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Abstract—The ongoing COVID-19 pandemic, caused by
the highly contagious SARS-CoV-2 virus, has overwhelmed
healthcare systems worldwide, putting medical profession-
als at a high risk of getting infected themselves due to a
global shortage of personal protective equipment. This has
in-turn led to understaffed hospitals unable to handle new
patient influx. To help alleviate these problems, we design
and develop a contactless patient positioning system that
can enable scanning patients in a completely remote and
contactless fashion. Our key design objective is to reduce
the physical contact time with a patient as much as possi-
ble, which we achieve with our contactless workflow. Our
system comprises automated calibration, positioning, and
multi-view synthesis components that enable patient scan
without physical proximity. Our calibration routine ensures
system calibration at all times and can be executed without
any manual intervention. Our patient positioning routine
comprises a novel robust dynamic fusion (RDF) algorithm
for accurate 3D patient body modeling. With its multi-modal
inference capability, RDF can be trained once and used
across different applications (without re-training) having
various sensor choices, a key feature to enable system
deployment at scale. Our multi-view synthesizer ensures
multi-view positioning visualization for the technician to
verify positioning accuracy prior to initiating the patient
scan. We conduct extensive experiments with publicly avail-
able and proprietary datasets to demonstrate efficacy. Our
system has already been used, and had a positive impact
on, hospitals and technicians on the front lines of the
COVID-19 pandemic, and we expect to see its use increase
substantially globally.

Index Terms— Covid-19, contactless, patient positioning,
3D pose, shape.

I. INTRODUCTION

HE ongoing coronavirus disease 2019 (COVID-19) pan-
demic has resulted in over 2.9 million infections and
200,000 deaths as of April 25, 2020 across 210 countries and
territories. This disease, caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) virus, is highly
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contagious in nature, resulting in a dramatic increase, within
a very short amount of time, in the number of patients
seeking care in hospitals. This surge in patients has pushed our
already overburdened hospitals, and the associated healthcare
systems, to the brink of breaking down. In particular, we have
noticed two issues that should be of particular concern. Due
to the close proximity of healthcare providers (technicians,
doctors, efc.) to the patients, many of these professionals
are themselves getting infected, adding more pressure to an
already overwhelmed hospital system. Furthermore, a global
shortage in personal protective equipment (PPE) and other
important supplies is only accentuating the risk our caregivers
face as they treat patients. Consequently, there is an immediate
need for solutions to these problems so that hospitals can
operate at their full efficiency at all times.

The current patient examination workflow comprises sev-
eral critical pre-scan events that involve physical interaction
between patients and medical professionals. These include
directing patients to the examination room, assisting them in
lying down on the bed (to ensure readiness for scan) and
helping position them correctly (e.g., moving their limbs etc.),
all of which are essential to ensure optimal scan parameters.
With the objective of reducing these physical interaction events
to the maximum extent possible, in this paper, we propose,
design, and develop a remote-enabled and contactless sys-
tem for accurate patient positioning, an important step in a
CT examination. Note that while much work in diagnosing
COVID-19 has been with CT [1]-[3], chest X-ray (CXR)
is another modality that is widely used [4]-[6]. Given this,
and our objective above, we emphasize that our system is
not limited to just the CT modality. A useful by-product
of our system design principle is that we can save scarcely
available PPEs, potentially freeing them up for use in absolute
emergency scenarios. This is because medical professionals
can now conduct the examination while being physically
seated in a room safe and far from where the patient might
be housed. An illustration of this aspect is shown in Fig. 1,
where we show our system deployed in a hospital in China.

There are several aspects that need to be considered as
we go about designing such a system from the ground up.
Assuming the patient is directed to the examination room
(and the CT bed), the system must provide a visual cue (e.g.,
an appropriately installed camera that can take an image or
a sequence of images), analyze the contents of the image(s),
and automatically assist the CT scanner in properly positioning
(and hence preparing) the patient for a CT scan. This neces-
sitates that the camera is accurately calibrated with respect to
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the coordinate system of the scanner. Furthermore, because
we seek contactless functionality, any calibration faults (e.g.,
accidental movement of either the camera or parts of the
scanner) must be corrected efficiently, and preferably, without
manual operations, requiring the system to have an automated
camera-scanner calibration functionality that routinely moni-
tors for and corrects any deviations. Next, the positioning algo-
rithm itself must estimate a 3D representation of the patient
that can then be used to perform positioning with respect to
the scanner, which typically is specific to the modality and the
scan protocol. Finally, because healthcare professionals can
only look at the algorithm performance on a computer screen
far away from ground zero, the system needs to provide them
with as much information as possible to make sure they are
comfortable with the positioning results. One way of doing
this is by synthesizing the resulting 3D representation from
various alternative viewpoints (e.g., if the camera is placed at
the top of the patient, synthesizing a side viewpoint of the
positioning result to get a more accurate sense of thickness)
so that there is as much redundant information available as
possible that can be used to reliably verify positioning before
proceeding to the next step in the examination process.
Much recent algorithmic work [7]-[9] in patient positioning
has focused on estimating the 2D or 3D keypoint locations on
the patient body. Such keypoints represent only a very sparse
sampling of the full body mesh in the 3D space that defines
the digital human body. However, in many relevant use-cases
such as automated thickness estimation [10] and radiation
dose optimization, one needs a full 3D mesh and not just
the keypoint locations. While there is some recent progress
[11] in addressing this problem, this method is limited to
CT-specific poses and requires depth data. If we change either
the application (e.g., X-ray poses and protocols) or even the
particular type of the camera (e.g., some applications may be
limited to RGB-only camera), this method will need (a) fresh
collection and annotation of data, and (b) retraining the model
with this new data, both of which may be prohibitively
expensive to do repeatedly for each application separately.
Given the extent of the impact of the COVID-19 pandemic,
we need to be able to design a system that can quickly be
developed and deployed at scale across various modalities
and applications. These issues raise an important question
that is of obvious practical concern: can we design generic
models that can be trained just once and universally used
across various scan protocols and application domains? Given
that a scan modality or application may have its own needs
(typically manifest in the form of the camera choice e.g.,
RGB-only or RGB-thermal, or specific data scenario, e.g.,
patient under the cover), a key consideration of our system
is to equip the underlying positioning algorithm with what we
call dynamic multi-modal inference capability. This ensures
that the algorithm, and hence the system, can be trained just
once and used across multiple applications, leading to scaling,
a particularly important aspect as noted above. As a more
concrete example, one hospital in country X may have an
RGB-only camera, a second hospital in country Y may have
a thermal-only camera, and a third hospital in country Z may
have an RGB-thermal camera. With our design, the system

