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A Weakly-Supervised Framework for COVID-19
Classification and Lesion Localization

From Chest CT
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Abstract— Accurate and rapid diagnosis of COVID-19
suspected cases plays a crucial role in timely quarantine
and medical treatment. Developing a deep learning-based
model for automatic COVID-19 diagnosis on chest CT is
helpful to counter the outbreak of SARS-CoV-2. A weakly-
supervised deep learning framework was developed
using 3D CT volumes for COVID-19 classification and
lesion localization. For each patient, the lung region was
segmented using a pre-trained UNet; then the segmented
3D lung region was fed into a 3D deep neural network to
predict the probability of COVID-19 infectious; the COVID-19
lesions are localized by combining the activation regions in
the classification network and the unsupervised connected
components. 499 CT volumes were used for training and
131 CT volumes were used for testing. Our algorithm
obtained 0.959 ROC AUC and 0.976 PR AUC. When using
a probability threshold of 0.5 to classify COVID-positive
and COVID-negative, the algorithm obtained an accuracy
of 0.901, a positive predictive value of 0.840 and a very high
negative predictive value of 0.982. The algorithm took only
1.93 seconds to process a single patient’s CT volume using
a dedicated GPU. Our weakly-supervised deep learning
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model can accurately predict the COVID-19 infectious
probability and discover lesion regions in chest CT
without the need for annotating the lesions for training.
The easily-trained and high-performance deep learning
algorithm provides a fast way to identify COVID-19 patients,
which is beneficial to control the outbreak of SARS-CoV-2.
The developed deep learning software is available at
https://github.com/sydney0zq/covid-19-detection.

Index Terms— COVID-19, CT, deep learning, weak label,
SARS-CoV-2, DeCoVNet.

I. INTRODUCTION

S INCE Dec 2019, a large and increasing outbreak of a novel
coronavirus was reported in Wuhan, Hubei province of

China [1], [2], which can cause acute respiratory illness and
even fatal acute respiratory distress syndrome (ARDS) [3]. The
new coronavirus was named as SARS-CoV-2 by International
Committee on Taxonomy of Viruses (ICTV) [4] and the
infectious diseases infected by this coronavirus was named
as Coronavirus Disease 2019 (COVID-19) by World Health
Organization (WHO) [5]. The new coronavirus has been
confirmed of human-to-human transmission [6], [7], and due
to the massive transportation and large population mobility
before the Chinese Spring Festival, this new coronavirus has
spread fast to other areas in China with considerable morbidity
and mortality. According to the data from the National Health
Commission of the People’s Republic of China [8], update till
24 o’clock of Mar 29, 2020, China has reported 82447 iden-
tified cases with SARS-CoV-2, including 3,311 death cases;
82.2% (67,801/82,447) of the identified cases came from
Hubei province and identified cases in Wuhan, the very center
of epidemic area of Hubei province, accounted about 73.8%
(50,006/67,801) of the data in Hubei province. Moreover,
COVID-19 cases outside China have been reported in more
than 200 countries, areas or territories. Until to 18:00 Central
European Time of Mar 29, 2020, a total of 638,146 con-
firmed cases with 30,039 deaths cases globally was reported
according to the COVID-19 situation dashboard in the World
Health Organization (WHO) website [9]. Countries with the
most numbers of confirmed cases included United States of
America with 103,321 cases, Italy with 92,472 cases, China
with 82,356 cases, Spain with 72,248 cases, Germany with
52,547 cases, Iran with 38,309 cases, France with 37,145 cases
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and so on. With the tremendously fast spread of SARS-CoV-2,
it has been declared to be a Public Health Emergency of Inter-
national Concern (PHEIC) by WHO on 30 January 2020 [10],
and the global level of assessment of the risk of spread and
the risk of impact of COVID-19 has been increased to be Very
High by WHO on Feb 28, 2020 [11] which poses a great threat
to the international human health.

Even though real-time reverse transcriptase polymerase
chain reaction (RT-PCR) has been considered as the gold
standard for SARS-CoV-2 diagnosis, the very limited supply
and strict requirements for laboratory environment would
greatly delay accurate diagnosis of suspected patients, which
has posed unprecedented challenges to prevent the spread of
the infection, particularly at the center of the epidemic areas.
In contrast with it, chest computed tomography (CT) is a faster
and easier method for clinical diagnosis of COVID-19 by
combining the patient’s clinical symptoms and signs with their
recent close contact, travel history, and laboratory findings,
which can make it possible for quick diagnosis as early as
possible in the clinical practice. It is also effectively helpful
to isolate infected patients timely and control the epidemic,
especially for the severely epidemic areas. In a word, chest CT
is a key component of the diagnostic procedure for suspected
patients and its CT manifestations have been emphasized in
several recent reports [1], [12]–[15].

