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CT Image-Guided Electrical Impedance
Tomography for Medical Imaging

Ziang Li , Jie Zhang , Dong Liu , and Jiangfeng Du

Abstract— This study presents a computed tomography
(CT) image-guided electrical impedance tomography (EIT)
method for medical imaging. CT is a robust imaging modality
for accurately reconstructing the density structure of the
region being scanned. EIT can detect electrical impedance
abnormalities to which CT scans may be insensitive, but the
poor spatial resolution of EIT is a major concern for medical
applications. A cross-gradient method has been introduced
for oil and gas exploration to jointly invert multiple geophys-
ical datasets associated with different medium properties
in the same geological structure. In this study, we develop
a CT image-guided EIT (CEIT) based on the cross-gradient
method. We assume that both CT scanning and EIT imaging
are conducted for the same medical target. A CT scan is first
acquired to help solve the subsequent EIT imaging problem.
During EIT imaging, we apply cross gradients between the
CT image and the electrical conductivity distribution to
iteratively constrain the conductivity inversion. The cross-
gradient based method allows the mutual structures of
different physical models to be referenced without directly
affecting the polarity and amplitude of each model during
the inversion. We apply the CEIT method to both numerical
simulations and phantom experiments. The effectiveness of
CEIT is demonstrated in comparison with conventional EIT.
The comparison shows that the CEIT method can signifi-
cantly improve the quality of conductivity images.

Index Terms— Computed tomography, cross-gradient
function, electrical impedance tomography, lung imaging.

I. INTRODUCTION

IT IS essential to create visual representations of the inte-
rior of the human body for clinical analysis and medical

intervention. Each of the various existing medical imaging
technologies generally measures different types of data and
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presents images associated with different physiological prop-
erties of the structures, organs, and tissues of the human body.
The need to combine morphologic and functional information
has motivated the development of multimodality imaging in
the field of diagnostic imaging [1]. This scenario is similar
to geophysical imaging employed to delineate oil and gas
reservoirs in the earth; however, the geological scale is much
larger than the human body. Seismic waves are sensitive to
the interfaces between rock formations, but only the electri-
cal properties are significantly different across the interface
between oil and water [2]. The oil and gas industry has
transitioned from single-modality geophysical imaging to joint
multi-physical imaging, in which multiple geophysical datasets
are processed simultaneously with the application of mutual
constraints [3]–[5].

The challenge with multiple datasets is similar in both
medical and geophysical imaging: how can different imaging
processes dealing with entirely different physical properties
of the same target be incorporated to affect one another?
In 2003, two geophysicists in the UK, Luis Alonso Gallardo
and Maxwell Azuka Meju, developed a novel technology
that allows multiple imaging processes accounting for dif-
ferent properties of the same target to influence one another
simultaneously by imposing cross gradients between two dif-
ferent models [3], [4]. More than 570 technical papers by
researchers worldwide have been published following their
approach investigating ways to solve various joint geophysical
imaging problems. In 2019, Gallardo and Meju received the
Reginald Fessenden Award from the Society of Exploration
Geophysicists (SEG) for their breakthrough invention and
joined a list of elite awardees beginning with Beno Gutenberg,
who discovered Earth’s core in 1913. In this study, we extend
the cross-gradient technology developed by Gallardo and Meju
for the field of oil and gas exploration to medical imaging
with the specific intent of developing CT-guided electrical
impedance tomography.

The advent of CT has revolutionized diagnostic radiol-
ogy [6], [7]. CT is a structural imaging technology with
a high spatial resolution. EIT is a relatively new technique
intended for noninvasively imaging the electrical conductiv-
ity distribution within a human body [8], [9]. Animal and
clinical studies have revealed that many diseases, such as
cardiac arrhythmias, osteoporosis, and leukemia [10]–[12], are
associated with electrical conductivity abnormalities. To date,
this imaging approach has shown satisfactory results in certain
functional imaging studies and may offer a certain advantage
in tumor analysis compared with CT. However, EIT is not yet
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fully suitable for anatomical imaging due to its poor spatial
resolution [9], [13].

Solving the EIT problem involves numerical forward model-
ing and inversion. One accurate solution for the forward mod-
eling problem is the complete electrode model (CEM) [14],
which considers both the shunting effect and the contact
impedance of electrodes. In addition, the point electrode model
(PEM) [15] is applied in many practical applications when
the size of the electrodes is very small compared to the
total boundary area. Several numerical methods have been
employed for solving the theoretical forward modeling prob-
lem including the finite element method (FEM) [15], the finite
volume method (FVM) [16], the finite difference method
(FDM) [17], and the boundary element method (BEM) [18].
These algorithms have been successfully applied to EIT for-
ward simulations.