(with the model trained with both RGB and thermal data)
can be used in all the hospitals above without requiring any
retraining in each individual hospital. Note that this proposed
approach is substantially different than existing state-of-the-art
3D mesh modeling methods such as HMR [12], which shares
the same multi-modal limitations as Singh et al. [11], i.e.,
it can be trained only for one modality. A useful byproduct of
our algorithm design is built-in redundancy to ensure system
robustness. For instance, in the hospital in country Z, even if
one modality in the RGB-thermal camera fails (e.g., thermal
stops working), the system above will still be able to perform
3D patient modeling with the remaining RGB-only data.

Designing a fully contactless system that enables robust
deployment at scale has not been considered in exist-
ing research, where the focus primarily has been on
laboratory-based algorithm development that is divorced from
many of the practical issues and considerations noted above.
Some of these problems remain unaddressed even in cur-
rently available industrial products. For instance, both Siemens
Healthineers [13] and GE Healthcare [14] provide 3D camera
solutions for patient positioning and isocentering but still
require technicians to physically be present in the scanning
room and touch panels mounted on the CT scanner to
select/confirm scanning parameters. In this paper, we address
these crucial gaps in the current art, which are all the more
important given the lessons we are learning from the ongoing
COVID-19 pandemic.

Il. CONTACTLESS AUTOMATED WORKFLOW

We begin by briefly describing the workflow associated
with our proposed contactless patient positioning system.
A block diagram illustration of the system is shown in Fig. 2.
Before being put to use, the system executes an automated
camera-scanner calibration routine (section II-A) that does
not involve any manual intervention of a technician. This
routine automatically detects locations of pre-defined markers
on the scanner bed to establish 2D-3D correspondences that
are used, with a standard off-the-shelf perspective-n-point
algorithm, to calibrate the camera of the system with respect
to the coordinate system of the scanner. Assuming the patient
is directed to the correct examination room and the bed in
the hospital, the system begins by first ensuring the patient is
ready for the scan. This can be achieved by simply tracking
key feature locations (e.g., certain keypoints) temporally over a
certain number of frames. Once the patient is determined to be
ready for the scan, our system executes its patient positioning
functionality that takes an image as input and produces a 3D
mesh representation. As noted in Section I, this patient posi-
tioning module comprises our proposed algorithm capable of
dynamic multi-modal mesh inference (section II-B). Next,
our system comprises a 3D mesh optimizer (Section II-C)
module that, in an online fashion and at a substantially higher
speed than competing methods, fine-tunes the mesh output
by our positioning module with body keypoints from the
detection module in Fig. 2, resulting in a more accurate 3D
mesh. This resulting 3D mesh is then used, in conjunction
with the calibration information, to accurately position the
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Fig. 1. Our contactless positioning system being used in a hospital for
diagnosing a patient affected by COVID-19.

Image Detection
Modality A 3D Mesh Scan
Dynamic Multimodal Optimizer Parameters
Mesh Inference (e.g. control
Image * " signals)
Modality B Camera-Scanner Multi-view
Calibration Verification

Fig. 2. Components and data flow of the proposed system.

patient on the scanner bed. For instance, in a CT examination,
this involves ensuring correct isocentering so that the optimal
amount of radiation dosage can be determined for the CT scan.
Specifically, based on the estimated 3D representation and the
given/selected scan protocol (e.g., Thorax scan), our patient
positioning component provides estimates for the scan range
and isocenter location, which are used by the technician for
verification and initiation of the scan. Finally, our system also
comprises a multi-view synthesis module (section II-D) to
synthesize the mesh from additional viewpoints (e.g., side view
if camera is looking down from a top view). This provides
crucial information for a technician to verify the accuracy of
the estimated mesh before initiating a medical scan.

