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Abstract— Multi-organ segmentation is a challenging
task due to the label imbalance and structural differences
between different organs. In this work, we propose an
efficient cascaded V-Net model to improve the performance
of multi-organ segmentation by establishing dense Block
Level Skip Connections (BLSC) across cascaded V-Net.
Our model can take full advantage of features from the
first stage network and make the cascaded structure
more efficient. We also combine stacked small and large
kernels with an inception-like structure to help our model
to learn more patterns, which produces superior results for
multi-organ segmentation. In addition, some small organs
are commonly occluded by large organs and have unclear
boundaries with other surrounding tissues, which makes
them hard to be segmented. We therefore first locate the
small organs through a multi-class network and crop them
randomly with the surrounding region, then segment them
with a single-class network. We evaluated our model on
SegTHOR 2019 challenge unseen testing set and Multi-Atlas
Labeling Beyond the Cranial Vault challenge validation
set. Our model has achieved an average dice score gain
of 1.62 percents and 3.90 percents compared to traditional
cascaded networks on these two datasets, respectively.
For hard-to-segment small organs, such as the esophagus
in SegTHOR 2019 challenge, our technique has achieved
a gain of 5.63 percents on dice score, and four organs in
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Multi-Atlas Labeling Beyond the Cranial Vault challenge
have achieved a gain of 5.27 percents on average dice score.

Index Terms— Multi-organ segmentation, cascaded net-
work, skip connections, inception-like structure, hard-to-
segment.

I. INTRODUCTION

ORGAN segmentation in medical images is a crucial task
for many applications, such as computer-aided diagno-

sis (CAD), diagnostic interventions, treatment planning and
treatment delivery. The delineation of target organs, which
is largely manual and tedious, is essential for radiotherapy
planning. Deep learning has achieved significant attention in
the recent years. Various deep learning based models, such as
FCNs [1], U-Net [2], V-Net [3] and their variants [4]–[13] have
achieved an excellent performance on image segmentation.
However, accurate multi-organ segmentation is still a chal-
lenging task. The shape and location of different organs vary
greatly, which requires a robust segmentation network. For
some organs in the CT images, even the manual segmentation
is challenging due to the low contrast between organs and the
surrounding tissues, and the variable morphology. In addition,
considering the safety and ethical issues, medical datasets are
usually small, which makes it difficult to train a data-hungry
deep neural network to segment these organs.

In recent years, few studies have only focused on
single-organ segmentation, such as the liver [14]–[16],
pancreas [17]–[20], blood vessels [21]–[23], or gliomas
[24]–[26]. Single-class segmentation makes it easier for the
network to handle specific organs and adopt special strate-
gies [14]–[27]. In addition, single-class segmentation can
alleviate the inter-class similarity between organs to a certain
extent. It therefore usually performs better than a multi-
class network. Considering the problem of extensibility, some
studies focus more on the multi-organ segmentation [28]–[33].
In this work, we first validate our model on the multi-organ
segmentation tasks, and then train a single-class network with
cropped images as input to segment the esophagus, which is
a small and hard-to-segment organ.

U-Net and V-Net are the most popular models for med-
ical image segmentation. U-Net is a typical encoder-decoder
structure, in which the encoder gradually reduces the spatial
dimension of the pooling layer, and the decoder gradually
repairs the details and spatial dimensions of the object.
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There is usually a skip connection between the encoder and
the decoder, which helps the decoder to accurately reconstruct
the target. V-Net can be seen as a 3D U-Net combined with the
residual network [34]. This architecture ensures convergence
in a fraction of the time required by a similar network that
does not learn residual functions [3]. In this work, we adopt
a cascaded V-Net model as our backbone.

Based on the encoder-decoder structure of U-Net, some
approaches apply it to the organ segmentation task in a cas-
caded fashion [5], [27], [33], [35]–[37]. Cascading networks is
a classic and effective way to improve the performance. The
most common method is to concatenate the final possibility
map of the first stage network with the original image, and
feeding the concatenated features to the second stage network.
In cascaded networks, the first stage network can also play
different roles. For instance, the first stage network in [31]
is used to extract multi-scale features, the first stage in [33]
is used to locate organs and the first stage in [37] is used
to produce a weight map of organs. In general, a cascading
network performs a coarse-to-fine segmentation.

However, there is a flaw in existing cascaded networks. They
only benefit from the final output possibility map of the first
stage network. Considering the structural consistency between
the two cascaded networks, we argue that each intermediate
layer of the first stage network should also provide useful
information to the second stage network. Hence, we propose a
novel cascaded network model with Block Level Skip Con-
nections (BLSC) across cascaded models. This architecture
allows the second stage network to capture the features learned
by each block of the first stage network, and accelerate the
convergence of the second stage network.

