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Abstract— In conventional gradient-echo myelin water
imaging (GRE-MWI), myelin water fraction (MWF) is
estimated by fitting the multi-echo gradient recalled
echo (mGRE) signal to a pre-assumed numerical model
(e.g., multi-component exponential curves or three com-
ponent exponential curves). However, in mGRE, imaging
artifacts (e.g., voxel spread function and physiological
noise) and noise render the signal to deviate from the
numerical model, leading to misfit of the model parame-
ters. Here, as an alternative to the model-based GRE-MWI,
a blind source separation (BSS) technique for the separa-
tion of multi-exponential mGRE signal is proposed. Among
the various BSS techniques, a modified robust principal
component analysis (rPCA) is presented to separate sig-
nal sources by enforcing the data-driven properties such
as “low rankness” and “sparsity.” Considering the signal
evolution of T∗

2 relaxation (i.e., non-negative exponential
decay), low rankness of exponential decay was enforced
by nonnegative matrix factorization (NMF) and hankeliza-
tion. This method provides the separation of slow-decaying,
fast-decaying exponential components and artifact compo-
nents from mGRE images. After the separation, MWF map is
reconstructedas the ratio of the fast-decayingcomponent to
the total decaying components. The proposed method was
demonstrated in numerical simulations and in vivo scans.
The method provided a robust estimation of MWF in the
presence of statistical noise and imaging artifacts.

Index Terms— Magnetic resonance imaging, GRE-MWI,
blind source separation, myelin water fraction, robust
principal component analysis.
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I. INTRODUCTION

IN CONVENTIONAL myelin water imaging (MWI),
spin-echo (SE) images (referred here as ‘SE-MWI’) are

acquired at multiple echoes to measure signal decay due to
T2 relaxation [1]. In white matter of the brain, it has been
demonstrated that this signal has multiple T2 components
e.g., myelin water and axonal/extracellular water. In order to
separate these multiple signal sources, the measured signal
is fitted to numerical models representing multi-exponential
T2 relaxation [1], [2]. This allows the separation of fast-
decaying myelin water signal (i.e., short T2 component) and
slow-decaying axonal/extracellular water signal (i.e., long T2
component). Myelin water fraction (MWF) is then estimated
as the ratio of the fast-decaying water signal to the total water
signal.

In recent studies, multi-echo gradient recalled echo (mGRE)
based MWI (referred here as ‘GRE-MWI’) has been sug-
gested to separate multi-exponential T ∗2 components [3]–[6].
These studies have demonstrated that the mGRE signal
can also be separated into multiple components mentioned
above. Furthermore, GRE-MWI has potential benefits such
as large volume coverage, fast scan time and insensitiv-
ity to the inhomogeneity of the transmit field compared
to SE-MWI. Despite these advantages, however, GRE-MWI
suffers from imaging artifacts (e.g. voxel spread function
(VSF) effect [7], [8] and physiological noise [9]) which
render the mGRE signal to deviate from the pre-assumed
numerical model (e.g. multi-component exponential curves or
three component exponential curves). Also, the conventional
optimization algorithm to solve multi-component exponential
curves which is a nonlinear least squares algorithm, has
instability problems regarding initial value selection and local
minima [10].

Previously, blind source separation (BSS) techniques have
been suggested to separate sources of the MR signal
without any explicit model or with minimum prior infor-
mation [11], [12]. Instead of using numerical models, BSS
techniques utilize data-driven properties such as “low rank-
ness” or “sparsity.” This allows separating specific signals
(e.g. pulsation artifacts in fMRI [11], free water in DWI [13])
that are difficult to specify a numerical model. Among various
BSS algorithms, robust principal component analysis (rPCA)
has been introduced for separation of background signal
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in dynamic MRI [14], on/off-resonance signal representa-
tion in multispectral imaging [15] and elimination of MR
artifacts [16], [17]. Based on singular value decomposition
(SVD) analysis, rPCA extracts redundant signal sources using
low-rank property (or fixed-rank property) and encourages the
sparsity of the residual signal.

In this study, as an alternative to conventional nonlinear least
squares approach, a modified version of rPCA is developed for
signal separation in mGRE targeted for MWF mapping. The
proposed technique separates mGRE images into two unit-rank
components (referred to as L1 and L2) and sparse component
(referred to as S). In this process, matrix hankelization and
non-negative matrix factorization (NMF) are utilized to fur-
ther enhance the separation of multi-component exponential
signals. This offers L1, L2, and S to represent slow-decaying,
fast-decaying and artifact components, respectively. An alter-
native MWF map is suggested as the ratio of L2 to sum of L1
and L2. The proposed technique is demonstrated in healthy
volunteers and clinical patients.

The rest of this paper is as follows. In Section II, the
conventional model-based GRE-MWI methods are introduced
and the motivation of SVD analysis for the mGRE signal is
described. In Section III, the modification version of rPCA
algorithm is described. The methods and results of the sim-
ulation and in-vivo experiments are described in Section IV
and V, respectively. Finally, Section VI contains the discussion
and conclusion.