The inverse problem in EIT is highly nonlinear and
nonunique. Inverse algorithms in medical imaging are divided
into two categories, i.e., dynamic algorithms (impedance vari-
ation) and static algorithms (absolute impedance) [19]–[21].
A single-pass back-projection algorithm is initially applied to
solve the inverse problem in EIT [22]. The single-pass sensi-
tivity matrix method has also been used [23], [24]. However,
the single-pass back-projection and sensitivity matrix methods
can be effective only for small perturbations. To address
large impedance variations, sensitivity methods or multiple-
pass back-projection algorithms must be applied to minimize
an objective function that includes data misfit and model regu-
larization. A modified Newton–Raphson method [20] that finds
a discrete conductivity distribution by minimizing the squared
data misfit is one of the most common iterative methods for
solving the inverse EIT problem. A significant advance has
been made in the field of geophysics to solve the iterative
inverse problem without explicitly using a sensitivity matrix,
and the computation is extremely fast for three-dimensional
imaging [25], [26].

If the inverse problem is ill-posed, regularization is usually
needed to constrain the solution. Many regularization meth-
ods, such as Tikhonov [27], edge-preserving [28], [29], total
variation [30], sparse multiscale [31], compactness [32], and
shape-based regularization [33]–[36], can help solve ill-posed
imaging problems. A regularization method helps constrain the
solution by adding a penalty function to the objective function,
achieving a stable solution while simultaneously assuring a
global spatial resolution to a certain extent [37]. We include
the Tikhonov regularization method in our study to ensure
stability of the solution.

In this study, inspired by geophysical imaging prob-
lems [38]–[43], we use a CT image to constrain the EIT imag-
ing problem and improve the resolution by applying a novel
technology invented for geophysical imaging called cross-
gradient regularization, which helps maintain the similarity
between different physical properties while allowing a differ-
ent magnitude for each property value in the common imaging
area [3], [44]–[47]. We derive the cross-gradient function and
its sensitivity matrix in a finite element model. The cross-
gradient function is then incorporated as a constraint in a
nonlinear least-squares inverse problem along with Tikhonov

regularization. The CT image-guided EIT method is first tested
in two simulations: a blocky model and a thorax geometry
model. It is then applied to four phantom models. The imaging
quality is assessed systematically for both simulations and
phantom experiments.

II. METHODS

A. Forward Modeling

The EIT imaging problem begins with forward modeling.
The forward problem that aims to obtain the voltage response
caused by the injection of current is solved by CEM in this
study.

The potential ϕ(x, y) in the domain � can be modeled by
the generalized Laplace equation

∇ · (σ (x, y)∇ϕ(x, y)) = 0, (x, y) ∈ �, (1)

where σ(x, y) is the conductivity distribution function.
The boundary conditions are as follows

ϕ(x, y)+zlσ(x, y)
∂ϕ(x, y)

∂n
= Ul , (x, y)∈el , l =1, . . . , L,

(2)

σ(x, y)
∂ϕ(x, y)

∂n
= 0, (x, y) ∈ ∂�\

L⋃
l=1

el , (3)

where zl is the contact impedance between the electrodes and
the imaged body, n represents the unit vector of the outward
normal direction on the boundary of the measurement area, Ul

is the potential at the electrode el , ∂� denotes the boundary
of the measurement area, and L is the number of electrodes.

In addition, for a prescribed current pattern Il , l = 1, ..., L,∫
el

σ(x, y)
∂ϕ(x, y)

∂n
d S = Il . (4)

Kirchhoff’s Law and the choice of ground must be imposed
to ensure the existence and uniqueness of the result,

L∑
l=1

Il = 0,

L∑
l=1

Ul = 0. (5)

The FEM realization is based on an equivalent coercive
weak formulation of the complete electrode model [48].

B. Recording Geometry

The recording geometry of EIT describes the strategy of
applying a source excitation to the imaging target. According
to the type of source excitation, the potential can be driven by
a current or voltage corresponding to the induction or injection
pattern, respectively.