Trends in recent studies [34], [38]–[41] show that small
convolution kernels with a stacking style are used to obtain
the same receptive field as a large convolution kernel. Stacking
small convolution kernels can reduce the model size and com-
putation cost. Most importantly, stacking small convolution
kernels can make the network deeper and have more nonlinear
transformations, which makes the network perform better.
In a recent study, Peng et al. proposed Global Convolution
Networks (GCN) [42] and adopted large convolution kernels
even as large as the size of the feature map. Their work
proved that large convolution kernels can enlarge the valid
receptive field, which enables the network to handle objects
of different sizes. However, in multi-organ segmentation, large
kernels tend to extract information from distant voxels, which
may be unnecessary for voxels that come from the boundary
of organs or small local organs. In order to capture information
from distant voxels for organs and to retain the capability of
dealing with local small organs, we combine stacked small
and large convolution kernels with an inception-like structure.

In the multi-organ segmentation task, some small organs
are easily occluded by the large organs. Fig. 1 shows four
organs in SegTHOR 2019 and thirteen organs in Multi-Atlas
Labeling Beyond the Cranial Vault. In Fig. 1, we can see
that the different organs vary greatly in size, shape and
location. In SegTHOR 2019, the heart and aorta have a large
size and stable shape, which makes them easy to segment.
However, from the first row (axial view), we can see that

both the esophagus and the trachea have small sizes. From
the second row (sagittal view), we can see that their locations
vary greatly. Particularly the esophagus, which has a slender
shape and varies between patients. In Multi-Atlas Labeling
Beyond the Cranial Vault, there are several small organs with
complex differences, which makes multi-organ segmentation
more challenging. In this case, we crop a region of interest
from the entire image for these hard-to-segment organs and
train a single-class network for each organ separately. Detailed
implementations are provided in section IV.

In summary, the major contributions of this work are as
follows:

1) We propose a very efficient cascading network
approach. In contrast to the existing cascaded networks,
where the second stage network benefits only from the
final possibility map of the first stage network, the second
stage network in our cascaded network captures the
features learned in each block of the first stage network.
This significantly improves the performance of the
cascaded network.

2) We combine stacked small convolution kernels and large
convolution kernels on the block level with an inception-
like structure, which enhances the capability of our model
to handle different transformations of organs and better
grasp information from distant voxels.

3) For some hard-to-segment organs, such as the esopha-
gus, its shape and position vary greatly across patients.
We therefore crop it with a proper bounding region
and train a single-class network to segment it. This
significantly improves the segmentation results and makes
the segmentation of these hard-to-segment organs more
practical.

II. MATERIALS

A. Dataset
We evaluated our model on two publicly available datasets.

The first dataset is from the SegTHOR 2019 challenge [43],
and the second dataset is from the Multi-Atlas Labeling
Beyond the Cranial Vault challenge. The SegTHOR 2019 chal-
lenge and Multi-Atlas Labeling Beyond the Cranial Vault
challenge label 4 organs and 13 organs, respectively. The
original resolution of the CT images for both datasets are
512 × 512. For the SegTHOR 2019 challenge, we trained our
model on 40 CT scans from the published training set and
evaluated our model on 20 CT scans from the unseen testing
set online. For the Multi-Atlas Labeling Beyond the Cranial
Vault challenge, there are 30 CT scans. The 30 CT scans are
randomly divided into six subsets, we evaluated our model on
these subsets with k-fold cross-validation and calculated the
average results of dice score and Hausdorff distance on the
six subsets.

B. Pre-Processing and Post-Processing
Intensity normalization is essential before feeding the image

to the network, as this can accelerate the convergence of
the network training and avoid pixel value explosion when
the network is trained without Batch Normalization [44].
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Fig. 1. The axial view (the first row), sagittal view (the second row) and coronal view (the third row) of CT images. The CT images of a patient from
SegTHOR 2019 training set and Multi-Atlas Labeling Beyond the Cranial Vault, respectively. The axial view shows the shape of the organ in 2D,
the sagittal view shows the location distribution of the organ, the coronal view provides more information in 3D.