In a word, accurate and rapid diagnosis of COVID-19
suspected cases at the very early stage plays a crucial role
in timely quarantine and medical treatment, which is also
of great importance for patients’ prognosis, the control of
this epidemic, and the public health security. During Wuhan’s
COVID-19 outbreak period, a large number of patients, includ-
ing suspected cases, identified cases and follow-up cases,
were needed to undergo chest CT to observe the changes and
severity extent of pulmonary pneumonia, which had caused a
tremendous burden to professional medical staffs; their severe
shortage was also a major difficult to conquer the epidemic.
Chest CT, especially high-resolution CT (HRCT) could detect
small areas of ground-glass opacitity (GGO). In the initial
stage of COVID-19 pneumonia, lung findings on chest CT may
present with small, subpleural and peripheral GGO [16], which
would consume much more time than the larger-involved and
diffusive GGO and/or consolidation patterns. At the current sit-
uation, any missed cases would continue to cause COVID-19
spread. So, it has posed great challenge to our radiologists
with such a tremendous amount of work as well as high diag-
nostic accuracy. Moreover, radiologists’ visual fatigue would
heighten the potential risks of missed diagnosis for some small
lesions. Thus, developing an artificial intelligence (AI) method
for computer-aided COVID-19 diagnosis was very helpful to
radiologists.

Deep learning, as the core technology of the rising AI in
recent years, has been reported with significantly diagnostic
accuracy in medical imaging for automatic detection of lung
diseases [17]–[19]. It surpassed human-level performance on
the ImageNet classification task with one million images for
training in 2015 [20], showed dermatologist-level performance
on classifying skin lesions in 2017 [21] and obtained very
impressive results for lung cancer screening in 2019 [17].

However, most deep learning based methods for disease diag-
nosis requires to annotate the lesions, especially for disease
diagnosis in CT volumes. Annotating lesions of COVID-19
costs a huge amount of efforts for radiologists, which is not
acceptable when COVID-19 is spreading fast and there are
great shortages for radiologists. Thus, performing COVID-19
diagnosis in a weakly-supervised manner is of great impor-
tance. One of the simplest labels for COVID-19 diagnosis is
the patient-level label, i.e., indicating the patient is COVID-19
positive or negative. Therefore, the aim of current study was
to investigate the potential of a deep learning model for
automatic COVID-19 diagnosis on chest CT volumes using
the weak patient-level label. Technically, we obtain a high
performance COVID-19 diagnosis system by training a lung
segmentation network using ground-truth masks obtained via
an unsupervised method and designing an effective lightweight
3D residual network (ResNet) with a progressive classifier for
COVID-19 classification and weakly-supervised lesion local-
ization. Our deep learning solution requires minimal expert
annotation and is easy to train, which is very helpful to rapidly
develop AI software for COVID-19 diagnosis at this critical
situation to counter this outbreak globally.

In [22], a comprehensive review of AI for COVID-19
is presented. Compared with existing COVID-19 methods,
we have the following advantages. First, we trained the
lung segmentation model using masks generated from an
unsupervised learning method. Second, we proposed a
weakly-supervised COVID-19 lesion detection by combining
deep learning activation regions and unsupervised connected
component activation regions, which is the first work performs
weakly-supervised COVID-19 lesion localization. Third,
the proposed COVID-19 classification network is lightweight
and effective; in experiments, we had compared our classifier
with different sophisticated deep learning classifiers and our
classifier performed significantly better than the others in
terms of both computation cost and classification performance.

II. MATERIAL AND METHODS

A. Patients

This retrospective study was approved by Huazhong Uni-
versity of Science and Technology ethics committee, patient
consent was waived due to the retrospective nature of this
study.