A PXI-based EIT recording geometry (Kuopio Impedance
Tomography 4 (KIT4)) [49] is applied in this study. The
KIT4 recording geometry consists of 16 electrodes, 4 of
which are sink electrodes {1, 5, 9, 13}. The injections are
carried out pairwise between one sink electrode and the
other 15 electrodes, leading to a total of 54 injections when
reciprocal injections are removed.
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C. Inversion Theory

To fit the measured voltages according to the calculated
data, the objective function of the EIT inverse problem is
defined as

F(mE ) = ‖dE − S(mE )‖2 + ‖αLmE‖2 , (6)

where dE represents the voltage vector measured by elec-
trodes, S(mE ) represents the voltage vector obtained by
forward calculation, mE is the conductivity vector, α is the
coefficient of regularization, and L is the Tikhonov regulariza-
tion matrix. A modified Newton–Raphson method is applied
to minimize the objective function (6).

With a CT image available, and assuming that both the
CT and EIT measurements cover the same imaging area,
we are able to further improve the imaging problem of
equation (6) by applying cross-gradients between CT values
and conductivities. The cross-gradient function is incorporated
as an additional constraint in a nonlinear least-squares problem
formulation.

The modified objective function for CEIT is

F(mE ) = ‖dE − S(mE )‖2 + ‖αLmE‖2 + ‖βt (mE , mC)‖2 ,

(7)

where β represents the cross-gradient coefficient, and
t (mE , mC ) is the cross-gradient vector between the conduc-
tivity mE and the CT value mC .

The cross-gradient function is given by

t (mE , mC ) = ∇mE × ∇mC . (8)

Equation (8) has no discontinuity or singularity limits other
than those encountered when adopting model parameteriza-
tions. Equation (8) can be expressed as

t (x, y) =
(

∂mE (x, y)

∂y

) (
∂mC(x, y)

∂x

)
−

(
∂mE (x, y)

∂x

)

×
(

∂mC(x, y)

∂y

)
. (9)

Equation (9) can be discretized by the finite difference
method depicted in Fig. 2a, yielding the formula

t ∼= 4

�x�y
(mEc(mCb − mCr ) + mEr (mCc − mCb)

+ mEb(mCr − mCc)), (10)

where the second subscripts c, b, and r on mE or mC

denote the center, bottom and right cells, respectively, in the
heterogeneous 2D grid depicted in Fig. 2a. The �x and �y
denote the horizontal and vertical dimensions, respectively,
of the cells (Fig. 2a) and serve to normalize the grid differences
in equation (10).

We solve equation (9) by using the finite element method.
Fig. 1a represents a triangular element �0 with conductivity
σ for a piece-wise constant model mesh in FEM. The finite
element modeling with linear approximation is equivalent
to a linear electrical network that connects nodes [15]. For
example, referring to Fig. 1, a first-order triangular element as
shown in Fig. 1a is equivalent to the circuit given in Fig. 1b.
The resistors K12, K23, and K31 are replaced by the middle

Fig. 1. Finite element model. (a) Triangular element and (b) its equivalent
circuit. (c) Equivalent nodal model to (b).

nodes T12, T23, and T31 in Fig. 1c. The conductivity σ̃ on the
element �0 can be written as

σ̃ = λ1 + λ2x + λ3 y, (11)

where λ1, λ2, and λ3 are the underdetermined coefficients.
Substituting the coordinates and conductivities of T12, T23,

and T31 into equation (11), we have

σ = λ1 + λ2
a1 + a2

2
+ λ3

b1 + b2

2
, (12)

σ = λ1 + λ2
a3 + a1

2
+ λ3

b3 + b1

2
, (13)

σ = λ1 + λ2
a2 + a3

2
+ λ3

b2 + b3

2
. (14)

We want to obtain the conductivity σT of the barycenter
T( a1+a2+a3

3 , b1+b2+b3
3 ). Adding equations (12)–(14), we have

σ = λ1 + λ2
a1 + a2 + a3

3
+ λ3

b1 + b2 + b3

3
. (15)

Therefore, according to equations (11) and (15),

σT = σ. (16)

We solve equation (9) based on the barycenter T depicted
in Fig. 2b, and conductivity vector mE is determined as

mE =
(
..., mk0

E , ...
)T

, k0 ∈ {1, . . . , M} , (17)

where M is the number of elements in the finite element
model.