A. Automated Camera-Scanner Calibration

In order to provide control signals to the scanner bed,
we need to be able to go from 3D representation estimated
in the camera coordinate system to the scanner coordinate
system. For this purpose, we need to compute a spatial
transformation from the image plane to scanner coordinate
system by means of a system calibration process. Conven-
tional methods calibrating the extrinsic parameters between
the camera and scanner systems usually rely on precisely
manufactured apparatus [15] and repetitive manual operations
that are generally cumbersome to perform on a regular basis,
let alone perform it manually during an ongoing pandemic.
Consequently, to minimize human intervention and the mainte-
nance effort needed, while ensuring the best possible position-
ing accuracy at all times, our system comprises an automated
calibration process that does not depend on any extra/external
apparatus or manual effort, and uses the standard pinhole

camera model with the intrinsic matrix K. If P = [x y z]T

is a point in the scanner coordinate system, p = [u ) I]T
its corresponding undistorted projection on the image plane,
and R and T are the rotation matrix and translation vector
respectively, we have:

p=KRP+T) (1)

K is determined in an offline process using a standard
checkerboard target [15] and remains unchanged after system
installation. To compute R and T, we establish 2D-3D
correspondences with a marker on the patient support. This
marker is used to calibrate the patient support to the scanner
system using the horizontal and vertical laser beams through
the isocenter of the gantry. The 3D location M of the marker
in the scanner coordinate system is a function of the control
parameters of the patient support. By moving the patient
support with various horizontal and vertical perturbations,
we obtain several 3D locations for the marker along with
their corresponding 2D image projections m, giving the 2D-3D
correspondences set (M;, m;). This set is then used to solve
for R and T in Equation 1 using standard robust perspective-
n-point solvers [16]. Once R and T are determined, they can
be used to validate calibration accuracy by back-projecting
marker locations m; in the image plane to scanner coordinate
system and comparing the result with the corresponding 3D
ground-truth M;. Our system considers the calibration process
to be successful if the reprojection error is smaller than a
pre-defined threshold (we use 4mm). Once the success of the
calibration process is determined, our system automatically
updates the calibration parameters. Note that throughout this
process, there is no need for any manual intervention/operation
whatsoever, and hence it can be conducted at any user-desired
frequency (e.g., at a fixed time in the day/night).

B. Dynamic Multi-Modal Mesh Inference

As discussed in Section I, a key motivation for the patient
positioning component of our system lies in scalability and
generality. We seek to train a 3D mesh estimation model
that can enable the system to be flexibly used across various
applications, modalities, and even hospitals universally without
requiring any extensive application- or hospital-specific fine-
tuning or retraining. To this end, we propose a new 3D mesh
estimation algorithm, called robust dynamic fusion (RDF).
RDF enables the positioning model to be trained once with
all the possible data modalities (e.g., RGB and depth, or RGB
and thermal) and used across applications having differing data
requirements (e.g., DR may need RGB only or CT may need
RGB-D) without having to retrain. This plays a critical role
in saving time (which is key given the ongoing COVID-19
pandemic) and quickly scaling up system deployment.

In the following, we first give a brief overview of the various
components of the proposed RDF algorithm, summarized in
Fig. 3. We then describe each component in greater detail in
the next subsequent sections. Note that while all subsequent
discussion assumes two pairs of modalities (RGB-thermal and
RGB-depth), our approach can easily be extended to more
than two modalities by simply adding more convolutional
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Fig. 3. RDF has multiple CNN branches to learn a joint feature representation, which, along with a fully-connected parameter regressor module,
is used to estimate the 3D mesh parameters. “FC” refers to a fully connected unit.

branches in Fig. 3. Given this multi-modal data input, RDF
first generates features in a joint multi-modal feature space.
To ensure robustness of our method to situations involving
absence of the two data inputs during inference (e.g., thermal
might be unavailable due to a sensor malfunction), we also
propose a new training policy that adds noise to the input data
while respecting all the possible multi-modal permutations
(e.g., “clean RGB and thermal”, “RGB with noise and thermal
without noise”, and “no thermal only RGB”). Our intuition
in training an RDF model with this strategy is to ensure the
model has “seen” all these possible scenarios and hence is
able to infer the correct 3D model parameters.

As can be noted from Fig. 3, given the input images in
modalities A and B, RDF first generates feature representations
for each of the two images with a two-branch convolutional
neural network (CNN) architecture. These two feature vectors
are then concatenated and processed with our dynamic feature
fusion module to give the feature representation fpr of the
two input images in the joint feature space. Given the feature
representation, RDF estimates the parameters of the 3D model
that best describe the person shape and pose in the input with
the parameter regressor module. This estimation process is
supervised by means of objective functions we discuss next.

1) Multi-Modal Flexibility: Before describing the loss
functions in training our RDF model, we first discuss how RDF
achieves multi-modal inference flexibility that we discussed
above. Given images I4 and Ip corresponding to the A and B
modalities, we simulate multiple scenarios with a probabilistic
data policy. Specifically, we first, with a probability p, select
one of the two data streams A/B and replace the corresponding
stream’s input data array with an array of zeros. With this
approach, over the training time, the model will have observed
the following scenarios: A only (i.e., simulating absence
of B and hence setting Ip to zero), B only (i.e.simulating
absence of A and hence I4 set to zero), and both A and B
(i.e., simulating presence of both A and B, hence neither

I4 nor Ip is zero). This way, the model will be trained to
infer the correct 3D mesh parameters under any of these
scenarios. Given I4 and Ip (with or without the zero changes
above), we first extract their individual feature representa-
tions with their corresponding CNN branches and concatenate
them, giving f.,.. Inspired by [17], we process fcoc with our
feature fusion module, also shown in Fig. 3. This operation
essentially generates a new representation fpr that enables
the model to learn which feature dimensions are important,
as well as capturing interdependencies between the various
input channels and modalities. Specifically, with a set of fully
connected units, we output sc, a vector of weights highlighting
the importance of each channel in the input feature vector
f.ai. We then element-wise multiply fc, and sc, which is then
followed by one more fully connected unit to give fpr.