II. BACKGROUND

A. Model-Based MWF Mapping

The multi-component magnitude model fits the decay curve
to the following [18]:

S (t) =
∑M

j=1
A j e
−(1/T ∗2, j )t (1)

where S (t) is the measured signal at time t , A j is the
unknown amplitude of the spectral component with relaxation
time T ∗2, j , M is the number of T ∗2 components. Equation (1)
is typically solved by regularized non-negative least
squares (rNNLS) forming a continuous spectral distribution
of T ∗2 components [18]. Then, the myelin water component
(i.e., fast-decaying signal) and axonal/extracellular water com-
ponent (i.e., slowly-decaying signal) are separated based on a
cutoff T ∗2 (e.g. 25ms) value [19], [20].

The three-component magnitude model fits the decay curve
to the following:
S(t) = Amye−(1/T ∗2,my)t+Aaxe−(1/T ∗2,ax )t+Aexe−(1/T ∗2,ex )t (2)

where Amy, Aax and Aex are the amplitude of the three water
components, T ∗2,my, T ∗2,ax and T ∗2,ex are T ∗2 values of the three
water components [6], [20].

Lastly, the three-component complex model fits the decay
curve to the following [4]:

S (t) = (Amye
−

(
1/T ∗2,my+i2π� fbg+my

)
t

+ Aaxe
−

(
1/T ∗2,ax+i2π� fbg+ax

)
t

+Aexe−(1/T ∗2,ex+i2π� fbg+ex )t)e−iϕ0 (3)

where � fbg+my,� fbg+ax and � fbg+ex are the frequency off-
set of the three water components plus the sum of background
frequency offset, ϕ0 is the B+1 phase offset.

For the three-component models, Eqs (2) and (3), the
parameters are estimated by minimizing the least-squares
errors using an iterative nonlinear curve-fitting algo-
rithm [4], [10], [20]. The MWF can be calculated by dividing
the myelin water component (i.e., fast-decaying signal) to the
total water component. In this approach, the initial values and
bounds of the fitting parameters need to be set to avoid getting
trapped in local minima (e.g. see [21]).

B. BSS in mGRE Images

We denote matrices by boldface uppercase letters, operators
by lightface uppercase letters, vectors by boldface lowercase
italics, constants by lightface uppercase italics. C, R and R+
represent a set of complex, real and positive-real values,
respectively.

Among the various BSS methods, SVD analysis can be
performed on the magnitude of mGRE data to separate source
signals without any constraint of the signal such as the
predetermined model and initial/boundary values.

In order to apply standard SVD, the mGRE data, m(·) is
represented to the spatio-temporal Casorati matrix as follows:

M(r, t)=

⎡
⎢⎢⎢⎣

m(r1, t1) m(r1, t2) · · · m(r1, tNt )
m(r2, t1) m(r2, t2) · · · m(r2, tNt )

...
...

. . .
...

m(r Ns , t1) m(r Ns , t2) · · · m(r Ns , tNt )

⎤
⎥⎥⎥⎦ (4)

where M ∈RNs×Nt+ , Ns is the total number of spatial compo-
nents (i.e. number of pixels) and Nt is the number of temporal
components (i.e. number of echoes). The standard SVD of M
is represented as:

M = USVT=
∑min{Ns ,Nt }

k=1
λk ukv

T
k (5)

where {λk}min{Ns ,Nt }
k=1 ∈ R are the singular values of M,

{uk}min{Ns ,Nt }
k=1 ∈ Rmin{Ns ,Nt }×1 are the left singular vectors

representing the spatial weight, {vk}min{Ns ,Nt }
k=1 ∈ Rmin{Ns ,Nt }×1

are the right singular vectors representing the temporal basis.
The rank-R approximation of M is obtained by:

M̂ = ÛŜV̂T=
∑R

k=1
λk ukv

T
k ,

s.t .
∥∥M−M̂

∥∥
F =

√∑min{Ns ,Nt }
k=R+1

λ2
k (6)

where Û ∈ R
Ns×R , Ŝ ∈ R

R×R , V̂ ∈ R
Nt×R , F represents

the Frobenius norm. For the example mGRE data used here,
the rank was approximated to four where the power of the
residual signal is below 2%.

Representative {uk}Rk=1 and {vk}Rk=1 are shown in Fig.1a.
As a result of standard SVD, signal sources are separated
into the {vk}Rk=1, which is ordered by the redundancy of
the source signal. Among the temporal bases in Fig.1a,
the first basis, v1, represents a slow-decaying T ∗2 relaxation
(T ∗2 ≈ 44ms) with relatively homogeneous spatial weights, u1.
The other bases, v2, v3, and v4, however, have negative values
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Fig. 1. A conceptual illustration of BSS in spatio-temporal mGRE data matrix (subject 1). (a) Standard SVD applied to mGRE data matrix and
(b) NMF applied to mGRE data matrix with hankelization (� = 15). For each BSS scheme, four representative temporal bases ({υk}4k=1 and
{hk}4k=1) and spatial weights ({uk}4k=1 and {wk}4k=1) are shown. Note that BSS using NMF provides temporal bases that corresponds more to the
physical signal characteristics than using SVD.

which cannot represent a true tissue-oriented T ∗2 relaxation
signal. Particularly, v2 represents fast-decaying signal but
biased to negative value (Fig. 1a). The reason for this is
that real-valued exponential decays (e.g., multi component T ∗2
relaxation signals) are highly correlated with each other and
separation of these signal sources are badly-conditioned under
the constraint of orthogonality. Nevertheless, the spatial weight
maps represent different anatomic features for u2, u3, and u4.

Through SVD, we have described the potential of BSS in
mGRE data. Although the temporal basis cannot reveal the
actual feature of T ∗2 relaxation, the signal sources can be
distinguished by different characteristics.