According to Fig. 2b, we determine the gradient of mk0
E as

∇mk0
E

∼= mk1
E − mk0

E

|l1|2
l1 + mk2

E − mk0
E

|l2|2
l2 + mk3

E − mk0
E

|l3|2
l3, (18)

where mki
E , i = 1, 2, 3, ki ∈ {1, . . . , M} represent conductivi-

ties of three adjacent elements, respectively. The l1, l2, and l3
are the vectors of the three separate directions, respectively.

l i = (xi − x0)i + (yi − y0) j, i = 1, 2, 3, (19)

where i and j are the unit vectors in the x and y directions,
respectively.

In addition, the boundary conditions of the target area
should be taken into account separately. We define the bound-
ary problem for the cross-gradient function in Fig. 3. When
we calculate the gradient for the boundary element of the two
cases in Fig. 3, the gradient of the boundary element σ1 can be
calculated using the virtual element for which the conductivity
is set to σ1 (marked by the dashed line).
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Fig. 2. (a) Definition of the mE–mC cross-gradient function and its
derivatives on a rectangular grid unit. For a 2D grid extending in the
x and y directions, the function t is defined at the center of a given
element (marked by a cross) taking into account the parameters from
the two adjacent elements on its right (subscripted by ‘r’) and bottom
(subscripted by ‘b’). (b) Discretization of the mE–mC cross-gradient
function on a triangular grid unit. For a 2D grid extending in the lll1, lll2,
and l3 directions, the function t is defined at the barycenter of a given
element (marked by ‘T’) taking into account the parameters from the three
adjacent elements (subscripted by 1–3). A, B, and C are the barycenters
of the three elements.

Fig. 3. Boundary definitions for the cross-gradient function.

Thus, we have

∇mk0
E =

(
3∑

i=1

(mki
E − mk0

E )(xi − x0)

(xi − x0)2 + (yi − y0)2

)
i

+
(

3∑
i=1

(mki
E − mk0

E )(yi − y0)

(xi − x0)2 + (yi − y0)2

)
j, (20)

∇mk0
C =

(
3∑

i=1

(mki
C − mk0

C )(xi − x0)

(xi − x0)2 + (yi − y0)2

)
i

+
(

3∑
i=1

(mki
C − mk0

C )(yi − y0)

(xi − x0)2 + (yi − y0)2

)
j . (21)

The gradients of mk0
E and mk0

C can also be written as

∇mk0
E = ∂mk0

E

∂x
i + ∂mk0

E

∂y
j , (22)

∇mk0
C = ∂mk0

C

∂x
i + ∂mk0

C

∂y
j . (23)

Comparing equations (20) and (22), we have

∂mk0
E

∂x
=

3∑
i=1

(mki
E − mk0

E )(xi − x0)

(xi − x0)2 + (yi − y0)2 ,

∂mk0
E

∂y
=

3∑
i=1

(mki
E − mk0

E )(yi − y0)

(xi − x0)2 + (yi − y0)2 . (24)

Similarly, from equations (21) and (23), we have

∂mk0
C

∂x
=

3∑
i=1

(mki
C − mk0

C )(xi − x0)

(xi − x0)2 + (yi − y0)2 ,

∂mk0
C

∂y
=

3∑
i=1

(mki
C − mk0

C )(yi − y0)

(xi − x0)2 + (yi − y0)2 . (25)

Substituting equations (24) and (25) into equation (9),
we obtain the discrete representation of the cross-gradient
function.

In the modified Newton–Raphson method, the sensitiv-
ity (Jacobian) matrix is calculated in the inversion process.
According to equations (9), (24), and (25), the sensitivity
matrix A of the cross-gradient function can be calculated
directly by

A =
⎡
⎣ · · · · · · · · ·

· · · Ak0k0 · · ·
· · · · · · · · ·

⎤
⎦

M×M

, (26)

where

Ak0k0 = ∂ t

∂mk0
E

=
3∑

i=1

−(yi − y0)

(xi − x0)2 + (yi − y0)2

×
3∑

i=1

(mki
C − mk0

C )(xi − x0)

(xi − x0)2 + (yi − y0)2

−
3∑

i=1

−(xi − x0)

(xi − x0)2 + (yi − y0)2

×
3∑

i=1

(mki
C − mk0

C )(yi − y0)

(xi − x0)2 + (yi − y0)2 , k0 ∈ {1, ... , M} ,

(27)

Ak0k j = ∂ t

∂m
k j
E

= (y j − y0)