We truncated the Hounsfiled Unit (HU) within the range
[−k, k], and then the intensity values were linearly normalized
into range [−1, 1]. The value of k is set to 1000 and
350 in SegTHOR dataset and Multi-Atlas Labeling Beyond
the Cranial Vault dataset, which is large enough to cover
most pixels of all the organs on each dataset, respectively.
After intensity normalization, we scaled the thickness of the
CT scans to the same thickness, the standard thickness of
SegTHOR 2019 and Multi-Atlas Labeling Beyond the Cranial
Vault are 2.5 mm and 3 mm, respectively. In order to reduce
the computation cost, the original images were down-sampled
from 512 × 512 to 256 × 256.

After segmentation, we only post-processed the segmenta-
tion results of SegTHOR 2019 challenge. For the esophagus
and the heart, we only picked the largest 2D connected regions.
For the aorta, we picked no more than two 2D connected
regions with size over 150 voxels. For the trachea, we did not
perform any processing of the segmentation results due to its
unstable structure.

III. METHOD

In medical image segmentation, V-Net is a popular model
that combines the residual networks with U-Net. V-Net encour-
ages a much smoother gradient flow, which helps in the
optimization and convergence. As the complexity of the seg-
mentation task increases, in the case of multi-organ segmen-
tation, the original V-Net or U-Net fails to handle various
transformations of organs. Cascading two identical networks
is a classic and effective approach to improve the capability of
the network. In this work, we cascaded two V-Net networks
as our backbone. Different from the original V-Net network,
we replaced the convolution kernels of size 5 × 5 × 5 with
convolution kernels of size 3 × 3 × 3 and added a Group
Normalization [45] layer after each block, which helps the
V-Net performs better in segmentation. In our backbone,
the final output feature map of the first V-Net network is
concatenated with the input image of the second V-Net net-
work. Based on the backbone, we propose dense Block Level
Skip Connections (BLSC) between the corresponding blocks,
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Fig. 2. The structure of our BLSC model. Our backbone consists of a cascaded network with two V-Net networks. The black dashed lines show
the skip connections in our backbone, where only the output of first V-Net network is reused between the two V-Net networks. The red dashed
lines and blue dashed lines show our block level skip connections between the corresponding encoder blocks and corresponding decoder blocks,
respectively. Xi,j represents the convolution block of the cascaded network, where i represents the convolution blocks are in the i -th horizontal line
and j represents the index of the convolution block in the i -th horizontal line. Xi,1 and Xi,2 represent the encoder block and decoder block of the first
stage network, respectively. Xi,3 and Xi,4 represent the encoder block and decoder block of the second stage network, respectively.

which effectively improves the performance of the cascaded
network. Furthermore, we combine stacked small convolution
kernels and large convolution kernels, which helps our network
to better handle more transformation of different organs and
learn more patterns. More details are provided below.

A. Block Level Skip Connections
Cascading networks is an effective way to improve the

performance of an overall network. Traditional cascaded net-
works usually train the first stage network to produce a coarse
possibility map and concatenate the possibility map with the
original image. The concatenated features are then fed to
the second stage network to produce a fine segmentation.
The possibility map of the first stage network can be seen
as a prior probability of the distribution of organs, which can
help the second stage network to focus more on the regions of
interest and achieve better results. However, a natural question
is why only the last output possibility map of the first stage
network is reused? Actually, the two cascaded networks have
the same structure. In this work, these cascaded networks are
two V-Nets. Therefore, the features learned by each block
of the first V-Net network can complement the second
V-Net network. This observation is the basis of our proposed
model. In contrast to the traditional cascaded networks, our
proposed model can take full advantage of the features from
the first stage network by establishing dense Block Level Skip
Connections (BLSC) between the two cascaded networks.

Our proposed model is illustrated in Fig. 2. It shows two
V-Net networks cascaded by dense skip connections, where the
black dashed lines show the skip connections of the traditional
cascaded network, the red and blue dashed lines are our dense
block level skip connections. The red dashed lines and blue
dashed lines connect the corresponding encoder convolution
blocks or decoder convolution blocks of the two cascaded
V-Net networks, respectively. The skip connection between

convolution block X1,2 and convolution block X1,3 is the
only connection between the two cascaded V-Net networks
in the traditional network. This means that the second V-Net
network only benefits from the last possibility map of the first
V-Net network and most of the information learned by the first
V-Net network is lost. With our proposed Block Level Skip
Connections, each block of the first V-Net network benefits
the second V-Net network, and make the cascaded network
more effective. The features from the blocks of the first V-Net
network make the corresponding blocks of the second V-net
network pay more attention to the regions of interest.