Between Dec. 13, 2019 to Feb. 6, 2020, we searched unen-
hanced chest CT scans of patients with suspected COVID-19
from the picture archiving and communication system (PACS)
of radiology department (Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology).
Finally, 540 patients (mean age, 42.5 ± 16.1 years; range,
3-81 years, male 226, female 314) were enrolled into this
study, including 313 patients (mean age, 50.7 ± 14.7 years;
range, 8-81 years; male 138, female 175) with clinical diag-
nosed COVID-19 (COVID-positive group) and 229 patients
(mean age, 31.2 ± 10.0 years; range, 3-69 years; male 88,
female 141) without COVID-19 (COVID-negative group).
There was no significant difference in sex between the two
groups (χ2 = 1.744; P = 0.187), age in COVID-positive
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Fig. 1. Architecture of the proposed DeCoVNet. The network took a CT volume with its 3D lung mask as input and directly output the probabilities
of COVID-positive and COVID-negative.

group significantly higher than that of COVID-negative
group (t = 17.09; P < 0.001). The main clinical symptoms
for these patients were fever, cough, fatigue, and diarrhea.
Of all the patients, two were included by both groups due
to the first and second follow-up CT scans. The first case
(female, year 66) was diagnosed as COVID-19 negative
on Jan 24, 2020, then changed into COVID-positive on
Feb 6, 2020; the second case (female, year 23) was diagnosed
as COVID-19 positive on Jan 24, 2020, then changed into
COVID-negative on Feb 3, 2020. All the CT volumes scanned
on and before Jan 23, 2020, were assigned for deep learning
training, and all the CT volumes scanned after Jan 23, 2020,
were assigned for deep learning testing.

B. Image Acquisition

The CT scanning of all the enrolled patients was performed
on a gemstone CT scanner (GE Discovery CT750HD; GE
Healthcare, Milwaukee, WI), and were positioned in a head-
first supine position, with their bilateral arms raised and
placed beside bilateral ears. All the patients underwent CT
scans during the end-inspiration without the administration of
contrast material. Related parameters for chest CT scanning
were listed as follows: field of view (FOV), 36 cm; tube
voltage, 100 kV; tube current, 350 mA; noise index, 13; helical
mode; section thickness, 5 mm; slice interval, 5 mm; pitch,
1.375; collimation 64×0.625 mm; gantry rotation speed, 0.7 s;
matrix, 512 × 512; the reconstruction slice thickness 1 mm
with an interval of 0.8 mm; scan rage from apex to lung base;
the mediastinal window: window width of 200 HU with a
window level of 35 HU, and the lung window: window width
of 1500 HU with a window level of −700 HU.

C. Ground-Truth Label

In the diagnosis and treatment protocols of pneumonia
caused by a novel coronavirus (trial version 5) [23] which
was released by National Health Commission of the People’s
Republic of China on Feb 4, 2020, suspected cases with
characteristic radiological manifestations of COVID-19 has
been regarded as the standard for clinical diagnostic cases
in severely affected areas only in Hubei Province, indicating
that chest CT is fundamental for COVID-19 identification of
clinically diagnosed cases.

Typical CT findings for COVID-19 are also listed: mul-
tifocal small patchy shadowing and interstitial abnormalities
in the early stage, especially for the peripheral area of the
bilateral lungs. In the progressive period, the lesions could
increase in range and in number; it could develop into multiple
GGO with further infiltration into the bilateral lungs. In severe
cases, pulmonary diffuse consolidation may occur and pleural
effusion is rarely shown.

The combination of epidemiologic features (travel or contact
history), clinical signs and symptoms, chest CT, laboratory
findings and real-time RT-PCR for SARS-CoV-2 nucleic acid
testing is used for the final identification of COVID-19. The
medical CT reports were acquired via the electronic medical
record of Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology. According to the CT
reports, if a CT scan was COVID-positive, its ground-truth
label was 1; otherwise, the label was 0. The dataset does not
contain other pneumonia and all negative cases are healthy
patients.

To evaluate the performance of our algorithm for COVID-19
lesion localization, the bounding boxes of COVID-19 lesions
in testing CT scans were manually annotated by a professional
radiologist with 15 years of experience working in chest CT.

D. The Proposed DeCoVNet

We proposed a 3D deep convolutional neural Network to
Detect COVID-19 (DeCoVNet) from CT volumes. As shown
in Fig. 1, DeCoVNet took a CT volume and its 3D lung mask
as input. The 3D lung mask was generated by a pre-trained
UNet [24]. DeCoVNet was divided into three stages for a clear
illustration in Table. I. The first stage was the network stem,
which consisted of a vanilla 3D convolution with a kernel
size of 5 × 7 × 7, a batchnorm layer and a pooling layer. The
setting of the kernel size of 5 × 7 × 7 follows AlexNet [25]
and ResNet [26], which is helpful to preserve rich local visual
information. The second stage was composed of two 3D resid-
ual blocks (ResBlocks). In each ResBlock, a 3D feature map
was passed into both a 3D convolution with a batchnorm layer
and a shortcut connection containing a 3D convolution that
was omitted in Fig. 1 for dimension alignment. The resulted
feature maps were added in an element-wise manner. The third
stage was a progressive classifier (ProClf), which contained
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Fig. 2. Training and testing procedures. A UNet for lung region segmentation was first trained on the labeled training set using the ground-truth
lung masks generated by an unsupervised learning method. Then, all CT volumes were tested by the pre-trained UNet to obtain all lung masks.
Each CT volume was concatenated with its lung mask volume as the input of DeCoVNet. DeCoVNet was trained under the supervision of clinical
ground-truth labels (COVID-positive and COVID-negative). Lastly, the trained DeCoVNet made predictions on the testing set.