(x j − x0)2 + (y j − y0)2

×
3∑

i=1

(mki
C − mk0

C )(xi − x0)

(xi − x0)2 + (yi − y0)2

− (x j − x0)

(x j − x0)2 + (y j − y0)2

×
3∑

i=1

(mki
C − mk0

C )(yi − y0)

(xi − x0)2 + (yi − y0)2 ,

j = 1, 2, 3, k0, k j ∈ {1, ... , M} , (28)

Ak0k = ∂ t

∂mk
E

= 0, k0, k ∈ {1, ..., M}, k /∈ {k0, k1, k2, k3}.
(29)

III. SIMULATIONS OF A BLOCKY MODEL

We conduct numerical imaging of a simple blocky model
that simulates the human thorax (Fig. 4). Three polygons
are distributed within a circular boundary with a diameter
of 2 cm. The background is homogenous. The analyses in
this section involve noise-free data and address the issues of
parameter selection, shape error, and insufficient information
in the reference CT image. A starting model derived from the
CT image for conventional EIT will be discussed as well.
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Fig. 4. A blocky distribution. True EIT model (left); the CT scan (right).

A. Modeling

In the numerical simulations, the measurement data are
obtained by solving the forward problem described in
Section II. The injected current is set to 1 A with a frequency
of 10 kHz. Sixteen electrodes with a length of 0.22 cm
are attached to the boundary of the target. The contact
impedance is set to 1×10−4 � · m2 for all electrodes. The
simulated conductivity and CT value distributions are shown
in Fig. 4. The conductivities of the inclusions are set to
0.15 S/m for the two ‘lung’ objects, 0.6 S/m for the ‘heart’
object and 0.33 S/m for the background, corresponding to
values found in the literature [50]. The CT values are set
to −700 HU, 60 HU, and 30 HU for the ‘lungs’, ‘heart’,
and background, respectively. A piecewise constant model
with a mesh of 2,048 triangular elements and 1,089 nodes is
employed for the forward calculations. The inversion applies a
mesh of 1,023 elements and 620 nodes to avoid the so-called
“inverse crime” [51]. All mesh models applied in this study
are generated automatically according to [52]. A homogeneous
conductivity model with σ0 = 0.33 S/m is employed for both
conventional EIT and CEIT as the starting model.

B. Quantitative Indicators

To quantitatively evaluate the reconstruction methods,
the data (voltage) misfit and model (conductivity) misfit
defined in equations (30) and (31) are calculated in this study.
The data misfit is fundamental for evaluating the imaging
results. When we apply imaging methods to physical exper-
iments or clinical evaluations, the true distribution of the
conductivity is usually unknown. A feasible approach for com-
parison is to use some shape indicators when the data misfit is
at the same small level. The shape indicators widening (WD)
and distortion (DT) were defined in previous EIT studies [53].
We revise the definitions of WD and DT in equations (32)
and (33) so that the shape indicators are adequate for this
study. WD is defined similarly to resolution. A WD value
of 1 indicates an exact match of the areas between the true
and recovered inclusions, while a value less than or greater
than 1 would indicate underestimation or overestimation of
the inclusion area. DT represents the shape deformation. A DT
value of 0 indicates no shape deformations; the larger the DT,
the more distorted the image.

Data Misfit:

εdata =

√√√√√ N∑
i=1

(dCal
i − d Meas

i )2

N
, (30)

where dCal
i and d Meas

i denote the calculated and measured
voltage distributions, and N represents the total number of
observations.

Model Misfit:

εmodel =

√√√√√ M∑
i=1

(mCal
i − mT rue

i )2

M
, (31)

where mCal
i and mT rue

i are the inverted and true conductivity
distributions, and M is the number of triangular elements.

WD:

WD =

M∑
i=1

ACal
i

M∑
i=1

AT rue
i

, (32)

DT:

DT =

M∑
i=1

∣∣ACal
i − AT rue

i

∣∣
M∑

i=1
AT rue

i

, (33)

where ACal
i is the shape parameter for the reconstructed

targets, and AT rue
i denotes the area of the true targets.

For the calculated conductivity distribution σCal of the
target area �,

if σCal
i > σ0, i ∈ �,

ACal
i =

{
1, f or σCal

i − σ0 > 0.5
(
max(σCal) − σ0

)
,

0, otherwi se,

(34)

if σCal
i < σ0, i ∈ �,

ACal
i =

{
1, f or σ0 − σCal

i > 0.5
(
σ0 − min(σCal)

)
,

0, otherwi se.