B. Block Level Mixed Convolution Kernels
Early works [3], [39] prefer to use large convolution ker-

nel in neural networks. However, a large convolution kernel
usually increases the model size and the computational cost,
which is not conducive to building a deeper network. In the
later models, such as VGG Net [38] and GoogLeNet [41],
competitive results were achieved by stacking 3×3 convolution
kernels. Stacking several 3 × 3 convolution kernels can obtain
the same receptive field size as a large convolution kernel, but
the model size and the computational cost are greatly reduced.
It is generally accepted that stacking small convolution kernels
makes the network handle more nonlinear transformations
and achieve better results. But should the ideal of a large
convolution kernel be completely abandoned? Peng et al
proposed Global Convolutional Network (GCN) [42]. Their
work proves that large kernels can enhance the capability of
the network to handle different transformations and obtain a
large visualization of valid receptive fields (VRF), introduced
by [46].

In our work, we argue that a large convolution kernel can
better grasp the information from distant voxels. Although a
large convolution kernel can obtain the same receptive field
as stacked small convolution kernels, the voxels at different
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Fig. 3. The structure of the mixed convolution kernel based on R-BLSC model. This figure illustrates the structure of the four blocks in the third
level of the horizontal line. The parameter k represents the size of the large convolution kernel. In the block X3,1 and block X3,2, there are three
stacked small convolution kernels with size 3 × 3 × 3, so the receptive field is 7 × 7 × 7. In order to have the same receptive field with stacked small
convolution kernel, the value of k is set to 7 in this case. We divided the large convolution kernel with size of 7× 7 × 7 into three convolution kernels,
these three convolution kernels with size of 1 × 1 × 7, 1 × 7 × 1 and 7 × 1 × 1 are in different branches. The branch of the stacked small convolution
kernels and three sub-branches of the large convolution kernel are followed by a Group Normalization layer, respectively.

Fig. 4. (a) and (b) show how the two stacked small convolution
kernels with size 3 and a large convolution kernel with size 5 works
in one-dimensional convolution, respectively. In (a), the center voxels
is calculated several times, which means that the center voxels will have
a higher weight and the information from the boundary voxels or distant
voxels becomes weaker.

locations contribute differently to the convolution. Fig. 4
demonstrates how the voxels contribute to the convolution. For
the sake of simplicity, we only showed two different ways
of convolution in one dimension. We adopted two stacked
small convolution kernels with size 3 and a large convolution
kernel with size 5 in Fig. 4 (a) and Fig. 4 (b), respectively.
From Fig. 4, we can see that both types of convolution
kernels obtain a receptive field of size 5. With stacked small
convolution kernels, the voxels in the center of the original
layer have a greater weight, which means that the distant
voxels contribute less to the segmentation. As the number of
network layers increases, the contribution of the distant voxels
is reduced. However, in the case of a large convolution kernel,
all voxels are counted only once. Therefore, we can regard that
a large convolution kernel can focus more on the distant voxels
compared to the stacked small convolution kernels.

In multi-organ segmentation, the shape and size of different
organs or an organ from different patients varies greatly. For
voxels from some small local organs or the boundary of the
organs, the distant voxels are not key to the classification.
Therefore, the large convolution kernels pay more attention to

the distant voxels, which are useless and redundant. Given
that stacked small convolution kernels can accommodate
more linear variations and perform better in capturing the
local information, we combined large convolution kernels
and stacked small convolution kernels with an inception-like
structure.

Fig. 3 shows the structure of our mixed convolution kernels.
In each encoder block, we adopt several stacked convolution
kernels of size 3 × 3 × 3 and three large convolution kernels
in different branches. The three large convolution kernels are
separated from a large convolution kernel and only have a
large size in one dimension. Given that the encoder blocks
play the key role in feature learning, the mixed convolution
kernels are not employed in the decoder blocks. We choose a
proper large convolution kernel size that can obtain the same
size of receptive field as the stacked small convolution kernels.
After the convolution, Group Normalization (GN) is used at
the end of each branch, then the feature maps of all branches
are summed. The dashed lines show how the four blocks are
connected, where the red and the blue dashed lines are our
proposed block level skip connections.

In 3D V-Net, in order to reduce the model size and the
computational cost, we adopt separable large filters. For a large
kernel with size of l ×l ×l, we employ three 1×1×l, 1×l ×1
and l × 1 × 1 convolutions directly instead of the symmetrical
separation of the large convolution kernels as in the case of
the Global Convolution Network. This strategy makes large
kernels more practical. For another, the three convolution
kernels are not stacked in one branch, but in different branches,
respectively. With this structure, the network can further learn
more patterns from the convolution kernels of different shapes,
which can help the network handle different transformations
of multi-organs.
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IV. EXPERIMENTS

We validated our models on the two datasets by dice
score and Hausdorff distance. We also performed repeated
tests on each model and repeated measures Analysis of Vari-
ance (ANOVA) for the average results. If the value of PR is
lower than 0.05 in ANOVA, we believe that the difference
between different models is statistically significant.