III. THEORY

A. Priorities of mGRE Signal

In order to overcome the aforementioned problem when
using standard SVD, additional constraints in the signal
sources were incorporated which enforces the non-negativity
of the temporal basis and exponential characteristics of T ∗2
relaxation.

As a variant of SVD, non-negative matrix factoriza-
tion (NMF) was implemented to take into consideration that
the T ∗2 relaxation of the myelin and axonal/extracellular water

components is non-negative [22]. This constraint is similar to
a common assumption used in conventional MWI processing
(i.e. NNLS) [6]–[19], [20]. The NMF of the spatio-temporal
matrix M is now represented as:

M ≈ŴĤT=
∑R

k=1
wk hT

k (7)

where Ŵ ∈ R
Ns×R
+ , Ĥ ∈ R

Nt×R
+ , {wk}Rk=1 ∈ R

Ns×1
+ are the

left singular vectors representing the spatial weight, {hk}Rk=1 ∈
R

Nt×1
+ are the right singular vectors representing the temporal

basis. In conventional NMF, Ŵ and Ĥ are obtained by:
min

∥∥∥M−ŴĤT
∥∥∥2

F
s.t . Ŵ, Ĥ ≥ 0 (8a)

H← H� WTM

WTWH
, W←W� XHT

WHHT (8b)

using multiplicative update rule with element-wise multiplica-
tion operator � [23]. As the results of NMF depend on the
initial value of Ŵ and Ĥ, various initialization techniques have
been suggested [24]–[26]. Here, based on the observation of
standard SVD in mGRE data which has potential to represent
tissue-oriented structure (Fig. 1a), NMF with SVD based
initialization method in [24] referred to as nonnegative double
singular value decomposition (NNDSVD) was implemented.
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One of the features of NNDSVD is that the uniqueness of ini-
tial value guarantee the convergence to the same solution [24].

Prior to the NMF operation, as a temporal operator, han-
kelization was implemented in order to enforce the unit rank
property of each temporal basis [27]. The hankelized matrix
of M with hankelization length l is shown in Fig.1b and is
represented as [28], [29]:
Hl (M (r, t))

=

⎡
⎢⎢⎢⎢⎣

m
(
r1, t1

)
m

(
r1, t2

) · · · m
(
r1, tl

)
m

(
r1, t2

)
m

(
r1, t3

) · · · m
(
r1, tl+1

)
...

...
. . .

...

m
(

r Nh
, t1

)
m

(
r Nh

, t2

)
· · · m

(
r Nh

, tNt

)

⎤
⎥⎥⎥⎥⎦ (9)

where Hl(M) ∈ R
Nh×l
+ and Nh = Ns (Nt − l + 1). When the

echo spacing is equidistant (i.e., ti − ti−1 = �T E), the relax-
ation rate for the j th component in Eq. (1) is proportional by
an amount e−(1/T ∗2, j )�T E for any echo time. This indicates that
the hankelization of a mono-exponential signal has unit-rank.
Based on this, we implemented the hankelization to encourage
the unit-rank property of each exponential decay [27]. The
hankelization length, l, was selected to half the total number
of echoes as an optimal length for exponential signal [30].

After incorporating these two constraints (Fig.1b), the first
and second temporal basis, h1 and h2, become closer to
pure exponential decays. The separated mono-exponential T ∗2
values corresponds well to the slow (i.e., axonal/extracellular
water signal) and fast (i.e., myelin water signal) components
(T ∗2 of h1 = 52.4ms, T ∗2 of h2 = 9.9ms) [6]. Furthermore,
the other temporal bases, h3 and h4, represent oscillating
signals which are related to remnant residual components
including artifacts.

B. Algorithm of the Proposed rPCA-MWF

Based on the aforementioned ideas, a modified rPCA to
separate three distinct sources from mGRE data is presented.
The original rPCA separates the signal sources into a low-rank
component, L, and a sparse component, S, by solving the min-
imization problem with convex objective function as [16], [31]:

J (L, S)≡1

2
	L+ S−M	22 + μ 	L	∗ + ρ 	S	1 (10)

where M, L, S ∈ RNs×Nt , 	·	∗ denotes the nuclear norm,
	·	1 denotes the �1-norm, μ and ρ denote regulariza-
tion parameters for low rankness and sparsity, respectively.
In this study, the signal source of mGRE data was sepa-
rated to two unit-rank components (i.e., slow-decaying signal
(L1) and fast-decaying signal (L2)) and sparse component
(i.e., residual artifact signal (S)). The minimization problem

min
L1,L2,S

J (L1, L2, S) with the convex objective function is

defined as:
J (L1, L2, S) ≡ 1

2
	L1 + L2 + S−M	22
+μ1

∑
r
	Rr (Hl (L1))	∗

+μ2

∑
r
	Rr (Hl (L2))	∗ + ρ 	� (S)	1

(11)

where Hl denotes hankelization operator in the temporal
domain, � denotes temporal sparsifying operater (1D FFT in
the echo domain), Rr denotes the extraction of local patches
for locally low-rank (LLR) structure at the r th patch [32]–[34],
μ1, μ2 and ρ denote regularization parameters for LLR and
sparsity respectively. The LLR constraint, which has higher
redundancy than entire image, was implemented to encourage
the low rankness of local patches for L1 and L2 [32]–[34].
Equation (11) is solved using the alternating direction method
of multipliers (ADMM) [35]–[37]. Based on the variable
splitting scheme in [36], Eq (11) is re-formulated as:

min
U1,r, U2,r, U3

L1, L2, S

1

2
	L1 + L2 + S−M	22

+μ1

∑
r

∥∥U1,r
∥∥∗ + μ2

∑
r

∥∥U2,r
∥∥∗ + ρ 	U3	1

s.t .