(35)

In addition, for the true model σ T rue,

AT rue
i =

{
1, f or σ T rue

i �= σ0,

0, otherwi se,

(36)

where σ0 denotes the assumed conductivity of the background.

C. Scaling Factors in CEIT

Appropriate scaling factors are important for obtaining
accurate tomography results. For EIT, the regularization para-
meter α controls the trade-offs between the voltage error
and the Tikhonov regularization term. On the other hand,
the parameters α and β in CEIT control the trade-offs among
the data misfit, the Tikhonov regularization term, and the
cross-gradient function term. A series of scaling factors are
tested in this study. Some of the results of the reconstruction
are shown in Fig. 5. The corresponding choices of α and β are
presented in Table I. The first row of Fig. 5 indicates the results
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Fig. 5. Reconstructed images with different choices of α and β.

TABLE I
CHOICES OF α AND β

of EIT when α equals 1, 0.1, 0.01, 0.005, 0.003236, 0.003233,
and 0.003231, respectively. EIT can be used to reconstruct an
overall image in any case with low resolution at the boundaries
of the lung and heart. For larger α values, smoother images
are obtained. The second and third rows are the results of
CEIT when we fix β and choose different α. The boundaries
of the objects are sharp and precise. In addition, when α is
set to 0.003231, the result from EIT is distorted due to issues
related to singular values. However, CEIT can provide a stable
solution due to the cross-gradient constraints. The images in
the fourth row show the results of a fixed α and varying β.
If β is too small, the cross-gradient term cannot constrain the
EIT image. If β is too large, the voltage data misfit cannot
be reduced to a sufficiently small value, and the reconstructed
model is inaccurate.

To select applicable scaling parameters α and β, the quan-
titative indicators for 90 different combinations of α and β
are shown in Fig. 6. The red dashed line in the data misfit
plot indicates the reliable area for the selection of α and β.
Experience suggests 5 × 10−3 < α < 10−2 for achieving
a good imaging quality for EIT. For CEIT, we determine
the suitable parameters that 10−3 < α < 5 × 10−3 and
1 < β < 105. In addition, the quantitative indicators show
little difference when β varies from 1 to 105, which indicates
the stability of the CEIT method to a wide range of values
for the cross-gradient factor. We choose α equals 5×10−3

for EIT and α equals 10−3 and β equals 1 for CEIT to plot

Fig. 6. Evolution of the quantitative indicators as functions of α and β.

the horizontal and vertical conductivity profiles in Fig. 7. The
conductivity profiles obtained with EIT are smooth across the
interfaces. The horizontal and vertical profiles show that CEIT
improves the conductivity accuracy and enables reconstruction
of large conductivity contrasts.

D. Shape Errors in Referenced CT Models

In practical applications of CEIT method, the synchronous
acquisition of CT and electrical measurement data may be
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Fig. 7. Conductivity profiles. The horizontal conductivity profile of the
model at y = 0 (left) and the vertical conductivity profile of the model at
x = 0 (right).

Fig. 8. Image reconstructions (Cases 1–8) with CT scans obtained
from human respiration or movement (top), and incomplete structure
descriptions (bottom).

challenging since human respiration or movement may cause
inconsistent structural information between CT images and
conductivity distributions. It is also difficult for the CT image
to represent the entirety of the interior structures in the human
body. For example, the CT value of a human heart is usually
close to the soft tissue, and pleural effusion can also result in
similar CT values between the lungs and soft tissue. We set α
and β to 10−3 and 1, respectively, for CEIT. Four reconstruc-
tion images, corresponding to Cases 1–4, obtained by CEIT
along with the model errors in the CT-scans caused by human
respiration or movement are shown in the first and second
rows, respectively, of Fig. 8. The third and fourth rows denote
the results from Cases 5–8 by CEIT along with the model
errors resulting from incomplete structure descriptions. The
dashed lines in the plots denote the boundary changes from a
‘perfect’ CT scan to one with model errors. The quantitative

TABLE II
QUANTITATIVE INDICATORS OF THE RECOVERED INCLUSIONS

Fig. 9. Evolution of quantitative indicators (right) as a function of shape
error (left).

indicators are shown in Table II. DT shows small fluctuations
but WD is relatively stable to the model errors caused by the
human respiration or movement. On the other hand, both WD
and DT show acceptable variations to the model errors caused
by the incomplete structure descriptions.