In section A and B, we introduce the loss function of our
experiments and the process of training and testing. In section
C and D, we test our BLSC model and further adopt the
mixed convolution kernels on it. In section E, we compared
our BLSC model with mixed convolution kernels with other
works. In section F, we provide a solution to produce better
segmentation results on some hard-to-segment organs with
single-class network, such as esophagus.

A. Loss Function
In multi-organ segmentation, in order to solve the problem

of label imbalance, the commonly used and most popular loss
functions are the weighted cross entropy loss or the dice loss.
The weighted cross entropy loss function can avoid the loss
imbalance between the small organs and the large organs by
giving different weights to different organs. The dice loss
subtly solves the problem of label imbalance by comparing the
similarity between the prediction result and the label. In our
work, we adopted the standard dice loss for each cascaded
network as below:

L = 1

K

K∑

k=1

2
∑N

i Pk (i) Lk (i)
∑N

i P2
k (i) + ∑N

i L2
k (i)

(1)

where K is the number of classes, and k represents the k-th
class. N is the total number of voxels in the entire image, and
i is the i-th voxel. Pk(i) and Lk(i) represent the possibility of
prediction and label for class k at voxel i, respectively. The
total loss is the weighted average of the dice loss for all stages:

Ltotal = 1

M

M∑

i=1

λiLi (2)

where Li and λi represent the dice loss and the weight of
the i-th network in the cascaded networks and M represents
the number of cascaded networks. In our experiments, we set
M = 2 and the weight λi=1,2 = 1, then train our model with
deep supervision.

B. Training and Testing
In the training phase of our experiments, for each CT

scan, we choose all the slices which contain organs according
to the labels and expand some slices which do not con-
tain organs around both ends. Then, we divide these slices
into several blocks of size 256 × 256 × 48 in sequences.
There are some overlapping slices between two adjacent
blocks, and the number of the overlapping slices is con-
trolled by a random number between 0 and 24. Finally,
the blocks containing organs are fed into the network for
training.

In the testing phase, we cannot reveal which slices contain
organs without labels. We therefore test each CT scan twice
for better results. For the first test, we divided all slices
from each CT scan into some blocks of size 256 × 256 × 48
in sequence and fed them into the network. The predictions
of the first test can coarsely locate organs, which means
we can coarsely choose the slices with organs based on
this result. In the second test, we therefore only divided
the slices that may contain organs into blocks of size
256 × 256 × 48 and fed them into the network again for
a fine segmentation. This method can discard most of the
non-relevant information and help the network to focus on
regions that are more likely to contain the target organs.
Ultimately, it can effectively reduce the risk of false positive
segmentation.

C. Block Level Skip Connections
In the traditional cascaded network, the first stage network

usually plays the role of coarse segmentation and the second
stage network only uses the possibility map of the first stage
network. In contrast, the key idea of our cascaded network,
with block level skip connections, is to help the second stage
network to take full advantage of the features learned by
the first stage network. We compared the performance of the
traditional cascaded network (baseline) with our BLSC model.
For both models, we fed the blocks of size 256 × 256 × 48 to
the first stage network, and then concatenated the output of the
first stage network with the input blocks and fed that as the
input to the second stage network. We trained the cascaded
network with deep supervision. This means that the outputs
from both stages were taken into account to calculate the dice
loss. The final results on SegTHOR 2019 unseen testing set
and Multi-Atlas Labeling Beyond the Cranial Vault validation
set are reported in Table I.

From Table I, we note that our BLSC model (R-BLSC)
improves the dice score by 1.17 (86.40 vs 87.57) percents
and 2.80 (74.86 vs 77.66) percents compared to the traditional
cascaded network (Baseline) on the two datasets, respectively.
Our BLSC model can achieve a great improvement of dice
score (76.04 vs 78.14) on the esophagus of SegTHOR 2019,
which is the most challenging organ to segment and also
weighted high by the challenge organizers. The decline in
average Hausdorff distance also supports our results. Accord-
ing to Table II, the value of PR (Baseline vs BLSC (S)) on
dice score is lower than 0.05, which proves that our results
are statistically significant with a probability more than 0.95.
However, the value of PR on Hausdorff distance show that our
BLSC model does not gain obvious improvement on Hausdorff
distance.

