 mm,
respectively. Both 3D rendering and 2D transverse sections are shown
for comparisons.

respectively. Fig. 2(c) and Fig. 2(d) show average BCE
and Dice of big-source reconstruction. The BCE of single-
source and dual-source reconstructions first decreased and
then increased with increasing K, and the minimum BCE
was achieved when K = 32. In big-source reconstruction,
the average BCE was 0.14 when K was 32, which was close to
the minimum BCE (0.13) when K was 256. KNN-LC network
obtained the maximum Dice (0.87) when K was 32 (Fig. 2(d)).
All these results demonstrated that KNN-LC network with
K = 32 could provide better results in both source localization
and morphology recovery. Thus, we set K of KNN-LC network
as 32 in all the reconstruction.

B. Dual-Source Reconstruction

The reconstruction of dual-source samples directly simu-
lated by MC was implemented to further assess the localization
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Fig. 4. Quantitative analysis of dual-source reconstruction with barycen-
ter gap varying from 4.6 to 3 mm. (a) and (b) present the BCE of
reconstructed sources S1 and S2, respectively. (c) shows the total BCE
of S1 and S2.

accuracy of KNN-LC network. Three dual-source samples
with different barycenter gaps were collected using MOSE
platform. The radius of sources were 0.6 mm, and the barycen-
ter gaps were set as 4.6, 3.8 and 3 mm. These dual-source
samples were only used as test samples, and did not appear
in the network training.

Fig. 3 shows 3D rendering and transverse section of dual-
source samples with different barycenter gaps reconstructed
by different methods. The transverse sections crossing both
source centers (Z = 7 mm) were selected for presentation. The
corresponding BCE quantification are presented in Fig. 4. All
methods could distinguish two sources when the barycenter
gap was 4.6 mm (Fig. 3(a)), whereas IPS and SBRTV methods
failed to reconstruct two sources when the barycenter gap was
3.8 (Fig. 3(b)) or 3 mm (Fig. 3(c)). However, KNN-LC net-
work achieved good dual-source reconstruction. Furthermore,
the quantitative comparisons (Fig. 4) showed that the total
BCE of KNN-LC network was 36.5%-65.5% less than that of
the other two methods. These results revealed the superiority
of KNN-LC network for tracing sources and distinguishing
dual sources with close gaps.

To evaluate the anti-noise ability of KNN-LC network, dual-
source reconstruction with 15% Gaussian noise in surface
photon density was implemented. Fig. 5 presents the recon-
structed results in 3D rendering and transverse section images
of different methods. Consistent with no noise interfered dual-
source reconstruction, IPS and SBRTV failed to reconstruct
dual sources when barycenter gap was narrower than 4.6 mm,
whereas KNN-LC network could distinguish dual sources
when barycenter gap reached 3.0 mm. The quantitative BCE
of dual-source reconstruction with noise interference is shown
in Fig. 6. With the barycenter gap reduced from 4.6 to
3.0 mm, the total BCE of SBRTV method and KNN-LC
network increased slightly, but that of IPS method presented
unstable performance. The total BCE of KNN-LC network
was 47.3%-64.9% less than that of SBRTV with barycenter
gap reduced from 4.6 to 3 mm. Besides, KNN-LC network
reconstructed the results with a 40.7%-72.0% lower BCE than
IPS method in 4.6 and 3.8 mm dual-source reconstruction,
and it achieved the similar locating performance in reconstruc-
tion with 3 mm gap. These comparisons proved that KNN-
LC network achieved accurate source localization with noise
interference.

C. Big-Source Reconstruction

The FMT reconstruction of MC simulated big-source sam-
ples was implemented to evaluate the performance of KNN-LC

Fig. 5. FMT reconstruction results of dual sources with 15% Gaussian
noise interference. (a-c) show 3D rendering and transverse sections
of true and reconstructed sources given by different methods when
barycenter gap varied from 4.6 to 3.0 mm.