TABLE I
DETAILED STRUCTURE OF THE PROPOSED DECOVNET. THE NUMBER

AFTER THE SYMBOL “@”, E.G., 5 × 7 × 7, DENOTES THE KERNEL SIZE

OF THE CONVOLUTION LAYER OR THE RESIDUAL BLOCK. “&” MEANS

THAT THERE ARE TWO TYPES OF KERNEL SIZE IN THE RESIDUAL

BLOCK. “T” DENOTES THE LENGTH OF THE INPUT CT VOLUME.
THE NUMBER IN “OUTPUT SIZE” IS IN THE ORDER OF

“CHANNEL, LENGTH, HEIGHT, WIDTH”. THE INPUT

SIZE IS 2 × T × 224 × 336

three 3D convolution layers and a fully-connected (FC) layer
with the softmax activation function. ProClf progressively
abstracts the information in the CT volumes by 3D max-
pooling and finally directly output the probabilities of being
COVID-positive and COVID-negative.

The 3D lung mask of an input chest CT volume helped to
reduce background information and better classify COVID-19.
Detecting the 3D lung mask was a well-studied issue. In this
study, we trained a simple 2D UNet using the CT images
in our training set. To obtain the ground-truth lung masks,

we segmented the lung regions using an unsupervised learning
method [27], removed the failure cases manually, and the rest
segmentation results were taken as ground-truth masks. The
3D lung mask of each CT volume was obtained by testing
the trained 2D UNet frame-by-frame without using any tem-
poral information. The overall training and testing procedures
of UNet and DeCoVNet for COVID-19 classification were
illustrated in Fig. 2.

E. Weakly-Supervised Lesion Localization

Our idea of weakly-supervised COVID-19 lesion localiza-
tion was to combine the activation regions produced by the
deep classification network (i.e., DeCoVNet) and the unsu-
pervised lung segmentation method. The method is illustrated
in Fig. 3. In the right part, we inferred a few candidate
lesion regions from DeCoVNet by applying the class activation
mapping (CAM) method proposed in [28]. The DeCoVNet
activation regions had a good recall, but they made many false
positive predictions. In the left part of Fig. 3, we extracted
potential COVID-19 lesion regions from the unsupervised
lung segmentation results. After applying the 3d connected
component (3DCC) method [27] to the CT scan, we found the
lesion regions were sensitive the 3DCC algorithm, which could
be utilized for lesion localization. To get the response map,
we calculated the variance (including the standard deviation
and the number of connected components) in a 7 × 7 window
for each pixel as the 3DCC activation. Then, the 3DCC
activation region with the largest size was selected and termed
as R3dcc. Lastly, the CAM activation region that had the largest
overlap with R3dcc was selected as the final COVID-19 lesion
localization result.
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Fig. 3. The pipeline of weakly-supervised lesion localization. “3DCC” denotes the 3D connected components algorithm in [27] and “CAM” denotes
the class activation mapping algorithm in [28].

F. Data Preprocessing and Data Augmentation

1) Preprocessing of 2D UNet: All the CT volumes were
preprocessed in a unified manner before training the 2D UNet
for lung segmentation. First, the unit of measurement was
converted to the Hounsfield Unit (HU) and the value was
linearly normalized from 16-bit to 8-bit (i.e., 0-255)
after determining the threshold of a HU window
(e.g., −1 200-600 HU). After that, all the CT volumes were
resampled into a same spatial resolution (e.g., 368 × 368),
by which the CT volumes could be aligned without the
influence of the cylindrical scanning bounds of CT scanners.
This step was applied to the obtained ground-truth lung
masks as well.

2) Preprocessing of DeCoVNet: For each CT volume,
the lung masks produced by the trained UNet formed a
mask volume, then the CT volume was concatenated with
the mask volume to obtain a CT-Mask volume. Finally, the
CT-Mask volume was resampled into a fixed spatial resolution
(e.g., 224 × 336) without changing the number of slices for
DeCoVNet training and testing. The number of slices in the
whole dataset was 141 ± 16 ranging from 73 to 250.