The experiments on the two datasets prove that our
BLSC model makes the cascaded structure more effective.
After establishing skip connections between the corresponding
blocks of the two cascaded networks, the features of each
block in the first V-Net network benefits the second V-Net
network. The features of the first V-Net network can also be
seen as the possibility map of each block, which helps the
corresponding block in the second V-Net network to pay more
attention to certain areas. With these dense skip connections,
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TABLE I
COMPARISON OF THE TRADITIONAL CASCADED NETWORK WITH OUR MODELS. D-BLSC MEANS THERE ARE SKIP CONNECTIONS BETWEEN

EACH BLOCK IN THE SAME HORIZONTAL LEVEL, AND R-BLSC MEANS ONLY THE SKIP CONNECTIONS BETWEEN THE CORRESPONDING

BLOCKS ARE RETAINED. THE MIXED BLSC REPRESENTS THE BLSC MODEL WITH MIXED CONVOLUTION KERNELS. THE

PERFORMANCE IS MEASURED WITH THE DICE SCORE (%) AND HAUSDORFF DISTANCE (mm)

TABLE II
RESULTS OF REPEATED MEASURES STATISTICAL ANALYSIS OF VARIANCE BETWEEN DIFFERENT MODELS. BLSC (S) IS THE BLSC MODEL WITH

STACKED SMALL KERNELS, WHICH IS ALSO THE ORIGINAL BLSC MODEL. BLSC (L) IS THE BLSC MODEL WITH LARGE CONVOLUTION

KERNELS, AND BLSC (M) IS THE BLSC MODEL WITH MIXED CONVOLUTION KERNELS. D-BLSC MEANS THERE ARE SKIP

CONNECTIONS BETWEEN EACH BLOCK IN THE SAME HORIZONTAL LEVEL, AND R-BLSC MEANS ONLY THE

SKIP CONNECTIONS BETWEEN THE CORRESPONDING BLOCKS ARE RETAINED. IF THE VALUE OF PR IS
LOWER THAN 0.05, WE CAN BELIEVE THAT THE DIFFERENCE IS

STATISTICALLY SIGNIFICANT

our model can avoid the dispersion of information caused by
the depth of the network.

Discussion: The question here arises, why not connect the
encoder of the first V-Net network to the decoder of the second
V-Net network or the decoder of the first V-Net network to the
encoder of the second V-Net network? DenseNet [47] takes
full advantage of the features learned by the previous layers
by concatenating all of these features with the subsequent
layer. In this way, the performance of the network improves.
However, this increases the computation cost of the network.
In this work, we reduce the computation cost by deleting the
redundant skip connections.

Fig. 5 shows the two different types of the proposed skip
connections. In Dense BLSC (D-BLSC) model, each block

in the same horizontal level is connected with all others
through skip connections. In Reduced BLSC (R-BLSC) model,
only the skip connections between the corresponding encoders
or decoders are retained. The results on the two datasets
are also reported in Table I. From Table I and Table II
(PR<0.05), we note that the R-BLSC model can achieve
competitive results with D-BLSC model, but with a reduced
computation cost and a smaller model size. According to these
results, we can infer that the skip connections between the
corresponding encoders and decoders is the key to improve
our proposed cascaded network, and the features from the
encoder blocks of the first stage network may bring more
confusing information to the decoder of the second stage
network.
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Fig. 5. Two ways of connecting different convolution blocks. (a) Illustrates the dense approach like DenseNet (D-BLSC) where each block in the i -th
horizontal line is connected to all the others, (b) illustrates the reduced way (R-BLSC) of connecting blocks from the i -th horizontal line. Xi,j represents
the convolution block of the cascaded network, where i represents the convolution blocks which are in the i -th horizontal line and j represents the
index of the convolution block which is in the i -th horizontal line. Xi,1 and Xi,2 represent the encoder block and the decoder block of the first stage
network, respectively. Xi,3 and Xi,4 represent the encoder block and the decoder block of the second stage network, respectively.

Fig. 6. Example of the segmentation results of different models on SegTHOR 2019 challenge. The first three columns show the prediction results
of different models, the following three columns show the difference between the prediction results and the ground truth. Red, green and blue
delineations in the last three columns illustrate where the voxels were incorrectly segmented. The voxels from different organs are marked with
different colors.