⎧⎪⎨
⎪⎩

U1,r = Rr
(Hl (L1)

)
U2,r = Rr (Hl (L2))

U3 = � (S)

(12)

and the associated augmented Lagrangian function is:
LA = 1

2
	L1 + L2 + S−M	22
+μ1

∑
r

∥∥U1,r
∥∥∗ + μ2

∑
r

∥∥U2,r
∥∥∗ + ρ 	U3	1

+
∑

r

Z1,r ,Rr (Hl(L1))− U1,r �

+
∑

r

∥∥∥∥δ1

2
Rr (Hl (L1))− U1,r

∥∥∥∥2

2

+
∑

r

Z2,r,Rr (Hl(L2))− U2,r �

+
∑

r

∥∥∥∥δ2

2
Rr (Hl (L2))− U2,r

∥∥∥∥2

2

+
Z3,�(S)− U3� + δ3

2
	� (S)− U3	22 (13)

where Z1,r,Z2,r and Z3 are Lagrangian multipliers. Ignoring
constants irrelevant to optimization, Eq (13) can be written as:

LA = 1

2
	L1 + L2 + S−M	22
+μ1

∑
r

∥∥U1,r
∥∥∗ + μ2

∑
r

∥∥U2,r
∥∥∗ + ρ 	U3	1

+
∑

r

δ1

2

∥∥∥Rr (Hl (L1))+ δ−1
1 Z1,r − U1,r

∥∥∥2

2

+
∑

r

δ2

2

∥∥∥Rr (Hl (L2))+ δ−1
2 Z2,r − U2,r

∥∥∥2

2

+δ3

2

∥∥∥� (S)− δ−1
3 Z3 − U3

∥∥∥2

2
(14)

where δ1, δ2, δ3 denotes regularization parameters. The
ADMM minimizes LA over U1, U2, U3, L1, L2 and S sepa-
rately by solving sub-problems with closed-form solutions:

U(k+1)
1,r = argmin

U1,r

μ1

δ1

∥∥U1,r
∥∥∗

+ 1

2

∥∥∥Rr

(
Hl

(
L(k)

1

))
+ δ−1

1 Z(k)
1,r − U1,r

∥∥∥2

2

= SV T μ1/δ1

(
Rr

(
Hl

(
L(k)

1

))
+ δ−1

1 Z(k)
1,r

)
(15a)
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U(k+1)
2,r = argmin

U2,r

μ2

δ2

∥∥U2,r
∥∥∗

+ 1

2

∥∥∥Rr

(
Hl

(
L(k)

2

))
+ δ−1

2 Z(k)
2,r − U2,r

∥∥∥2

2

= SV T μ2/δ2

(
Rr

(
Hl

(
L(k)

2

))
+ δ−1

2 Z(k)
2,r

)
(15b)

U(k+1)
3 = argmin

U3

ρ

δ3
	U3	1

+1

2

∥∥∥S(k) + δ−1
3 Z(k)

3 − U3

∥∥∥2

2

= ST ρ/δ3(S
(k) + δ−1

3 Z(k)
3 ) (15c)

where SV T μ1/δ1 and SV T μ2/δ2 denotes (hard) singular value
thresholding operators using NMF for each local patches r,
ST ρ/δ3 denotes soft thresholding operators [31], [38].

L(k+1)
1 = argmin

L1

1

2

∥∥∥L1 + L(k)
2 + S(k) −M

∥∥∥2

2

+
∑

r

δ1

2

∥∥∥Rr (Hl (L1))+ δ−1
1 Z(k)

1,r − U(k)
1,r

∥∥∥2

2

= 1

1+ δ1
(M−L(k)

2 − S(k) + δ1U1 − Z1) (16a)

L(k+1)
2 = argmin

L2

1

2

∥∥∥L(k+1)
1 + L2 + S(k) −M

∥∥∥2

2

+
∑

r

δ2

2

∥∥∥Rr (Hl (L2))+ δ−1
2 Z(k)

2,r − U(k)
2,r

∥∥∥2

2

= 1

1+ δ2
(M−L(k+1)

1 − S(k) + δ2U2 − Z2) (16b)

S(k+1) = argmin
S

1

2

∥∥∥L(k+1)
1 + L(k+1)

2 + S−M
∥∥∥2

2

+ δ3

2

∥∥∥� (S)− δ−1
3 Z(k)

3 − U(k)
3

∥∥∥2

2

= 1

1+ δ3
(M−L(k+1)

1 − L(k+1)
2 + δ3U3 − Z3) (16c)

where dehankelization was performed while solving Eq (16a)
and Eq (16b). Corresponding Lagrangian multipliers are
updated as:

Z(k+1)
1 = Z(k)

1 + L(k+1)
1 − U(k+1)

1 (17a)

Z(k+1)
2 = Z(k)

2 + L(k+1)
2 − U(k+1)

2 (17b)

Z(k+1)
3 = Z(k)

3 +�
(

S(k+1)
)
− U(k+1)

3 . (17c)

The regularization parameters for the proposed rPCA-MWF
were empirically set as follows: μ1 = 1, μ2 = 1, ρ = 0.5,
δ1 = 0.01, δ2 = 0.01, δ3 = 0.0005. The local patch size and
convergence tolerance were empirically set as follows: patch
size = 8×8×8, and ε = 10−6. Here, the convergence rate was
estimated to relative residual (

∥∥Xk+1 − Xk
∥∥

2 /
∥∥Xk

∥∥
2× 100).