In addition, the shape errors caused by human respiration
are quantitatively evaluated by the relative area change (RAC),

RAC=
Area of the CT scan with model errors

Area of the perfect CT scan
. (37)

As shown in the first column of Fig. 9, the RAC value
of the ‘perfect’ CT scan is assumed to be 1.0, and the end-
inspiration and end-expiration phases are assumed to have
RAC values of 1.5 and 0.5, respectively. The quantitative
indicators as a function of RAC are shown in Fig. 9. When
RAC is less than 1, the shape indicators are stable to shape
errors. With RAC larger than 1, the shape indicators seem to
have large changes due to shape errors, which indicates poorly
reconstructed images. We suggest 0.7 < RAC < 1.1 to achieve
good imaging quality from CEIT. Thus, we can conclude that
the CEIT can handle small shape errors in referenced CT
models. However, the reconstructed images of CEIT will also
be distorted if the shape errors are out of the expected range.

E. CT-Derived Starting Models

The starting model may affect the inversion results. We take
the CT image as a priori structural information to build
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Fig. 10. Results of EIT with homogeneous starting model (left) and
starting models that are 80% (middle) and 120% (right) of the true model.

starting models with different conductivity values. Fig. 10
shows the results of conventional EIT with three different
starting models. These include a homogeneous model and
models with 80%, and 120% of the true conductivity values.
The reconstructed images and the quantitative indicators are
completely identical, which indicates that conventional EIT
cannot produce a better image even if we use a CT-derived
starting model with 80% or 120% of the true conductivity
model.

IV. SIMULATIONS OF THORAX GEOMETRY MODELS

In this section, image reconstructions are performed with
increased noise levels in the data to evaluate the robustness
of the CEIT against noise. Two cases (Case 1–2) of thoraxes
with pathological features are tested (left column of Fig. 11).

A. Modeling

We consider the two models with simulated pathologies
depicted in Fig. 11: an injured thorax (Case 1) and a pleural
effusion (Case 2). For both scenarios, the conductivities of the
heart, lungs and background are set to 0.6 S/m, 0.15 S/m, and
0.33 S/m, respectively, and the corresponding CT values are set
to -700 HU, 60 HU, and 30 HU, respectively. The lung injury
region and background medium are assumed to have the same
conductivities and CT values. The conductivity of the pleural
effusion is 0.6 S/m with the same CT value as the background.
The recording geometry and the numerical solutions for the
forward problems are similar to those in section III. The
forward calculations apply a piecewise constant model with
a mesh of 2,773 triangular elements and 1,348 nodes. A mesh
of 1,385 elements and 737 nodes is used in the inversion
problem. A homogeneous conductivity model with σ0 =
0.33 S/m is employed for both EIT and CEIT as the starting
model.

B. Robustness of CEIT Against Noise

In practical applications, the measured data with noise can
be written as

v = v∗ + ε, (38)

where v∗ represents the voltage vector across the boundary of
the entire field calculated by CEM, and v denotes the measured
voltage vector with noise ε. In this study, ε is assumed to be
a Gaussian noise with mean με and variance ηε.

The noise is evaluated by the signal-to-noise ratio (SNR)
in this study. For each specific noise level, thousands of
independent tests are conducted. Some of the reconstruction
results are shown in Fig. 11, and the evolutions of the mean
indicators as a function of noise level are plotted in Fig. 12.
In particular, we plot the absolute value of the cross-gradient
function from the 20 dB tests in Fig. 13 to directly reveal the
effectiveness of the constraints from the referenced CT scans.

1) Case 1 (Simulated Injured Lung): We obtain the results
of conventional EIT and CEIT using the same regularization
factor for each noise level. The regularization parameter α
and cross-gradient parameter β are gradually increased for
handling with the decreasing SNR. The final data misfit of
the two method is close at each noise level. We conclude that
in the case of a high SNR, conventional EIT can reconstruct
a reasonable image but produces low resolution in the injured
area, where CEIT is able to produce a clear image. When
the SNR drops to a low value such as 30 dB or 20 dB,
conventional EIT can no longer resolve a reliable solution,
and the quantitative indicators are increased. However, CEIT
can mitigate the distortions from a low SNR due to the use of
cross-gradient constraints. The variations in the model misfit,
WD, and DT of CEIT are accordingly stable as the SNR
decreases. The absolute value of the cross-gradient function
during the iterations, shown in the left column of Fig. 13,
suggests strong constraints on the edges of the injured lungs
and heart.

