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Abstract— X-rayangiographyis the most commonly used
imaging modality for the detection of coronary stenoses due
to its high spatial and temporal resolution of lumen contour
and its utility to guide coronary interventions in real time.
However, the high inter- and intra-observer variability in
interpreting the geometry of 3D vascular structure based on
multiple 2D image projections is a limitation in the accurate
determination of lesion severity. This could be addressed
by the 3D reconstruction of the coronary arterial (CA)
tree. The automated reconstruction of 3D CA tree from 2D
projections is challenging due to the existence of several
imaging artifacts, such as vessel overlap, foreshortening,
and most importantly respiratory and cardiac motion. Along
with these artifacts, the acquisition geometry introduces
the possibility of generating false vessel segments in the
reconstruction. Our approach aims to reduce the motion
artifacts in angiographic projections by developing a new
method for rigid and non-rigid motion correction. A novel
point-cloud based approach is subsequently introduced
for reconstruction of 3D vessel centerlines by iteratively
minimizing the reconstruction error. The performance of
the proposed 3D reconstruction is evaluated using angio-
graphic projections from 45 patients, producing average
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reprojectionerrors of 0.092±0.055 mm and 0.910±0.352 mm
for 3D centerlines reconstruction, when co-registered with
the parent vessels on projection planes that were/were not
used to derive the 3D reconstruction, respectively. A com-
parison of the reconstructed 3D lumen surface with opti-
cal coherence tomography (OCT) measurements has been
performed, showing no statistically significant difference in
the luminal cross-sections reconstructed with our method,
compared to OCT.

Index Terms— Point-cloud, 3D coronary tree reconstruc-
tion, 3D centerline reconstruction, motion correction, X-ray
angiograms, optical coherence tomography.

I. INTRODUCTION

INVASIVE Coronary Angiography (ICA) is the most com-
monly used imaging modality for the detection of coronary

stenoses. Its advantages include simplicity, high spatial and
temporal resolution of lumen structure, and most importantly,
its utility to guide coronary interventions in real time [1]. How-
ever, despite these clinical advantages, X-ray angiograms pose
several challenges, especially in relation to visualizing lesion
adequately and judging lesion severity. The 2D projections
of 3D vascular structure in different image planes produce
vessel overlap and foreshortening and hence, make it difficult
for the cardiologists to interpret the geometry. This leads to
high inter- and intra-observer variability in understanding the
global anatomical structure of the 3D vascular tree and, in turn,
affects the accuracy of the estimation of lesion severity and
stent size [2]. The interpretation gets further complicated due
to the existence of several motion artifacts, including cardiac,
respiratory, and patient or device movement. In addition,
potential adverse effects of higher amount of radiographic
contrast agent and exposure to X-rays limit the number of
image acquisitions. To overcome these inherent limitations of
ICA, 3D reconstruction of coronary arterial (CA) trees from
a limited number of 2D X-ray projections has been attempted
by a number of research groups [3]–[6].

Several 3D CA tree reconstruction methods have been
developed throughout the literature that deal with problems
such as vessel overlap, foreshortening, suboptimal projection
angles, and tortuosity and eccentricity [3], [7], [8]. These
methods either try to generate a model of the 3D structure
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of the coronary arteries [7], or reconstruct the 3D volume of
X-ray attenuation coefficients using tomography [8]. In order
to obtain the acquisition geometry, some of the reconstruc-
tion methods rely on a prior calibration step [9]. Alter-
natively, some reconstruction methods prefer non-calibrated
data in order to reduce possible table movements during
image acquisition and noise in calibrated parameters [6], [10].
These methods usually estimate geometry parameters before
computing the reconstruction or simultaneously estimate the
geometry parameters and the optimal reconstruction. In cardiac
interventions, single-plane systems are usually preferred over
biplane ones due to their lower cost, ease of use, and the
possibility of acquiring multiple and individually tailored
image projections. However, single-plane systems generate
non-simultaneous angiographic projections, which are prone to
several motion artifacts, including mainly patient or imaging
device related movements, respiratory motion, and cardiac
motion. Although the patient or imaging device related move-
ments can be minimized by following a careful protocol
during image acquisition [6], [11], [12], this is hard to achieve
for respiratory motion and not possible for heart beating
motion. Even if short acquisitions can be completed dur-
ing a breath-hold, potential misregistration artifacts between
breath-holds remain, affecting geometry conditions [13]. Addi-
tionally, the patients are often not able to follow the breath-
hold protocol.