3) Data Augmentation: To avoid the overfitting problem
since the number of training CT volumes was limited, online
data augmentation strategies were applied including random
affine transformation and color jittering. The affine transfor-
mation was composed of rotation (0◦±10◦), horizontal and
vertical translations (0% ± 10%), scaling (0% ± 20%) and
shearing in the width dimension (0◦±10◦). The color jittering
adjusted brightness (0% ± 50%) and contrast (0% ± 30%).

For each training sample, the parameters were randomly
generated and the augmentation was identically applied for
each slice in the sampled CT volume.

G. Training and Testing Procedures

The DeCoVNet software was developed based on the
PyTorch framework [29]. Our proposed DeCoVNet was
trained in an end-to-end manner, which meant that the CT
volumes were provided as input and only the final output
was supervised without any manual intervention. The network
was trained for 100 epochs using Adam optimizer [30] with
a constant learning rate of 1e-5. Because the length of CT
volume of each patient was not fixed, the batch size was
set to 1. The binary cross-entropy loss function was used to
calculate the loss between predictions and ground-truth labels.

During the procedure of testing, data augmentation strate-
gies were not applied. The trained DeCoVNet took the
preprocessed CT-Mask volume of each patient and output
the COVID-positive probability as well as COVID-negative
probability. Then the predicted probabilities of all patients
and their corresponding ground-truth labels were collected for
statistical analysis.

The cohort for studying the COVID-19 classification
and weakly-supervised COVID-19 lesion detection contained
630 CT scans collected from Dec 13, 2019 to Feb 6, 2020.
To simulate the process of applying the proposed DeCoVNet
for clinical computer-aided diagnosis (i.e., prospective clinical
trials), we used the 499 CT scans collected from Dec 13, 2019
to Jan 23, 2020 for training and used the rest 131 CT volumes
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collected from Jan 24, 2020 to Feb. 06, 2020 for testing.
Of the training volumes, 15% were randomly selected for
hyperparameter tuning during the training stage.

H. Statistical Analysis

COVID-19 classification results were reported and analyzed
using receiver operating characteristic (ROC) and precision-
recall (PR) curves. The area under the ROC curve (ROC AUC)
and the area under the precision-recall curve (PR AUC)
were calculated. Besides, multiple operating points were cho-
sen on the ROC curve, e.g., the points with approximately
0.95 sensitivity (high sensitivity point) and with approximately
0.95 specificity (high specificity point). ROC AUC, PR AUC,
and some key operating points were used to assess the deep
learning algorithm.

To quantitatively analyse the performance of our weakly-
supervised lesion localization algorithm, we followed the eval-
uation metric in [31] to calculate the lesion hit rate as follows.
For each of the CT scans predicted as positive by DeCoVNet,
we took the most confident 3D lesion mask predicted by the
proposed weakly-supervised lesion localization algorithm; if
the center of predicted 3D lesion mask was inside any one of
the annotated boxes, it was a successful hit; otherwise, it failed
to hit; finally, we calculated the hit rate by dividing the number
of successful hits over all the number of true positives.

III. EXPERIMENTAL RESULTS

The code for COVID-19 classification with an online web
app as well as the results are available at https://github.com/
sydney0zq/covid-19-detection. Training DeCoVNet on the
training set which consisted of 499 CT volumes took about
20 hours (11 hours for UNet and 9 hours for DeCoVNet)
and testing a CT volume costed an average of 1.93 seconds
(1.80 seconds for UNet and 0.13 seconds for DeCoVNet) on
an NVIDIA Titan Xp GPU.

A. COVID-19 Classification Results

For every testing CT scan, we used the trained DeCoVNet
to predict its probability of COVID-19. By comparing with
their binary ground-truth labels, we plotted ROC and PR
curves as shown in Fig. 4 and Fig. 5 respectively. In the
ROC, we obtained a ROC AUC value of 0.959. When true
positive rate (TPR, i.e., sensitivity) was approximately 0.95,
our model obtained a true negative rate (TNR, i.e., specificity)
of 0.786; when TNR was approximately 0.95, our model
obtained a TPR of 0.880; there was another operating showed
that our algorithm obtained both TPR and FPR larger than 0.9,
i.e., sensitivity = 0.907 and specificity = 0.911. On the PR
curve, our model obtained a PR AUC of 0.975.

When using the threshold of 0.5 to make COVID-19
classification prediction (i.e., if the probability of COVID-19
was larger than 0.5, the patient was classified as COVID-
positive, and vice versa), the algorithm obtained an accuracy
of 0.901 with a positive predictive value (PPV) of 0.840 and
a negative predictive value (NPV) of 0.982. By varying
the probability threshold, we obtained a series of COVID-
19 classification accuracy, PPV and NPV in Table II.