Fig. 6. Quantitative results of dual-source reconstruction with 15%
Gaussian noise interference. (a-c) present S1 BCE, S2 BCE and total
BCE of three methods when barycenter gap is 4.6, 3.8 and 3.0 mm,
respectively.

network in morphology recovery. An ellipsoid shaped source
sample was created to assess the capability of reconstructing
irregular shaped source, and three big spherical source samples
with different depths were collected to test the performance
in deep source reconstruction. The depth of ellipsoid shaped
source was 2 mm, and its axis lengths along x, y, and z axes
were 1.5, 0.8 and 0.8 mm, respectively. For spherical source
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Fig. 7. FMT reconstruction results of ellipsoid shaped source using
different approaches. The 3D rendering, transverse sections, coronal
sections and sagittal sections of true and reconstructed sources given
by SBRTV, IPS and KNN-LC, respectively.

TABLE V
QUANTITATIVE RESULTS OF THREE METHODS IN THE ELLIPSOID

SHAPED SOURCE RECONSTRUCTION

(1 mm radius) samples, the depths between source barycenter
and object surface were 2.2, 3.2 and 4.2 mm. All these samples
were directly produced by MOSE platform, and only used as
test samples.

Fig. 7 shows the 3D rendering and two-dimensional (2D)
section images of ellipsoid shaped source reconstructed by
three methods. The result of SBRTV was over-smooth,
whereas that of IPS was over-sparse. By contrast, the recon-
structed source of KNN-LC network was more like ellipsoid,
which was close to the true source. Besides, the BCE and Dice
of reconstruction results given by three methods are listed in
Table V. SBRTV provided the largest BCE (0.39 mm), which
was 1.86-2.29 times that of KNN-LC network (0.21 mm) and
IPS method (0.17 mm). Besides, KNN-LC network obtained
the highest Dice (0.81), which was 1.50 times that of SBRTV
(0.54), as well as 1.19 times that of IPS (0.68). These
results demonstrated that KNN-LC network achieved accurate
morphology recovery of irregular shaped source.

The 3D rendering and transverse section images of recon-
structed spherical sources are presented in Fig. 8. The recon-
structed sources of SBRTV were attached to the object surface,
which indicated that SBRTV failed to reconstruct the depth of
fluorescent sources in these cases. Although IPS achieved deep
source reconstruction, the location deviations between recon-
structed and true sources were larger than those of KNN-LC

Fig. 8. FMT reconstruction results of big spherical fluorescent sources
at different depths. The 3D rendering and transverse sections of true
and reconstructed sources at the depths of 2.2 mm (a), 3.2 mm (b) and
4.2 mm (c).

Fig. 9. Quantitative results of big spherical source reconstruction using
three methods. (a) and (b) present BCE and Dice of reconstructed
sources at depths of 2.2, 3.2 and 4.2 mm.

network. As shown in Fig. 9(a), KNN-LC network achieved
the minimum BCE in each fluorescent source reconstruction.
Besides, KNN-LC network obtained the highest Dice of 0.84,
0.75, and 0.53 at the depths of 2.2, 3.2, and 4.2 mm, respec-
tively (Fig. 9(b)). These results revealed the superiority of
KNN-LC network for morphological reconstruction of deep
fluorescent sources.

In addition to these results, the performance of KNN-LC
network was verified using another three ellipsoid shaped
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Fig. 10. In vivo FMT reconstruction in three orthotopic glioma bearing mice. (a) 3D rendering of KNN-LC network reconstruction results (red region)
fused with segmented tumor from MRI (blue region) and CT. (b) 2D transverse sections of FMT and FMT-MRI fused images obtained using three
methods. (c) Near infrared fluorescence images and the corresponding H&E stained images of frozen sections.

source samples of different source sizes, as detailed in the
Supplementary Material Section S.IV. Supplementary materi-
als are available in the supplementary files / multimedia tab.

D. In Vivo Experiment
In vivo FMT reconstruction in three glioma mouse models

[15] was implemented to assess the practicability of KNN-LC
network. The reconstructed results of three mice were merged
with the corresponding MRI data by the maximum mutual
information registration [38].

The 3D rendering of CT images with reconstructed sources
of KNN-LC network (red) and segmented MRI signals (blue)
are shown in Fig. 10(a). Where the reconstructed fluorescent
sources and the corresponding MRI data presented the same
spatial location. Besides, the transverse section images of FMT
reconstruction results and merged images of FMT and MRI
data are presented in Fig. 10(b). Consistent with the simulation
experiments, the reconstruction results of SBRTV were over-
smooth and attached to the object surface. Compared with ex

vivo fluorescence images (Fig. 10(c)), the fluorescent sources
reconstructed by IPS were over-sparse, whereas KNN-LC
network overcame the over-sparse problem and obtained more
accurate morphological information.