To overcome the motion artifacts due to cardiac movements,
retrospective gating is commonly utilized, where the image
frames are selected from the same cardiac phase. This is usu-
ally achieved using the ECG signal acquired simultaneously
with the angiograms. Schwemmer et al. [14] developed an
algorithm for residual motion correction, based on deformable
2D-2D registration between forward projection of initial,
ECG-gated 3D reconstruction and the original 2D projection.
Rohkohl et al. [15] used a time-continuous B-spline motion
field model, parameterized by the acquisition time, for motion
estimation and 4D vascular reconstruction and validated its
performance on a left coronary artery (LCA), a right coronary
artery (RCA), and a coronary sinus. Unberath et al. [16]
estimated the respiratory motion by optimizing epipolar con-
sistency among all images in projection domain. Their eval-
uation over two numerical phantoms and three clinical cases
produced average reprojection errors of 0.78 ± 0.31 mm and
1.60 ± 0.233 mm, respectively, among key points. In another
work, Unberath et al. [17] developed an approach for prior-free
respiratory motion estimation by optimizing epipolar consis-
tency conditions and a task-based auto-focus measure. Their
experimental analysis over a phantom and three clinical images
achieved average reprojection errors among key points 1.17±
0.05 mm and 1.91± 0.393 mm, respectively.

In most of the existing reconstruction methods, the frames
are selected from the end of the diastolic phase when the
heart motion is minimal, such that no cardiac motion can
be assumed between image projections [18], [19]. However,
in a single-plane rotational X-ray system, this assumption
does not hold due to non-simultaneous acquisition. In [20],
3D reconstruction was attempted as an energy minimization
problem, solved using α-expansion moves of graph cuts;

while a snake-based semi-automated reconstruction method
was proposed in [21]. Point correspondences between arteries
in monoplane image pairs were refined in [22] by discarding
outliers using RANSAC and filtering the remaining inliers
with a geometric curvature constraint. A perspective projection
model-based 3D CA reconstruction from two uncalibrated
monoplane angiograms was developed in [23], introducing a
new model for calculation of contour points in the vascular sur-
face. An external force back-projective model was integrated
into the deformable model framework in [10].

Recently, a nonuniform rational basis splines (NURBS)
based CA reconstruction method was proposed where the 3D
centerline is reconstructed as the intersection of surfaces from
corresponding branches [4]. The point correspondences are
identified at uniform distances on the projected planes and the
3D luminal contours are generated using NURBS contours
over the computed 3D boundary. The final 3D surface is
generated as an interpolation across control points on the 3D
contours. Another NURBS-based 3D CA tree reconstruction
from two X-ray projections was recently introduced in [12]
with breath-hold image acquisition.

Blondel et al. [24] used 3 − 7 angiographic projec-
tions for identifying correspondences between 2D centerlines.
Based on N projections, the approach generated N(N − 1)
reconstructions and fused them in a single set. Although
the approach considered the effects of respiratory motions
between acquisitions, it did not consider non-rigid deforma-
tions and identified point correspondences based on epipolar
constraints. This could result in falsely reconstructed vessel
segments and discontinuities along centerlines. More recently,
Unberath et al. [25] applied the same approach of [24], com-
bined with graph cuts. After merging N(N−1) reconstructions
from N projections, the outliers were removed based on
reprojection errors on additional reference projections. From
the final set of 3D points, the vascular tree was reconstructed
based on minimum spanning tree. Jandt et al. [26] used
multiplicative combination of back-projected 2D vesselness
responses to compute 3D vesselness response for every voxel.
Fast marching was applied for vessel segmentation and back-
tracing for centerlines extraction. Since the approach did not
distinguish between point or line correspondences initially,
it extracted a large number of vessel segments, with only a few
of them representing the existing vessels. The reconstructed
segments were assigned a significance score, based on the
length and 3D location, for final 3D centerlines reconstruction.

Although the problem of reconstructing 3D coronary vessel
trees has been investigated through the last two decades,
several key issues remain with the existing methods. Most
of the algorithms require more than two projections. Some
of the algorithms assume non-existence of motion artifacts
and require breath-hold acquisition and no patient movement
in single-plane X-ray systems [6], which makes them often
unsuitable during cardiac interventions. Some algorithms are
only applicable on biplane angiograms and do not involve
any motion correction or geometry calibration steps [27]–[30].
Many existing 3D reconstruction methods provide only qual-
itative evaluation of their performance [11], [28] or evaluate
with respect to physiological information [4]. Although some
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Fig. 1. Existence of falsely reconstructed vessels in 3D centerlines
reconstruction of right coronary artery. In (a), the bottom parts of the
projection surfaces are cropped out to improve the visualization of
intersecting points.

methods have quantitatively evaluated their reconstruction
performance over synthetic or clinical images, their average
reprojection error is often high enough to introduce significant
distortions or discontinuities along vessel geometry [10], [22].