A summary of the iteration process is described in Table 1.
(See supplementary materials (Fig. S1) for simulations on the
determination of hyperparameters and the convergence rate of
the algorithm).

Afterwards, the MWF was mapped as the ratio of 2nd unit
rank component to total unit-rank component at TE1 for each
voxel;

MW F (r) = L2 (r, T E1)

L1 (r, T E1)+L2 (r, T E1)
× 100(%) (18)

TABLE I
rPCA-MWF ALGORITHM

The residual signal was mapped to the sparse component,
which can also be sparsified in the frequency domain.

We provide the source code and related data (in MATLAB)
to reproduce most of the results described in this paper. The
source code and related data can be downloaded from:

https://github.com/Yonsei-MILab.

IV. METHODS

A. Comparison of Model-Based MWF and rPCA-MWF

Among the GRE-MWI models, two types of model-based
method were adopted; three-component magnitude and com-
plex model which we refer here as “magnitude model-based”
(Eq. (2)) and “complex model-based” (Eq. (3)) respectively.
In simulations, magnitude model-based MWF was compared
to rPCA-MWF due to difficulty of modeling three compo-
nent complex signals. In in-vivo experiments, magnitude and
complex model-based MWF were compared to rPCA-MWF.
In this study, a total 30 echoes were used with the last
echo time of 31.81 ms. Note that multi-component magnitude
model-based MWF using rNNLS does not provide adequate
results due to the limited number of echoes.

B. Simulations

Numerical simulations were performed on an analytic phan-
tom to compare the performance of MWF estimation between
model-based MWF and rPCA-MWF for various situations.
An analytic phantom composed of 24 region-of-interests (ROI)
was designed. Each ROI had a size of 8x8 voxels, containing
two water pools (i.e., slowly-decaying component (T ∗2,slow)
and fast-decaying component (T ∗2,fast)) with various T ∗2 and
MWF (Fig. 2a). The index of each ROI was set to 1-6, 7-12,
13-18 and 19-24 for each column. For ROI 1-12, T ∗2,slow and
T ∗2,fast were set to 60ms and 10ms respectively and MWF
varied from 2% to 24 % with step size 2%. For ROI 13-18,
T ∗2,slow varied from 40ms to 90ms with step size 10ms and T ∗2,S
was set to 10ms. For ROI 19-24, T ∗2,slow was set to 60ms and
T ∗2,fast varied from 5ms to 15ms with step size 2ms. The MWF
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Fig. 2. Numerical simulation of the MWF mapping for various T∗2,slow, T∗2,fast, and MWF. (a) Ground truth of the MWF, T ∗2,slow, T∗2,fast. The MWF
map and ROI analysis using (b-e) magnitude model-based MWF and (f-i) rPCA-MWF. Each column of ground truth indicates the ROI index 1 ∼ 6,
7 ∼ 12, 13 ∼ 18 and 19 ∼ 24 respectively.

of ROI 13-24 were set to 10%. Each parameter was set based
on the literature values of the myelin and axonal/extracellular
water component of healthy white matter at 3T [19].

In order to reflect a more realistic biological tissue charac-
teristics representing a continuous distribution for each water
pool, the aforementioned T ∗2 components of each ROI were
modeled to have a Gaussian distribution centered at each T ∗2 ,
with a standard deviation of 10% of each T ∗2 [39]. The first
TE and echo spacing was set to 2ms and 1ms respectively and
30 echoes were assumed to be sampled [40].

White Gaussian noise was added so that the SNR of the
magnitude image at the first TE varied from 240 to 60 with
a step size of 20. A series of Monte-Carlo simulations were
performed with 100 repetitions for each case. The error of
the estimated MWF map was evaluated with RMSE and the
standard deviation of each ROI was calculated.

The effects of the number of echoes on the rPCA-MWF was
studied using simulated data. The true and estimated MWF
was calculated assuming different number of echoes collected
(from 12 to 32 with step size of 4). Subsequently, a linear
regression of the calculated result was performed. By doing
this, the slope of the linear regression provided information
about the overall underestimation and the intercept of the
regression provided the overall bias information.

C. In-Vivo Experiment

All MR imaging experiments were performed on
3 Tesla clinical scanners (Tim Trio/Skyra, Siemens,
Erlangen, Germany or Signa, General Electric Company,
Milwaukee, WI). All examination was performed with
approval from the institution’s ethical review board and
all subjects provided signed, informed consent prior to
participation. A 12-channel phased-array head coil and a

32-channel head coil were used for data reception in Siemens
scanner and GE scanner respectively.

The 3D mGRE imaging parameters were FOV = 256 ×
256 × 80mm3, spatial resolution = 2×2×2 mm3, TR =
46 ms, TE1 = 1.65 ms, �TE = 1.04 ms, # of echoes = 30,
flip-angle = 20◦, bandwidth = 1560 Hz/pixel and total scan
time = 3min 55sec. For anatomical reference, T1-weighted
sagittal 3D MPRAGE (1.0 mm isotropic) was used for all
subjects.