D. Block Level Mixed Convolution Kernels
Multi-organ segmentation is challenging as the shape or size

of different organs varies greatly. We therefore tend to com-
bine large convolution kernels and stacked small convolution
kernels to better handle such differences. Compared with the
stacked small convolution kernels, large convolution kernels
perform better in capturing information from the distant vox-
els, but it does not definitely lead to an improvement of the
segmentation results. For example, for some voxels from the
small organs or boundary of the organs, the information from

the local voxels has a more important influence than the distant
voxels. A large convolution kernel can bring more confusing
information from the distant voxels to these voxels, which may
not improve or may even deteriorate the performance of the
network.

In order to compare the role of the different convolution
kernels, we adopted stacked small convolution kernels
(original R-BLSC model) and a large convolution kernel
based on our BLSC model, respectively. Table III reports the
results of our experiment on the two dataset. As can be seen



2790 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 9, SEPTEMBER 2020

TABLE III
EFFECT OF DIFFERENT SIZE OF CONVOLUTION KERNELS. LARGE REPRESENTS THE BLSC MODEL WITH LARGE CONVOLUTION KERNELS, AND

MIXED REPRESENTS COMBINING THE STACKED CONVOLUTION KERNELS AND THE LARGE CONVOLUTION KERNELS BY SUMMATION. THE

PERFORMANCE IS MEASURED WITH THE DICE SCORE (%) AND HAUSDORFF DISTANCE (mm)

TABLE IV
DIFFERENT MODELS ON THE TWO DATASETS, THE PERFORMANCE IS MEASURED WITH THE DICE SCORE (%)

AND HAUSDORFF DISTANCE (mm)

in Table III, if only one type of convolution kernel is used,
the stacked small convolution kernels perform better than
the large convolution kernels. After combining stacked small
convolution kernels and large kernels with an inception-like
structure, our model can gain further improvement. This
experiment proves that the mixed convolution kernels perform
better on organs that need information from distant voxels.

The value of PR (< 0.05) in Table II also proves that the
difference is statistically significant.

For another, as can be seen in Table II and Table III, our
BLSC model with mixed convolution kernels performs better
on the second dataset, which has more organs and is therefore
more challenging. This can be attributed to our mixed convo-
lution kernels, which helps the network to learn more patterns.
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TABLE V
RESULTS OF REPEATED MEASURES STATISTICAL ANALYSIS OF VARIANCE BETWEEN PREVIOUS MODELS AND OUR MODEL. IF THE VALUE OF PR

IS LOWER THAN 0.05, WE CAN BELIEVE THAT THE RESULTS ARE STATISTICALLY SIGNIFICANT

TABLE VI
DICE SCORE (%) OF DIFFERENT BATCH SIZES IN THE CASE OF SINGLE-CLASS NETWORK ON THE ESOPHAGUS OF SEGTHOR 2019

UNSEEN TESTING SET. RESULTS OF REPEATED MEASURES STATISTICAL ANALYSIS OF VARIANCE BETWEEN MULTI-CLASS

NETWORK WITH BATCH SIZE OF 1 AND SINGLE-CLASS NETWORK WITH DIFFERENT BATCH SIZE IS ALSO REPORTED

IN THIS TABLE. IF THE VALUE OF PR IS LOWER THAN 0.05, WE CAN BELIEVE THAT THE RESULTS ARE

STATISTICALLY SIGNIFICANT

E. Comparison With Previous Works
We compared our model with previous works on the two

datasets. Among these models, U-Net and V-Net are the classic
models for medical image segmentation. Multi-scale pyramid
[31] is a cascaded network with two FCN networks, but
the image resolution in the two stages is different. For fair
comparison, we replaced the two FCN networks with two
V-Net networks. We down-sampled the image resolution to
128 × 128 and 256 × 256, and fed them to the first V-Net
network and the second V-Net network, respectively. We also
compared our model with UNet++ [4], which is a single-
stage network and reused the features from different decoders
in one U-Net network. UNet++ up-samples the feature map
of each encoder block to the original resolution gradually and
establishes dense skip connections between the blocks of the
same horizontal line. The final results are reported in Table IV.
We can see that our models can gain greatly improvement on
dice score and Hausdorff distance. The value of PR (<0.05)
in Table V can also prove that the results are statistically
significant.

F. Single-Class Segmentation for
Hard-to-Segment Organs

In the case of the multi-organ segmentation, the segmen-
tation of the small organs is still challenging due to the
small number of voxels in a single image. The esopha-
gus from SegTHOR 2019 is a hard-to-segment organ due
to its slender shape, small size and it varies greatly from
patient to patient. Considering the difficulty of the esophagus

segmentation, the esophagus is weighted high by the challenge
organizers. In this experiments, we will discuss a series of
strategies to achieve a better esophagus segmentation result.
Finally, the average dice score of the esophagus improves from
0.7846 to 0.8409.