2) Mesh Estimation: Given fpp, RDF estimates a 3D
paramteric mesh model with its mesh parameter regressor,
which is realized with a set of fully connected layers.
In this work, we use the popular Skinned Multi-Person Lin-
ear (SMPL) model of Loper et al. [18], which is a parametric
differentiable model parameterized by the following: shape
S € R0 (the first ten coefficients of a principal components
analysis projection of the shape space) and pose 6§ € R’?
(the three-dimensional axis-angle vector representing the ori-
entation of each of the 24 keypoints defined in the SMPL
model). This regressor module takes as input the fused feature
vector fpr and outputs the estimates for pose and shape
6 and ﬁ respectively. We use an /1 distance loss, with the
corresponding ground-truth parameters 6 and f, to supervise
these predictions:

LY, = |10, p1-10. A1, 2)

Note that to further strengthen the representation capability of
the features representation of each individual modality, we also
enforce a loss on the parameters estimated directly from these
feature vectors. Specifically, as shown in Fig. 3, we input f4 to
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the regressor module, producing branch A’s estimates for pose
and shape; similarly we also input fp to the regressor module,
producing branch B’s estimates for pose and shape. In each of
these two cases, we enforce a loss on the estimated parameters
using the same loss function as in Equation 2. We denote these

terms L2 and LB_ . giving an overall mesh estimation loss
function:
DF A B
Limesh = Lipesh + Linesh + Limesh 3)

3) 2D Keypoints Prediction: To further ensure 8 and ,bA’ give
accurate 2D keypoints on the input images, RDF comprises an
image projection operation that projects the resulting 3D key-
points (computed with 6 and ,[;’ from fpr) to 2D keypoints on
the images. To achieve this, RDF estimates a weak-perspective
projection as in HMR [12], giving translation p € R? and scale
t € R, which are then used to compute the 2D keypoints with
an orthographic projection as X; = s [[(X;) + p, where X; is
the i"" 3D keypoint and %; is its correponding 2D projection.
Given the corresponding ground-truth x;, we supervise this
with an [; loss:

Lop = Z Ixi — %], “4)
i

4) Depth Ranking Consistency: With RDF designed to work
with any subset of the input modalities, it may so happen that
in some applications the input is RGB-only data. Given the
well-established challenges in inferring 3D information from
an RGB-only image, in addition to the constraints described
above, we propose a new depth ranking consistency (DRC)
learning objective to provide more explicit 3D supervision
for the model. The goal of DRC is to ensure the estimated
3D mesh parameters respect the relative configuration of the
predicted keypoints on the depth data (e.g., one is closer
than the other). Note that given the dependence on the depth
modality for training with DRC, this component is particular
to the scenario involving RGB and depth modalities (not
RGB-thermal). The intuition of DRC is to ensure the rela-
tive ordering of the predicted joints locations (xy, ys, zy) is
consistent with the input joints. Given an input 2D keypoint
(x, y), we obtain its corresponding depth z4 from the aligned
depth map. While the raw depth value z; is not directly
comparable to the z; (as the coordinate system definitions
may be different), the relative depth orderings (i.e., closer-
farther) between each pair of joints z; and z; will have to be
consistent. To this end, DRC explicitly enforces our network
to predict & and S that satisfies this relative depth ordering
property. Specifically, for a pair of joints (p, ¢), we define its
depth ranking relation r), 4 as:

1, isz—zg > D
—1, ifzh —z4>D (5)
0, iflzf—z<D

Tp,g =

where D is the threshold to mitigate the effect of noise in depth
maps. DRC penalizes the case when a pair of the inferred
3D joints, from the predicted 8 and S, has relative depth
relationship that is opposite to the relationship derived from

the input depth. Our objective function can be expressed as:

Lare = Z Lp,q (6)

(p.q)eP

where P represents the set containing the non-repetitive pairs
of joints and L 4 = log(l 4 exp(rp,q - (zf) —z%)).

5) Overall Loss Function: Our RDF model is trained with an
overall loss function that is simply a combination of the three
loss functions discussed above:

L = Liesh + Lop + j~Ldrc (7)

where 4 is an indicator that is 1 for an RGB-D application
and O otherwise. As discussed in Section I, this approach is
substantially different than existing state-of-the-art mesh esti-
mation methods such as HMR [12]. While HMR also regresses
mesh parameters from feature representations, it shares the
same limitation as Singh et al. [11], i.e., it can be trained
only for one modality. Specifically, HMR is a one-branch
architecture that estimates mesh parameters given data from
a single modality. Given this, to use HMR in a multi-modal
scenario will involve using two separate branches, one for each
modality. Each branch follows the baseline HMR architecture,
giving the corresponding modality’s feature vector. We then
concatenate the two feature vectors, one from each modality,
giving the feature vector f.,;, which is used in conjunction with
a parameter regressor module to estimate the mesh parameters.
Note, however, that this two-branch extension of HMR still
does not solve the dynamic multi-modal inference problem.
This is because it always assumes the availability of data from
both modalities. If either of the two modalities is missing, this
technique will produce a non-descriptive fcy since it was not
trained to handle this scenario (i.e., during training, it assumes
images in both branches are always available and neither is
missing). On the other hand, our proposed RDF is able to
address this limitation by means of the probabilistic data and
training policy discussed in Section II-B.