Data were collected from 10 subjects. Subjects 1 ∼ 7 were
healthy volunteers (age range: 25-35) with no documented
disease in the brain. Subject 8, 9 and 10 were patients
with pathologically confirmed disease by a radiologist;
dementia (female, age 70), non-amnestic mild cognitive
impairment (MCI) disease (female, age 81) and x-linked
adrenoleukodystrophy (X-ALD) disease, respectively. Note
that all the experiments were performed on Siemens scanner
except for subject 10. The experiment for subject 10 with
X-ALD disease was performed on GE scanner in order to
acquire another quantitative myelin water imaging method
equipped on scanner; quantitative inhomogeneous magnetiza-
tion transfer imaging [41].

For subject 10 with X-ALD, parameters of mGRE imaging
were modified due to different scanner conditions: FOV =
256×256×100mm3, spatial resolution = 1.6×1.6×2.0 mm3,
TR= 60 ms, TE1 = 1.4 ms, �TE= 2.1 ms, # of echoes = 16,
flip-angle = 25◦ and scan time = 8min. For anatomical
reference, T1-weighted sagittal image was acquired using
3D FSPGR. Furthermore, a inhomogeneous magnetization
transfer (ihMT) imaging protocol [41] was added with the
following parameters: 3D SPGR sequence, spatial resolution=
3×3×3 mm3, TR = 10.2 ms, TE = 2 ms, flip-angle = 8◦ and
scan time = 5min 34sec. After data acquisition, quantitative



SONG et al.: BSS FOR MWF MAPPING USING MULTI-ECHO GRADIENT ECHO IMAGING 2241

ihMT (qihMT) map was estimated by taking the difference of
the longitudinal relaxation rates between two MT states, dual
frequency and single frequency, by using a prototype image
processing software provided by GE [41].

The reproducibility was calculated using Pearson’s correla-
tion coefficient for white matter region. First, to evaluate the
reproducibility of the MWF maps, subjects 1∼7 were scanned
twice and a correlation between the two scans was calcu-
lated. Student’s t-test was performed to evaluate the statistical
significance of model-free MWF map against model-based
MWF maps. The significance level was set to 0.05. Second,
to evaluate the noise sensitivity of the technique, additional
white gaussian noise was added to mGRE data from subject 7.
The MWF map from original mGRE images was used as a
reference. The SNR of the reference mGRE image at the first
echo was 160 and the noise corrupted images was from 60 to
140 with step size 20. The correlation between reference and
noise additive cases was calculated.

V. RESULTS

A. Simulation

The simulation result of the MWF mapping is shown in
Fig. 2. The noise of MWF map was reduced in rPCA-MWF
compared to model-based MWF (Fig. 2b and 2f). The standard
deviation (STD) of the estimated MWF values from each ROI
was reduced by more than 40 % in rPCA-MWF compared to
model-based MWF (Fig. 2c-2e and 2g-2i). For the ROIs with
varying MWF (i.e., #1∼12), the correlation coefficient of the
estimated MWF for true MWF was 20% higher in rPCA-MWF
than model-based MWF. However, the linear regression
of the estimated MWF showed underestimation of 15%
for rPCA-MWF and model-based MWF (Fig. 2c and 2g).
Meanwhile, for the ROIs with varying T ∗2,slow and T ∗2,fast
(i.e., ROI #13∼24), the accuracy of the estimated MWF
was more sensitive to variations in T ∗2,fast than to T ∗2,slow
(Fig. 2d-2e and 2h-2i).

The noise sensitivity of estimated MWF values from six
representative ROIs is shown in Fig. 3. The six representative
ROIs were selected from regions where true MWF, T ∗2,slow
and T ∗2,fast have minimum and maximum values (Fig. 2a). The
RMSE between true MWF map and estimated MWF map
was reduced by more than 40% in rPCA-MWF compared
to model-based MWF (Fig. 3a). The STD of rPCA-MWF
was invariant against true MWF, T ∗2,slow and T ∗2,fast. How-
ever, the STD of model-based MWF increased as true MWF
increased (Fig. 3b). This shows the sensitivity of model-based
method against true MWF. For all range of SNR, rPCA-MWF
showed reduced RMSE and STD compared to model-based
MWF, which supports robustness against noise of proposed
method.

The effect of the number of echoes on the rPCA-MWF is
shown in Fig. 4. For both model-based MWF and rPCA-MWF,
the overall underestimation gradually decreased as the number
of echoes increased (Fig. 4a). Meanwhile, the overall bias
decreased as the number of echoes increased for model-based
MWF while it was consistent for rPCA-MWF (Fig. 4b).
The number of echoes collected was determined to be 30

Fig. 3. Noise sensitivity of the MWF map in simulation. (a) RMSE
according to SNR. The STD of each ROI for (b) varying MWF (c) varying
T∗2,slow and (c) varying T∗2,fast. Note that only ROI #1,12,13,18,19 and
24 are represented here.

Fig. 4. Effect of number of echoes on the MWF using simulated
data. (a) The slope and (b) the intercept following linear regression
of Fig. 2c and 2g for varying number of echoes. Note that the slope
represents overall underestimation and the intercept represents overall
bias.