For quantitative analysis, Dice index between FMT recon-
struction results and 2D fluorescence images of frozen sec-
tions was calculated and listed in Table VI. Different from
the simulation experiments, IPS obtained the lowest average
Dice (0.45), owning to the over-sparse problem. The average
Dice given by SBRTV method (0.67) was close to that of
KNN-LC network (0.74), but the over-smooth problem of
SBRTV was serious. These results proved the practicability
of KNN-LC network for the morphological reconstruction of
probe distribution in glioma mouse models.

E. Reconstruction Time

To evaluate the reconstruction efficiency of KNN-LC
network, the reconstruction time of different methods
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TABLE VI
QUANTITATIVE RESULTS OF DICE IN in Vivo EXPERIMENTS

was calculated. For FMT reconstruction, both model-based
and data-driven methods take lots of time to do preparations.
Model-based methods need construct system matrix by finite
element analysis, whereas data-driven methods need collect
training data and train network. However, the reconstruction
using well trained network is particularly faster than iterative
calculation of model-based methods. In this study, only the
test time of data-driven methods and the iterative calculation
time were collected for comparisons. The mean ± SD of
the reconstruction time given by IPS (0.167 ± 0.001 s) and
KNN-LC network (0.169 ± 0.005 s) were close, which were
significantly shorter than that of SBRTV (137.2 ± 3.56 s).
These results revealed the superiority of data-driven methods
in fast FMT reconstruction.

IV. CONCLUSION AND DISCUSSION

In this paper, a novel KNN-LC network was proposed to
achieve fast morphological reconstruction of FMT by learning
the mapping relation between the surface photon intensity
and the distribution of fluorescent source directly. Based on
the priori knowledge that the adjacent voxels (not including
boundary voxels) tend to have similar fluorescence intensity,
we built a KNN-LC network by constructing a LC sub-network
based on K-nearest neighbor and cascading it behind a FC
sub-network. With the help of residual learning, KNN-LC
network learned local information of reconstructed results and
improved the morphological reconstruction of FMT.

To verify the performance of KNN-LC network, we imple-
mented dual-source and big-source simulation studies. The
conventional model-based SBRTV method and the machine
learning-based IPS method were adopted for comparisons.
All reconstruction results demonstrated that KNN-LC network
obtained the most accurate source localization and the best
morphology recovery of fluorescent sources. To further eval-
uate the practicability of KNN-LC network, we performed
in vivo experiments in three glioma mouse models. Con-
sistent with our numerical simulation studies, KNN-LC net-
work obtained the best morphological reconstruction of probe
distribution in biological tissue. The average Dice index of
KNN-LC network was 0.74, which was higher than that of
the other two methods. These results revealed that KNN-LC
network obtained accurate FMT reconstruction of probe dis-
tribution in glioma mouse models.

To our best knowledge, this is the first research that
achieved such accurate morphological FMT reconstruction
based on machine learning. Benefiting from the superiority
of machine learning, FMT holds great potential for fast
imaging of fluorescence probe distribution. Besides, KNN-LC
network completely abandoned the photon propagation mod-
eling and the inverse problem solving. It directly learned
the mapping relation between the surface photon intensity

and the distribution of fluorescent source from thousands of
simulation samples. Our in vivo experiments demonstrated the
feasibility of KNN-LC network for visualizing fluorescence
probe distribution inside biological tissue.

However, there are still some limitations of KNN-LC
network. The major drawback of KNN-LC network is the
utilization of the standard mesh. The registration between the
standard mesh and in vivo structural data might bring extra
error in FMT reconstruction. Besides, the value of the nearest
neighbor K was set as a constant in each LC layer based
on parameter test. An adaptive strategy for selecting K is
necessary to further improve the performance of KNN-LC
network, which will be performed in our future research.

In conclusion, a data-driven strategy using KNN-LC net-
work was proposed for morphological reconstruction of FMT.
It achieved accurate source localization and morphology
recovery of FMT in a short time. We believe that this novel
method holds great potential for improving the performance
of FMT and promoting the application of FMT for in vivo
biological research.
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