C. 3D Mesh Optimizer

The 6 and f estimated by an RDF model trained with the
learning objective in Equation 7 can be further fine-tuned in
an online fashion. Specifically, given a good initialization and
a sufficient number of iterations, the work of Kolotouros et al.
[19] noted that using an optimization-based iterative approach
(e.g., SMPLIfy [20]) to fit body keypoints (from detection in
Fig. 2) typically leads to better results than regression-based
approaches. An illustrative example is shown in Fig. 4, where
we see by using the output of our RDF approach as a
starting point, the SMPLify algorithm was able to substantially
refine the 3D mesh (particularly with the hands/arms). Given
the need for accurate positioning results for many of the
applications discussed in Section I, such an optimizer module
will help improve the robustness of our system. However, with
their iterative nature, such optimization-based approaches tend
to be very slow. This associated computational cost is typically
quite high when one considers the near real-time performance
requirements of our system. Therefore, the trade-off here is as
follows: while we certainly want accurate 3D meshes, we do
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Fig. 4. Anillustrative example of the improvement in the mesh estimate
by using SMPLify [20] in conjunction with RDF.

not want the underlying operation to be so slow as to render
it useless from a compute-time perspective.

To address this challenge, the 3D mesh optimizer com-
ponent of our system presents an approximate solution that
only takes a substantially small fraction of the time needed
by the iterative approach. Specifically, we propose to replace
the iterative SMPLify algorithm [20] with a fully learned
regressor. Our regressor consists of two blocks, each block
comprising multiple non-linearly activated (ReLU) fully con-
nected units (with dropout during training). The input to the
first block is a vector concatenation of the following quantities:
the target 2D keypoints x, the fused feature vector fpr, and the
parameters 6 = [0, Opodyl, S, and [s, p] estimated by RDF.
Note that g, represents the global orientation parameters
(first three numbers) of the & vector, whereas Ghoqy represents
the vector of all the remaining 69 numbers. The output of
this first block are new values for the global orientation 9g1b
and the camera parameters § and p. Next, the second block
takes as input a vector concatenation of x, f, églb, Ovody, B, 5, P,
and outputs new values for ébody and ,bA’ Note that the idea
of taking a two step approach- first estimating the global
orientation and camera, followed by the remaining pose and
shape parameters, is based on the same two-step approach of
the iterative SMPLIify algorithm. The &, f, §, and / output
by our regressor is supervised using the following objective
function: L = Y, ||xi —%; | ,+ Eg (@) + Ep(B), where x are the
ground-truth 2D keypoints, X are the estimated 2D keypoints
based on the estimated mesh and camera parameters, and Ey
and Ez are the same priors (for pose and shape respectively) as
in SMPLify. Once trained, the # and f estimated by RDF can
be fine-tuned by simply performing a forward pass with this
learned regressor, which takes much less compute time when
compared to the iterative optimization done in SMPLify.

D. Multi-View Synthesis

The contactless pre-scan workflow discussed in Section II
essentially isolates the technician from the patient by means
of two physically separate rooms. Given this, the technician
has to rely on the video stream displayed on the control
panel display to monitor the patient, the progress of the

Camera View

Scan range based
on lafdmark
locations on image

Synthetic Side-View

I1SO Center

(b)

Scan range on the
patient support plane

Fig. 5. An example synthetic side-view rendering.

current scan, and verify the estimated scan range and posi-
tioning/isocentering. With only one camera mounted on top
of the ceiling (as shown in the top part of Fig. 5), it can
be challenging for the technician to precisely gauge the scan
range and isocenting accuracy due to perspective distortion.
To address this issue, our system comprises a multi-view
synthesis module that can synthesize the estimated positioning
results from any desired alternative viewpoint. The motivation
is to provide the technician with additional visualizations for
more accurate positioning verification. Specifically, given the
2.5D data from an RGB-D camera, we transform it from the
current viewpoint (R, T) determined in Section II-A to the
user-desired viewpoint (Rg,, Ts,) in the scanner coordinate
system. The choice of this new viewpoint is configurable in
our system and can be easily specified by the user. Alter-
natively, given application requirements, our system also has
the capability to itself suggest this viewpoint information to
the user. We synthetically render the given (Ry,, Ts,) as:
P,, = R, R (dK~!p—T)+T,. An example result in a CT
application is shown in Fig. 5, where we present the top-down
view (a) and an alternative viewpoint synthesized from the side
(b). From this side-view image (which is essentially a rectified
lateral viewpoint), the technician can clearly verify the scan
range and isocenter, and make any necessary adjustments
before initiating the actual scout scan.