(i.e., the last echo of 32 ms) since the underestimation
tended to slow down at this value while maintaining scan
time. Additionally, the accuracy of estimated MWF values
from four representative ROIs is shown in Fig. S2. The four
representative ROIs were selected from regions where true
T ∗2,slow and T ∗2,fast have minimum and maximum values. The
accuracy of rPCA-MWF outperformed for varying T ∗2,slow.

B. In-Vivo Experiments

Component-wise analysis for the decomposed source signal
is shown in Fig. 5. The decomposed mGRE data matrix
using proposed rPCA-MWF shows three components; L1, L2
and S. The L1 component represents slow-varying signals,
while the L2 component represents signals appearing only
at early echoes. The R∗2 maps of M, L1 and L2 were
reconstructed by mono-exponential fitting and the histogram
of T ∗2 measurements were plotted after removing the skull
region by using FSL BET [42] (Fig. 5b and 5c). The mean T ∗2
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Fig. 5. Component-wise analysis of rPCA-MWF (subject 1). (a) Spatial distribution and temporal evolution of original mGRE and each decomposed
component for five representative echo times. Note that the abnormal signal decay at frontal lobe of M is decomposed to S component (yellow
arrow). (b) R∗2 map estimated by mono-exponential fitting of M, L1 and L2 signals. (c) Histogram of T∗2 from each R∗2 map. Note that the T∗2 of L1
and L2 are not biased to a single T∗2 but represent various T∗2.

TABLE II
REPRODUCIBILITY ANALYSIS OF THE MWF MAP

FOR 7 HEALTHY VOLUNTEERS

values were measured at 20.6ms, 52.6ms and 9.7ms while the
mean amplitude was 0.91, 0.84 and 0.08, respectively. The T ∗2
measurements, especially short T ∗2 value, corresponded well to
the literature values of GRE-MWI reported to being 6∼15 ms
[3], [8], [20]. The S component represented residual signals
including noise, and B0–oriented artifact (frontal lobe, yellow
arrow in Fig. 5a). Other tissue signals such as subcutaneous
fat is not of interest in this study.

Representative MWF maps using magnitude model-based,
complex model-based and rPCA technique are shown in
Fig. 6. A clearer visualization of the white matter area is
noted for rPCA-MWF and corresponds well to the details of
the MPRAGE images. Note that the magnitude model-based
MWF and rPCA-MWF shows overestimation in the globus
pallidus region compared to complex model-based MWF
(first slice in Fig. 6).

Reproducibility results for the 7 subjects is given in Table II.
Correlation coefficients between two repeated scans are largest
in the rPCA-MWF map with 0.925, which corresponds to an
improvement of more than 10% compared to model-based
MWF map (p<0.05). Also, the STD was smallest for the
rPCA-MWF. In Fig.7, reproducibility analysis with respect to
noise is shown. As more noise is present, the model-based

MWF maps show reduced reproducibility with correlation
coefficient under 0.8. The rPCA-MWF shows robustness with
correlation coefficient over 0.9 even at SNR of 60. The discrete
variation of rPCA-MWF resulted from the mis-estimation
of L2 after SNR of 80.

Cases when artifacts were present are shown in Fig. 8.
Subject 9, 8 and 6 showed B0 inhomogeneity, motion artifact
and zipper artifact corrupted cases respectively. In Fig. 8a,
temporal signal evolution of mGRE deviated from the expo-
nential decay at the frontal lobe, and the complex model-based
MWF image presented abnormal high values. The rPCA-MWF
removed this to the S component. In Fig. 8b, the aliasing
patterns in mGRE image are separated to the S component
and rPCA-MWF shows a more uniform distribution than
model-based MWF. In Fig. 8c, a zipper artifact in mGRE
image is shown leading to abnormal overestimation of MWF
in model-based MWF. The rPCA-MWF removed this to the S
component r2. For all cases, the rPCA-MWF shows a clearer
image of the MWF. In the supplementary material (Fig. S3),
images from other slices and comparison with magnitude
model-based MWF for each of these cases are provided.

Results from a patient with demyelination (subject 10) is
provided in Fig. 9. Image from the MT scan is also shown
for comparison. The rPCA-MWF map shows decreased MWF
at the genu of corpus callosum which is in agree with the
MT scan (green arrow). The complex model-based MWF map,
however, showed unclear representation.

VI. DISCUSSIONS

In this study, we proposed a data-driven source separation
algorithm to map MWF from mGRE data as an alternative
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Fig. 6. Six representative slices from healthy volunteer (subject 1). (a) MPRAGE, (b) magnitude three pool model-based MWF, (c) complex three
pool model-based MWF and (d) rPCA-MWF.

Fig. 7. The reproducibility of the MWF map as noise corruption. r 2 is
Pearson’s correlation coefficient between reference MWF map and noise
additive MWF map.

to conventional MWF mapping methods. By optimizing the
standard rPCA algorithm for MWF mapping, the separation
of two unit-rank components and sparse component allowed
robust MWF mapping as well as differentiating myelin water
and axonal/extracellular water signals.

The incorporation of NMF and hankelization allowed
preservation of the physical characteristics of tissue relaxation
without a need for numerical modeling. First, NMF only
allows additive combinations of signal sources by imposing
non-negative constraint. This leads to the separated source

signals to be represented in a more meaningful and inter-
pretable feature [23]. Second, hankelization encourages expo-
nential relaxation decays [28]–[43]. The enforcement of the
unit-rankness of each mono-exponential decay promotes the
differentiation of axonal/extracellular water and myelin water
signal.