Our overall pipeline is as follows:
1) We roughly locate the esophagus through the previous

multi-class segmentation results.
2) We randomly crop the area of the esophagus with a proper

size.
3) We feed the cropped area to our model for a finer

segmentation.

Cropping strategy: As shown in Fig. 1, while the esophagus
only occupies a small portion of a slice, its position is not fixed
across different slices. We crop out a block of size 112 ×
112 × 112 around the esophagus, which can completely cover
the esophagus. We therefore can feed the entire esophagus into
the 3D network at once. In order to increase the diversity of the
training data, we randomly cropped a 112×112 slice area in a
larger area of size 224×224. A cropping range twice the block
size performs well in our experiments. A smaller cropped area
may lead to over-fitting which requires more attention. In the
test phase, we crop a block of size 112 ×112 ×112 according
to the coarse position of the esophagus that is obtained from
the previous multi-class segmentation.

Batch Size: Due to the limitation of GPU memory, the batch
size in the 3D multi-class network is set to 1. Therefore batch
normalization is generally not used. In various models, a large
and appropriate batch size is usually chosen empirically.
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TABLE VII
PERFORMANCE OF THE MULTI-CLASS NETWORK AND THE SINGLE CLASS NETWORK WITH OUR PROPOSED STRATEGIES ON

MULTI-ATLAS LABELING BEYOND THE CRANIAL VAULT DATASET. THE PERFORMANCE IS MEASURED WITH THE DICE

SCORE (%) AND HAUSDORFF DISTANCE (mm). RESULTS OF REPEATED MEASURES STATISTICAL ANALYSIS OF

VARIANCE BETWEEN TWO MODELS IS ALSO REPORTED IN THIS TABLE. IF THE VALUE OF PR IS LOWER

THAN 0.05, WE CAN BELIEVE THAT THE RESULTS ARE STATISTICALLY SIGNIFICANT

However, in medical image processing, there is a serious
problem of data scarcity which results in small size medical
datasets. For example, in these experiments, our training set
has only 40 CT scans. Since the esophagus varies greatly
across patients, the training set does not simulate the true
distribution of the esophagus very well. Therefore, when
the batch size is increased, the model is more easily over-
fitted to the training set, which reduces the generalization
of the model. We adopted different batch sizes to train our
network. The results are shown in Table VI, which shows
that when the batch size increases from 1 to 4, the dice
score of the esophagus decreases. When the batch size is 1,
the network achieves the best performance both on dice score
and Hausdorff distance. We also performed repeated measures
statistical analysis of variance between multi-class network
with batch size of 1 and single-class network with different
batch size, the results are also reported in Table VI. According
to the value of the PR (<0.05) in Table VI, we believe that
this results are statistically significant.

As a typical hard-to-segment organ, the segmentation strate-
gies for the esophagus can also be used to segment other
similar organs. We therefore also employed this method to
four hard-to-segment organs in Multi-Atlas Labeling Beyond
the Cranial Vault dataset. The results are reported in Table VII.
From Table VII, we note that single-class networks with our
strategies on dice score and Hausdorff distance performs much
better than multi-class network. According to the value of
PR (<0.05), we believe that the difference is statistically
significant.

V. CONCLUSION

Organ segmentation is essential for the organ disease diag-
nosis and radiotherapy planning. A multi-organ system based
on deep learning is expected to replace the tedious manual
annotation and can be applied in computer-aided diagnosis.
In this work, we proposed an efficient approach to boost the
performance of cascaded network for multi-organ segmenta-
tion task. The key idea is to establish skip connections between
the corresponding blocks of two cascaded networks. These
skip connections can effectively pass the features learned in
each block of the first network to the second cascaded network.
Our experiments proved that our cascaded network, with block
level skip connections, performs much better compared to the
traditional cascaded network. Furthermore, we explored the

combination of stacked small convolution kernels with several
large kernels separated from a large convolution kernel to help
the network to better capture the information from distant
voxels and learn more patterns, which greatly improves the
performance of multi-organ segmentation.

We also provided a solution for single-class network to seg-
ment hard-to-segment organs, which are small and vary greatly
in shape across different patients. The proposed technique
can also be used to segment other similar organs and make
the segmentation of small organs more practical. However,
training single-class networks for separate organs increases
the model size and requires fine processing, which is not
conducive to the extensibility of the multi-organ segmentation
model. In addition, single-class network may not produce
obvious improvement on large organs with good performance,
which requires attention.
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