[1l. IMPLEMENTATION DETAILS

For all RGB and thermal experiments, we use the SLP [9]
dataset, which comes with images of people lying on a bed and
covered by a cloth under varying cover conditions: no cover
(uncover), “light” cover (referred to as coverl), and “heavy”
cover (cover2). For all RGB and depth experiments, we use
the publicly available CAD [21] and PKU [22] datasets, along



KARANAM et al.. TOWARDS CONTACTLESS PATIENT POSITIONING

2707

with a proprietary medical scan patient setup (SCAN) dataset.
SCAN comprises two parts: SCAN-RGB with 6000 RGB-
only patient images in 8 different poses and SCAN-RGBD
with 700 RGB-D images of 12 patients. For CAD and PKU,
we use the standard train/test split, whereas we create a
350-image/6-patient and 5500-/500-image split SCAN-RGBD
and SCAN-RGB respectively. We use ResNet50 [23] for both
encoders of RDF, which, along with the parameter regressor,
is pretrained on Human3.6M [24]. We set all loss weights
in our loss function to 1.0 and train with the Adam optimizer
with a batch size of 64, input size of 224 x 224, and a learning
rate of 0.0001 (multiplied by 0.9 every 1,000 iterations).
For evaluation, we use standard metrics [24]: 2D mean per
joint position error (MPJPE) in pixels and 3D MPJPE in
millimeters.

IV. EXPERIMENTS

In this section, we conduct several experiments to eval-
uate the efficacy of the various components of our system.
For the calibration component of the system, we ensure the
reprojection error is within 4mm, as noted in Section II-A.
The multi-view synthesis component of our system is a tool
for qualitative visualization of an alternative viewpoint, and
we provided an example result in Fig. 5. In the following,
we evaluate, both quantitatively and qualitatively, the other
two algorithmic components of our system, viz., the RDF
approach of Section II-B and the optimizer approximation
of Section II-C. Note that while we show results with two
separate two-modality scenarios: RGB-T (A = RGB, B =
thermal) and RGB-D (A = RGB, B = depth), our system is
scalable and can be used with any number of input modal-
ities (we accordingly need to modify the number of input
branches in Fig. 3). In our evaluation, while we compare
RDF’s performance to that of a competing state-of-the-art
mesh recovery algorithm, HMR [12], we emphasize that the
crux of our study is in demonstrating RDF’s flexibility with
multi-modal inference. HMR, by design, can be used with
only one data modality at a time. Therefore, as noted in
Section II-B(e), we extend HMR to process two data modal-
ities with a two-stream architecture, using fca; to regress the
mesh parameters.

A. Multi-Modal Inference Evaluation

We begin with multi-modal inference evaluation. Table |
shows average 2D and 3D MPJPE, with standard devia-
tion (std) in parentheses, across all test images in our five
datasets. In the “HMR” row, the “RGB” sub-row indicates
training and testing on RGB-only data (similarly for depth
“D” and thermal “T”). The “RGB-T” (and “RGB-D”) row
indicates the two-stream baseline with with f.;; discussed
above. Since RDF is trained with our probabilistic data policy,
it processes, during training, both RGB and depth (or thermal)
modalities, and hence we only see “RGB-T” or “RGB-D” in
the “Train” column. During inference, while the baseline can
only process the same kind of data it saw during training,
RDEF, by design, can work with any input modality (RGB only,
D only, or RGB-D, and the corresponding cases with thermal).

TABLE |
MPJPE RESULTS FOR VARIOUS DATASETS: WE SHOW THE AVERAGE
(STD IN PARENTHESES) MPJPE ACROSS ALL TEST SAMPLES

Method Train Test 2D MPJPE | 3D MPJPE
RGB RGB 37.2 (14.2) 155 (76)
HMR [12] T T 34.2 (14.1) 149 (75)
SLP RGB-T | RGB-T | 34.1 (18.8) 143 (81)
RGB 36.6 (14.5) 144 (75)
RDF RGB-T T 34.7 (14.6) 138 (74)
RGB-T | 32.7 (14.2) 137 (78)
Method Train Test 2D MPIJPE | 3D MPJPE
RGB RGB 7.9 (4.5) 120 (43)
HMR [12] D D 9.2 (7.6) 118 (39)
CAD RGB-D | RGB-D 6.7 (3.6) 103 (27)
RGB 6.1 (3.2) 106 (40)
RDF RGB-D D 7.2 (6.4) 104 (29)
RGB-D 5.7 2.5) 97 (29)
Method Train Test 2D MPIJPE | 3D MPJPE
RGB RGB 8.8 (5.0) 127 (49)
HMR [12] D D 13.2 (8.7) 150 (50)
PKU RGB-D | RGB-D 8.2 (5.7) 118 (47)
RGB 7.7 (5.0) 123 (45)
RDF RGB-D D 11.8 (7.0) 133 (51)
RGB-D 8.1 (5.0) 106 (44)
Method Train Test 2D MPIJPE | 3D MPJPE
RGB RGB | 25.6 (10.0) | 168 (46)
HMR [12] D D 23.7 (12.6) 150 (45)
SCAN-RGBD RGB-D | RGB-D 21.8 (9.4) 144 (44)
RGB 17.8 (7.1) 117 (41)
RDF RGB-D D 21.6 (12.5) | 116 (42)
RGB-D | 16.2 (6.9) 103 (38)
Method Train Test | 2D MPJPE | 3D MPJPE
HMR [12] RGB RGB 12.1 (5.9 84 (44)
SCAN-RGB RDF RGB-D | RGB | 11.6 (5.1) 82 (42)

Given this background, we make several observations. In the
RGB-T scenario, our method with RGB-only data (144mm
average 3D MPIJPE) is better than the corresponding baseline
result (155mm average 3D MPJPE) because it has the ability
to use the available privileged thermal data, helping improve
its RGB-only performance. Thermal-only inference with our
method (138mm) is also better than the baseline (149mm)
for similar reasons (RGB acting as the extra supervision
source). Finally, the RGB-T inference performance of our
method is better (137mm) than the corresponding baseline
(143mm), demonstrating the impact of our feature fusion as
opposed to simple concatenation (fpf vs. fca). We note similar
observations from the RGB-D results as well in Table 1.