2) Case 2 (Simulated Pleural Effusion): this test is designed
for situations involving incomplete structures in the referenced
CT scan. The pleural effusion is designed to be undetected in
the CT scan. The parameter selections are similar to those of
Case 1. As we concluded for Case 1, the reconstructed images
of EIT are distorted due to the low SNR. The areas detected
in the referenced CT scan are well reconstructed by CEIT, and
the evolution of average quantitative indicators also indicates
well reconstructed images of CEIT with respect to the different
SNR. Nevertheless, at the low SNRs, the reconstructions of
CEIT for the pleural effusion are distorted due to the lack
of cross-gradient constraints in this area. The absolute value
of the cross-gradient function during the iterations shown in
the right column in Fig. 13, which further depicts the outlines
of the area with strong cross-gradient constraints.

V. PHANTOM EXPERIMENTS

To demonstrate the efficacy of the proposed approach,
we utilize the experimental data that were applied in [35].
The experiments consist of four different cases (left column
of Fig. 14, Cases 1–4) involving the plastic objects (insulators)
with different shapes inserted into a tank.

A. Modeling

In these experiments, the conductivity of the background
(saline) is measured as 543 μS/cm. Because CT measurements
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Fig. 11. Reconstructions of injured and pleural effusion examples from noisy numerical tests.

Fig. 12. Evolution of quantitative indicators as a function of noise level.

Fig. 13. Absolute value of the cross-gradient function from the 20 dB
tests.

are unavailable for the experiments, we simulated approximate
CT scan images with 1 HU for saline and 2 HU for the plastic
objects in each case, and note that the cross-gradient method

mainly utilizes the structure information in the domain of the
scan. The contact impedance is measured as 1×10−4 � · m2

for all electrodes. The tank data are acquired from the
KIT4 recording geometry as described above. The injected
current is set to 1 mA with a frequency of 10 kHz. A FEM is
applied to numerically approximate a CEM model for forward
modeling. The forward and inversion grids applied in this
analysis are the same as those used for the simulation of
the blocky model in section III. A homogeneous conductivity
model with σ0 = 0.57 mS/cm is employed as the starting
model in all cases.

B. Results and Analysis

The imaging results of Cases 1–4 from EIT and CEIT are
shown in Fig. 14. As we can see, EIT reconstructs a reasonable
image of the inclusions but with relatively low resolution at the
boundaries. The details of the inclusions, especially the sharp
edges, are barely distinguished in the images from EIT. Due to
the CT image constraints, CEIT reconstructs the targets with
improved resolution, recovering the shape of the targets more
accurately, and the conductivity contrast is enhanced near the
edges of the inclusions. In addition, the reconstructions of the
circle inclusion using the two methods in Case 1 are similar.
In Cases 2–4, conventional EIT produces a smooth boundary
for the inclusions, but CEIT generates sharper reconstructions.
Furthermore, in Case 4, when the inclusions are close to
one another, the CEIT method is still capable of recovering
the inclusions reasonably well. The quantitative indicators
are presented in Table III. Both EIT and CEIT yield nearly
identical data misfits in each case. In all the testing cases,
both EIT and CEIT perform well in reconstructing the major
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Fig. 14. Reconstructions of phantom experiments with both EIT and
CEIT methods. Inclusions are composed of plastic objects. Cases 1–4
are shown from top to bottom.

TABLE III
QUANTITATIVE INDICATORS OF THE RECOVERED INCLUSIONS

shape characteristics, and the WD values are close to the true
values in most of the cases. However, the CEIT shows an
improvement in DT, which indicates that the CEIT method
can better depict the outlines of the inclusions than the
conventional EIT.

VI. CONCLUSIONS

The cross-gradient method serves as a link between different
medical imaging methods for the same reconstructed target.
A CT image-guided electrical impedance tomography method
is proposed in this study. CEIT is evaluated by comparing with
EIT in both simulations and phantom experiments. The results
prove that CT information can be applied to EIT by utilizing
the cross-gradient method, thereby providing high resolution
images. The simulations of thorax geometry models show that

the CEIT method is robust against noise. The further potential
of this study is to apply the cross-gradient function to the
combinations of different medical imaging methods, resulting
in joint approaches that could help improve image quality.
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