Fig. 4. COVID-19 classification results evaluated using the receiver
operating characteristic curve.

Fig. 5. COVID-19 classification results evaluated using the precision-
recall curve.

TABLE II
COVID-19 CLASSIFICATION STATISTICS BY VARYING THE

PROBABILITY THRESHOLDS. (PPV: POSITIVE PREDICTION

VALUE. NPV: NEGATIVE PREDICTION VALUE)

Our data showed that the COVID-19 prediction accuracy
obtained by the DeCoVNet algorithm was higher than
0.9 when the threshold ranged from 0.2 to 0.5. At the threshold
setting of 0.5, there were 12 false positive predictions in total
and only one false positive prediction by the algorithm in
our study, indicating that the algorithm to have a very high
negative predictive value.

B. Comparison to Different Classification Networks

We compared the proposed 3D DeCoVNet with different
deep classifiers in Table III. Firstly, a 2D COVID-19 classifica-
tion network (2DClfNet) designed following the way of [32].
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TABLE III
COVID-19 CLASSIFICATION RESULTS COMPARED BETWEEN

DECOVNET AND OTHER DEEP LEARNING CLASSIFIERS. “2DCLFNET”
DENOTES A 2D CLASSIFICATION NETWORK DESIGNED

FOLLOWING [32]. “DECOVNET W/ DROPOUT” AND

“DECOVNET-FCCLF” DENOTES DECOVNET WITHOUT

DROPOUT LAYER OPERATIONS AND THE MODIFIED

DECOVNET BY REPLACING THE PROGRESSIVE

CLASSIFIER WITH A FULLY-CONNECTED

CLASSIFIER RESPECTIVELY

As shown in Fig. 8, the 2DClfNet method used 2D con-
volutions to extract features for each slice in CT, and the
slice-level features were aggregated into CT-level feature for
COVID-19 via a max-pooling layer. For a fair comparison,
we kept the number of parameters and the number of network
layers almost the same to our DeCoVNet. However, due to
computations were not shared among different slices, its com-
putation cost was much higher than our DeCoVNet. Evaluated
by the floating-point operations (FLOPs) metric, it had 378.6G
FLOPs, while our DeCoVNet only had 28.87G FLOPs. Our
COVID-19 classification result was also much better than
2DClfNet (0.959 ROC AUC versus 0.900 ROC AUC) since
our DeCoVNet can capture the information among different
slices. The results confirmed the effectiveness of utilizing
the 3D backbone of COVID-19 CT classification. Secondly,
we performed an ablative study to verify the effectiveness of
the dropout operations in DeCoVNet. The results showed that
the dropout operations provided 3.5% ROC AUC performance
gain. Finally, we compared the proposed progressive classifier
with a fully-connected classifier (FCClf), as shown in Fig. 9.
Our progressive classifier contained an adaptive max-pooing
layer, a strided max-pooling layer, a global max-pooling layer,
3 convolution layers, and a fully-connected layer, while the
compared FCClf used 3 fully-connected layers for COVID-
19 classification according to traditional classification network
design methods. The results showed that our progressive
classifier saved about 3G FLOPs computation cost and 6.6%
ROC AUC performance gain.

C. Comparison With Other Methods

To prove the effectiveness of our proposed method, we com-
pared our DeCoVNet with other methods as shown in
Table IV. The gray-scale histogram feature inside the obtained
lung mask volume was provided for different classifiers.
After adjusting the number of bins and parameters of each
classifier, the best results were kept. The proposed DeCoVNet
surpassed the traditional methods by at least 10% in accuracy.
Without UNet which provided the obtained lung mask volume,
the performance dropped about 8%. Although our DeCoVNet

TABLE IV
COVID-19 CLASSIFICATION RESULT COMPARISON AMONG

DECOVNET, OTHER METHODS AND HUMAN EXPERT

TABLE V
THE RESULTS OF WEAKLY-SUPERVISED LESION LOCALIZATION

performed not better than human expert, it was still promising
to assist in improving efficiency.

D. Visualization of Classification Results

The accurate predictions (a true positive and a true negative)
were presented in Fig. 6 (A-B), and erroneous predictions in
Fig. 6 (C-F). In images corresponding to the true positive and
the false negative, the lesions of COVID-19 were annotated by
red arrows. As shown in Fig. 6 (D, E, F), the false negative
predictions were made by the algorithm, and Fig. 6 (C) showed
the only false positive prediction, in which the respiratory
artifact had been mistaken as a COVID-19 lesion by the
DeCoVNet algorithm.