B. Under-the-Cover Evaluation

Some applications of our system involve positioning when
the patient is covered by a cloth. To evaluate the system’s
performance in such challenging scenarios, we conduct a
more detailed patient cloth coverage study, with results shown
in Table II. In this experiment, we use the available labels
(uncover, coverl, cover2 above) of the SLP dataset and present
results on each sub-dataset individually. As expected, as cloth
coverage increases (uncover to cover2), the performance gen-
erally drops (increasing MPJPE). Next, also along expected
lines, with the RGB modality being less able (compared to
thermal) to “see under the cover”, the inference performance
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(b) Qualitative results on the SLP dataset
Fig. 6. Qualitative results of the proposed approach on the SCAN and SLP datasets.
TABLE Il
AVERAGE 3D MPJPE, WITH STD IN PARENTHESES, RESULTS FOR THE SLP DATASET UNDER VARIOUS COVER SCENARIOS
Test modality RGB Thermal RGB-T
Cover condition uncover coverl cover2 uncover coverl cover2 uncover coverl cover2
HMR [12] 139 (74) 150 (73) 154 (80) 145 (76) 149 (75) 151 (74) 141 (93) 145 (85) 143 (84)
RDF 137 (75) 146 (76) 150 (77) 135 (68) 138 (76) 140 (79) 134 (79) 137 (78) 141 (77)
of RDF under RGB is generally lower. However, an interesting TABLE Il

aspect of these numbers is that under the highest intensity of
cloth coverage (cover2), the performance under the RGB-T
scenario is generally better than that under thermal alone.
This suggests that even under heavy cloth coverage, the RGB
modality still has the potential to provide complementary
information to improve thermal-only performance. Finally,
we note that RDF’s performance is generally better than
HMR, across all modalities and cloth conditions, further sub-
stantiating our claims above. We also show some qualitative
renderings of RDF’s mesh output in Fig. 6, where we provide
mesh outputs in all three cases. Note that the results in the
RGB-D scenario is relatively more consistent across the three
inputs when compared to the RGB-T scenario. This is likely
due to the particular challenges in the covered scenario, where
the RGB modality does not provide as much information as
in the case when there is no cover (e.g., first row in Fig. 6).

C. Additional Algorithmic Evaluation

1) Impact of Depth Ranking Consistency: Table III shows
results of our RDF approach with and without the proposed
DRC learning objective. One can note adding Lg. to the
training objective results in a consistent decrease (across all
test modalities) in MPJPE. The performance improvements are
more notable with 3D MPJPE, which is expected since DRC
essentially attempts to address the depth ambiguity problem
by means of explicit constraints on 3D keypoints.

2) Impact of Feature Fusion: In Table IV, we show results
of RDF with and without our feature fusion module, where

IMPACT OF DEPTH RANKING CONSISTENCY (DRC): AVERAGE (STD IN

PARENTHESES) MPJPE REsuULTs WITHOUT DRC (RDF) AND
WiTH DRC (RDF-DRC)

CAD SCAN-RGBD
Train Test 2D 3D 2D 3D
MPJPE MPJPE MPJPE MPJPE
RGB 6.1 (3.2) | 106 (40) | 16.8 (6.8) | 106 (47)
RDF RGB-D D 7.2 (6.4) | 104 (29) | 15.1 (7.9) | 99 (50)
RGB-D | 5.7 (25) | 97 (29) | 14.2 (5.7) | 100 (51)
RGB 6.0 (2.9) | 100 (31) | 14.4 (8.1) | 96 (47)
RDF-DRC | RGB-D D 6.7 (47) | 98 (29) | 149 (6.8) | 96 (39)
RGB-D | 5.6 (2.4) | 90 (25) | 13.4 (6.0) | 97 (45)
(a) CAD and SCAN-RGBD
Train Test | 2D MPJPE | 3D MPJPE
RDF RGBD | RGB | 11.6 (5.1) 82 (42)
RDF-DRC | RGB-D | RGB | 114 (5.0) 80 (40)

(b) SCAN-RGB

RDF (w/o DF) refers to using fcy for parameter regression.
From these results, we note that fpr gives better performance
(lower MPJPE) when compared to f.,, further demonstrating
the efficacy of the feature fusion component of RDF.