One of the major advantages of rPCA-MWF is artifact
robustness. In conventional GRE-MWI, the procedure to solve
model-based MWF is a nonlinear regression, fitting the para-
meters of the model that minimizes least squares residuals.
The deviations in the signal derived from artifact misfit the
fitting parameters of the model. In proposed rPCA-MWF,
by model-free source separation, the deviated signal due to
artifact representing non-exponential decay are decomposed
to the S component. Consequently, the L1 and L2 compo-
nents are free from out-of-model signal sources and sup-
ports the improvement of the reproducibility in rPCA-MWF.
In particular, the S component was amplified with oscilla-
tory signal for B0 inhomogeneity dominant voxel (Fig. S4).
Although there was no numerical field inhomogeneity
correction method implemented, the rPCA-MWF effectively
separated non-exponentially decaying field inhomogeneity
artifacts.

Another main advantage of rPCA-MWF is the noise robust-
ness. In solving the objective function, the low rankness is
enforced by singular value thresholding (SVT). The noisy
subspace which yield small singular values are thresholded and
the L1 and L2 components are represented by subspace with
large singular values. Consequently, the rPCA-MWF mapped
using the L1 and L2 components achieves noise robustness.
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Fig. 8. Single representative slice when imaging artifacts are present.
(a) B0 inhomogeneity (subject 9), (b) motion (subject 8) and (c) zipper
(subject 6) artifacts. The rPCA-MWF shows reduced artefactual images.
Note that the imaging artifacts depicted in mGRE images and complex
model-based MWF are separated to the S component.

Fig. 9. Patient exam results for a single slice (subject 10). (a) T1 weighted
image, (b) Complex model-based MWF, (c) rPCA-MWF (d) qihMT image
and (e) the magnified image for demyelinated region. Note that the
demyelination (green arrow at genu) is observed in rPCA-MWF, which is
in agreement with the anatomic and qihMT image.

This supports the improvement of the reproducibility against
noise in rPCA-MWF.

The amount of noise robustness of the L1 and L2 compo-
nents is determined by the singular values of each component.
As myelin water has lower signal than axonal/extracellular
water, it is more susceptible to noise. Consequently, the robust-
ness to noise was disrupted earlier for L2 (i.e., myelin water
component) than L1 which results in mis-estimation of L2.
The regularization parameters of rPCA-MWF were empirically
determined to be robust for SNR ∼100 typical of in-vivo
mGRE acquisition, however it could be further adjusted for
lower SNR.

Another benefit of rPCA-MWF is the range of echo time.
rPCA-MWF stabilized using 30 echoes with the last echo
of 32 ms. Meanwhile, a typical regularized non-negative
least squares MWF (i.e., rNNLS-MWF) requires more than
64 echoes (i.e., the last echo being longer than the slowly-
decaying T ∗2 component) [5]–[44]. Under the same hardware
performances, TR of at least 80 ms is required to acquire
64 echoes. Consequently, the total scan time for rNNLS-MWF
using 64 echoes is estimated to be 6 min 50 sec, which is
1.7 times longer than the scan time of this study. To avoid the
increase of scan time and maintain a reasonable scan time for
clinical application, we acquired 30 echoes. In addition, it has
been reported that mGRE-MWF can robustly estimate MWF
with this decreased number of [4], [21]. As rNNLS-MWF does
not perform well under the given acquisition protocol due to
lack of echo signals, it was not thoroughly compared in this
study (Supplementary material Fig. S5 shows a demonstrative
comparison of rNNLS-MWF and rPCA-MWF under the cur-
rent acquisition protocol). In addition, a simulation study using
numerical phantom shows that the RMSE for rPCA-MWF is
lower than rNNLS-MWF, even assuming 64 echo acquisition
(Supplementary material Fig. S6).

An additional benefit of the rPCA-MWF is the processing
time. In our implementations, the complex model-based fitting
and magnitude model-based fitting method required 69 secs
and 31 secs per slice, respectively. The rPCA-MWF took
7.5 secs per slice and could cover whole 3D volume in
under 5 mins.

Compared to multi-component model-based MWF,
rPCA-MWF has two representative T ∗2 for each voxel.
The axonal water and extracellular water signals have T ∗2
difference less than 20 ms at 7T, and therefore are difficult
to differentiate [45]. In rPCA-MWF, these signals are
represented as a single L1 component. Given a distribution of
T ∗2 values, the representative T ∗2 of L1 and L2 corresponded
to the logarithmic center of each distributed water pool
(see simulation results in supplementary material Fig. S7) and
to the literature T ∗2 distribution in vivo (Fig. 5b). This supports
that the separated L1 and L2 represent intra-/extracellular
water and myelin water component respectively.

A potential limitation of the current rPCA-MWF is that
only magnitude information has been used and each sep-
arated component is based on the magnitude signal. The
susceptibility differences along fiber orientation of mGRE
data perturbate the effective resonant frequencies of the water
compartments [46]. While considering frequency offsets could
improve the GRE-MWI [9]–[21], the lack of non-negativity
and unit rankness of complex-valued signal made it difficult
to implement a complex-value based rPCA-MWF. The absence
of consideration for these orientational dependencies resulted
in overestimation in iron rich regions (e.g., globus pallidus in
deep gray matter of Fig. 6) [47], [48]. Extending rPCA-MWF
to handle complex values in a different way is a future study.
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