To get a deeper understanding of our DeCoVNet, we visu-
alized the learned attention region (in red color) as shown in
Fig. 7. For each CT volume, we applied CAM [28] on the
deep feature before the progressive classifier and the weights
in the final fully connected layer, then we selected several
representative CT images. It could be observed that our model
indeed learned where the pneumonia occurred.

E. Weakly-Supervised Lesion Localization Results

The results of weakly-supervised lesion localization are pre-
sented in Table. V. The results were evaluated via the hit rate
metric described Sec II-H. The CAM method only obtained a
hit rate of 35.6%. The 3DCC activation method obtained a hit
rate of 65.7%; this is a good hit rate but the region discovered
by 3DCC activation is too small, which is not meaningful to
radiologists. By combining CAM with the unsupervised 3DCC
activation method, we obtained a hit rate of 68.5%, which
was non-trivial achievement since no lesion annotations were
used in our approach. We also explored a very recent weakly-
supervised deep learning method, i.e., NormGrad [33]. The
results of NormGrad were worst than CAM in this task.
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Fig. 6. Some accurate and erroneous predictions of the proposed DeCoVNet.

Fig. 7. Some visualizations of the learned attention region where the pneumonia occurs.

IV. DISCUSSION

This study performs computer-aided COVID-19 diagnosis
using a large number of CT volumes from the frontline hos-
pital and very weak labels. By designing an effective weakly-
supervised deep learning-based algorithm and training it on
CT volumes collected before Jan 23, 2020 with only patient-
level labels, the testing results on 131 CT scans collected
from Jan 24, 2020, to Feb 6, 2020, were very impressive, e.g.,
the PR AUC value was 0.975. On the ROC curve, the algo-
rithm obtained sensitivity and specificity values larger than
0.9, which were both clinically applicable. Compared with
the concurrent work [32], we have the following advantages:
(1) we propose a lung segmentation network trained using
ground-truth masks generated by an unsupervised method
without expert annotation. (2) Our DeCoVNet is light-weight
3D CNN which is more efficient than the CoVNet in [32]
that performs ResNet-50 classification for each slides in CT.
(3) We have more testing CTs (131 v.s. 68). With similar ROC
AUC values for COVID-19 classification, more testing CTs

illustrates more robust performance. (4) We have presented a
weakly-supervised COVID-19 lesion localization algorithm.

The motivation of this study was to utilize AI to alleviate
the problem of shortage of professional interpretations for
CT images when the epidemic is still fast spreading. Though
there were many effective applications of medical AI in
previous studies [17], [34], developing AI for automatic
COVID-19 diagnosis was still a challenging task. Firstly,
in the current emergency situation, the number of enrolled
patients is relatively smaller compared with that used in
previous studies [17], [34]; and patients enrolled in our study
were clinically diagnosed cases with COVID-19, because the
majority of them did not undergo the nucleic acid testing
due to the sudden outbreak and limited medical resource in
such a short time period. Secondly, the lesions of COVID-19
in CT volumes were not labeled by radiologists and only
patient-level labels (i.e., COVID-positive or COVID-negative)
were utilized for training the AI algorithm in our study.
Thirdly, some small infected areas of COVID-19 have the
potential to be missed even by professional radiologists,
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and whether it is feasible to be detected by deep learning-
based 3D DCNN model remains unclear. We hypothesized
to solve these problems by proposing a delicate 3D DCNN,
i.e., DeCoVNet. It solved the first problem by applying
extensive data augmentation on training CT volumes to obtain
more training examples. The second problem was solved by
regarding the COVID-19 lesion localization problem as a
weakly-supervised learning problem [35]. The class activation
mapping algorithm and the connected component algorithm
were used for weakly-supervised lesion localization. The
third problem was addressed by taking the advantages of
deep learning and utilizing a pre-trained UNet for providing
the lung masks to guide the learning of DeCoVNet.

The deep learning-based COVID-19 diagnostic algorithm
used in our study is effective compared to recent deep learning-
based computer-aided diagnosis methods. On the task of
predicting the risk of lung cancer [17], the deep learning
model was trained on 42290 CT cases from 14851 patients
and obtained 0.944 ROC AUC. On the task of critical findings
from head CT [34], the deep learning model was trained on
310055 head CT scans and obtained ROC AUC of 0.920.
In our study, only 499 scans were used for training, but
the obtained ROC AUC was 0.959. By comparing the data
between them, it was able to find that the task of COVID-19
classification may be easier and the proposed deep learning
algorithm was very powerful. As for the erroneous 12 false
negative predictions in our results, the most possible explana-
tions after we rechecked the original CT images were listed as
follows: those lesions were slightly increased in CT densities,
and images of those ground-glass opacities were very faint
without consolidation.