D. Robustness to Noise

To evaluate and quantify robustness to noise, we vary the
probability of a particular modality missing at test time, i.e.,
with probability p, we replace each I, with a zero array.
We disregard the case when both modalities are missing.
We then infer the resulting 3D mesh and compute the 2D
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Fig. 7. MPJPE performance comparison of RDF and HMR at various noise levels. “T”: thermal,“D”: depth.
TABLE IV TABLE V
IMPACT OF FEATURE FUSION (DF): AVERAGE (STD IN PARENTHESES) AN MPJPE AND FPS COMPARISON OF RDF,
MPJPE RESULTS WITHOUT AND WITH DF RDF-SMPLIFY, AND RDF-OPT
CAD PKU SLP SCAN
Train Test 2D 3D 2D 3D Method 2b 3D FPS 2b 3D FPS
RDF RGB | 6.1 (2.3) | 109 (34) | 7.9 (5.0) | 130 (47) RDF 32.7 1371667 | 134 97 066.7
(w/o | RGB-D D 8.4 (4.8) | 122 (39) | 129 (7.5) | 152 (47) RDF-SMPLify | 21.6 99 0.8 11.3 83 0.7
DF) RGB-D | 6.0 (2.2) | 99 (31) 8.2 (4.9) | 111 (47) RDF-OPT 252 107 50.8 12.7 84 58.
RGB 6.1 (3.2) | 106 (40) | 7.7 (5.0) 123 (45)
RDF | RGB-D D 7.2 (6.4) | 104 (29) | 11.8 (7.0) | 133 (51) CAD PKU
RGB-D | 5.7 (2.5) | 97(29) | 8.1 (5.0) | 106 (44) Method 2D 3D T ppg 2D 3D T pps
MPIJPE | MPJPE MPIJPE | MPJPE
(a) CAD and PKU RDF 5.6 90 66.7 8.1 106 66.7
B RDF-SMPLify 2.8 80 0.4 4.0 106 0.4
Train | Test | 2D MPIPE | 3D MPIPE RDF-OPT 38 79 | 625 | 52 95 | 5838
RGB 37.4 (15.6) 145 (78)
RDF (w/o DF) | RGB-T T 35.6 (15.4) | 134 (76)
RGB-T 33 2 (16 9) 137 (80) RDF RDF-SMPLify RDF-OPT RDF RDF-SMPLify ~ RDF-OPT
RGB 36.6 (14.5) 144 (75) 2§ P o P / -
RDF RGB-T T 347 (14.6) | 138 (74) 4 q 4 A &
RGB-T | 32.7 (14.2) | 137 (78) i — W
(b) SLP ! y ( o
(a) CAD (b) PKU
MPIPE. Fig. 7 shows a heatmap of the 2D MPJPE of both K 'R O\ R B £
RDF and the baseline HMR, where we note performance of 4 SV _ q \
both RDF and HMR go down as the noise level increases (as ‘
expected). However, this degradation is much less for RDF ) ) ) e . Q
compared to HMR (also shown in the difference matrix), ) (0) SCAN (d) stp
suggesting better robustness of RDF and demonstrating an  Fig. 8. Mesh estimation comparison of RDF, RDF-OPT, and

important practical aspect for robust system deployment.

E. Evaluating the 3D Mesh Optimizer

We quantify the importance of the mesh optimizer module,
discussed in Section II-C, with particular emphasis on the
associated run-time efficiency. Specifically, we conduct three
experiments; first, using RDF without any optimizer, second,
using RDF with SMPLify [20] as the optimizer, and finally,
using RDF with our method of Section II-C as the optimizer.

RDF-SMPLify.

The results are shown in Table V. The performance of RDF
as is without any optimizer (row 1 in all tables) is the worst
among the three, and this is not surprising since the optimizer
is expected to only improve the estimated mesh. In terms
of MPJPE, RDF-SMPLIfy gives the best performance, and
this is also not surprising since given sufficient iterations,
SMPLIify is expected to give a very good mesh fit. However,
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(b)
Fig. 9. RDF-OPT mesh estimation results with mask images and an
X-ray application.

crucially: RDF-OPT (our proposed approximation) runs at a
substantially higher frame rate (e.g., 62.5 fps vs. 0.54 fps
for RDF-SMPLIify) while performing better than RDF and
reasonably close to, and in some cases even outperforming,
RDF-SMPLIity (e.g., 79mm 3D MPJPE for RDF-OPT vs.
80mm for RDF-SMPLify, see also Fig. 8). As can be noted
from Fig. 8, while RDF is able to provide a reasonable estimate
of the mesh, the accuracy of some parts (e.g., legs in left
column and right hand in right column of first row) is not sat-
isfactory. This issue is addressed by using the mesh optimizer
in conjunction with RDF, with RDF-OPT giving (approxi-
mately) similar results as RDF-SMPLify. These results provide
evidence for our approximation achieving a good trade-off
between speed and accuracy (from Section II-C). Finally,
in Fig. 9, we show additional qualitative results with patients
wearing a face mask as well as an X-ray application.

V. SUMMARY

The COVID-19 pandemic has resulted in a substantial
shortage in personal protective equipment and increased the
likelihood of medical professionals getting infected. In this
paper, we presented the design and development of a con-
tactless patient positioning system that took a step towards
addressing these problems. We presented several components
of the system including automated calibration, positioning,
and multi-view synthesis routines that we showed enabled the
possibility of remotely scanning a patient without physical
proximity. We evaluated our system with extensive experi-
ments on public as well as proprietary datasets, and showed
how it can be used for a variety of applications without sig-
nificant re-training, thus enabling deployment at scale. While
the proposed method provides an efficient and contactless
workflow for medical scans, it does not restrict or limit medical
professionals from performing the scan in close proximity with
patients if that is desired in a non-pandemic scenario.
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