Our study provided a typical and successful solution
for developing medical AI for emerging diseases, such as
COVID-19. While we were developing this AI, doctors in
Wuhan were still extremely busy with treating a huge num-
ber of COVID-19 patients and it may be impossible for
them to annotate the lesions in CT volumes in the current
austere fight against this epidemic. Thanks to the weakly-
supervised algorithm in this study, locations of pulmonary
lesions in CT volumes are not necessary to be annotated, and
radiologists’ annotating efforts can be minimized, i.e., only
providing patient-level labels. Therefore, developing a helpful
AI tool swiftly has become possible and available in the
clinical application. In the future, the burden of AI experts
could be lifted significantly by automatic machine learning
(AutoML) [36].

Limitations of this study: There are still several limitations
in this study. First, network design and training may be further
improved. For example, the UNet model for lung segmentation
did not utilize temporal information and it was trained using
imperfect ground-truth masks, which could be improved by
using 3D segmentation networks and adopting precise ground-
truth annotated by experts. Second, the data used in this
study came from a single hospital and cross-center validations
were not performed. Third, since this study was performed
during the outbreak of COVID-19 in Wuhan and there were
a great shortage of medical staff at that time, the CT data
of community-acquired pneumonia (CAP) were not collected

TABLE VI
DETAILED STRUCTURE OF THE COMPARED 2DCLFNET. THE NUMBER

AFTER THE SYMBOL “@”, E.G., 7 × 7, DENOTES THE KERNEL SIZE OF

THE CONVOLUTION LAYER OR THE RESIDUAL BLOCK. “T” DENOTES

THE LENGTH OF THE INPUT CT VOLUME. THE NUMBER IN “OUTPUT

SIZE” IS IN THE ORDER OF “CHANNEL, HEIGHT, WIDTH”.
THE INPUT SIZE IS 2 × 224 × 336

in the experiments; nevertheless, adding a new class for CAP
prediction would not be difficult for an advanced deep learning
classifier, which had been confirmed in [32]. Fourth, when
diagnosing COVID-19, the algorithm worked in a black-box
manner, since the algorithm was based on deep learning and
its explainability was still at an early stage. Related work of all
limitations mentioned above will be addressed in our further
studies.

V. CONCLUSION

In conclusion, without the need for annotating the
COVID-19 lesions in CT volumes for training, our
weakly-supervised deep learning framework obtained strong
COVID-19 classification performance and good lesion local-
ization results. Therefore, our algorithm has great potential
to be applied in clinical application for accurate and rapid
COVID-19 diagnosis, which is of great help for the front-
line medical staff and is also vital to control this epidemic
worldwide.
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APPENDIX

DETAILS OF THE COMPARED CLASSIFIERS

To clarify the compared deep learning based classifica-
tion networks in Sec. III-B, we illustrate the 2DClfNet and
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Fig. 8. Architecture of 2DClfNet for COVID-19 classification. It extracted features for each slice in CT using a 2D residual network, and the slice-level
features were aggregated into CT-level feature for COVID-19 via a max-pooling layer. For the detailed structure, please refer to Table. VI.

Fig. 9. Architecture of DeCoVNet-FCClf. Different from the standard DeCoVNet, DeCoVNet-FCClf used fully-connected layers for COVID-19
classification. For the detailed structure, please refer to Table. VII.

TABLE VII
DETAILED STRUCTURE OF THE COMPARED DECOVNET-FCCLF. THE

NUMBER AFTER THE SYMBOL “@”, E.G., 5 × 7 × 7, DENOTES THE

KERNEL SIZE OF THE CONVOLUTION LAYER OR THE RESIDUAL

BLOCK. “&” MEANS THAT THERE ARE TWO TYPES OF KERNEL

SIZE IN THE RESIDUAL BLOCK. “T” DENOTES THE LENGTH

OF THE INPUT CT VOLUME. THE NUMBER IN “OUTPUT SIZE”
IS IN THE ORDER OF “CHANNEL, LENGTH, HEIGHT, WIDTH”.

THE INPUT SIZE IS 2 × T × 224 × 336

DeCoVNet-FCClf models by simple diagrams as shown in
Fig. 8 and Fig. 9. And their detailed network structures are
presented in Table. VI and Table. VII.
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