Among all the artifacts that degrade the reconstruction of 3D
CA trees, the possibility of generating falsely reconstructed
vessels is the most challenging. The geometry of the 3D CA
tree depends on its skeleton, reconstructed in 3D space based
on the intersections between projection lines joining the X-ray
sources and the corresponding points on 2D centerlines in the
projected image planes [4], [10], [12]. These corresponding
points can be identified by finding the nearest projection line
that joins the X-ray source to a point on the 2D centerline
in another projection plane [12], [31]. In this way, the 3D
reconstruction can be seen as one of calculating the inter-
section curves between 3D projection surfaces corresponding
to centerlines in projection images. If the centerlines are
straight, this is straightforward. However, coronary vessels
often create C-shapes along their length, generating multiple
intersecting points (or curves) between projection surfaces.
Only one of the mathematical solutions of the rays-to-rays (or
sheet-to-sheet) problem represents the true vessel. In Fig. 1,
an example of the existence of falsely reconstructed vessels is
depicted for 3D reconstruction of the RCA. From the figure,
it can be observed that the projection surfaces intersect at
more than one 3D location, only one of which is the true
one. Since the RCA produces a C-shaped structure in all
of its angiographic projections, most pronounced in the left
anterior oblique (LAO)-straight and anterior-posterior (AP)
cranial planes, this problem is common.

The purpose of our work is to generate a 3D coronary
arterial tree from multiple angiographic projections without
the need for any specific image acquisition protocol. The
proposed method first addresses the issue of motion artifacts
in angiographic projections. It estimates an optimal rigid
transformation from each of the angiographic acquisitions to
adjust the relative rigid motion, mainly due to respiration and
patient or device movements. The remaining non-rigid distor-
tion at end-diastole, mostly due to cardiac motion, is modelled
by a radial basis function based warping of the 2D vessel
centerlines. Next, the method addresses the problem of falsely
reconstructed vessels in 3D CA reconstruction. A novel

point-cloud based approach is introduced for the reconstruc-
tion of 3D centerlines that minimizes the reconstruction error
(the sum of 2D reprojection errors from all projection planes)
and produces the optimally reconstructed 3D vessel skeleton.
The performance of the proposed 3D reconstruction technique
has been qualitatively and quantitatively evaluated for the
reconstruction of 109 vascular trees, including left anterior
descending (LAD), left circumflex (LCx), and RCA, from 45
patients admitted to hospital for suspected coronary stenosis.
The proposed rigid motion correction algorithm results in
average reprojection error of 0.448 ± 0.396 mm, while the
proposed 3D centerlines reconstruction algorithm generates an
average reprojection error of 0.092 ± 0.055 mm. The perfor-
mance has been further evaluated by reprojecting the generated
3D vasculatures on additional projection planes, not used for
reconstruction, and it produced average reprojection error of
0.910 ± 0.352 mm in 16 cases, available from our set of 45
patients. We have also validated the reconstructed 3D lumen
surfaces using OCT imaging, available in 5 patients from
our set of 45. The results show that there is no statistically
significant difference in the reconstructed 3D luminal cross-
sections when compared to OCT.

The structure of the rest of this paper is as follows: The
proposed rigid and non-rigid motion correction techniques are
discussed in Section II. Section III mathematically proves
the existence of falsely reconstructed vessel segments and
introduces a novel point-cloud based approach for optimal
reconstruction. Section IV validates the proposed 3D CA
tree reconstruction algorithm, along with the proposed motion
correction, over 45 patients with suspected coronary diseases.
Discussion and concluding remarks are provided in Section V.

II. PROPOSED MOTION CORRECTION

The first step of our pipeline aims at correcting motion
between angiographic projections. Using the simultaneously
acquired ECG signals, we first select the end-diastolic
frames as corresponding frames from angiographic sequences.
An end-diastolic frame is identified by its amplitude lying
within Q and R waves and closest to the R wave. Before
applying the proposed motion correction and 3D centerline
reconstruction algorithms, the 2D images are preprocessed for
the extraction of relevant image features. The input images are
first processed using a classic Hessian-based multiscale filter,
which identifies tubular structures and removes background
anatomical structures [32]. The resulting vesselness image is
then applied for automatically segmenting vessels from the
background using the active contour region-growing algorithm
by Chan and Vese [33] (maximum number of iterations 200
and weight of smoothing parameter 0.2, where these parame-
ters were tuned by exploring typical acquired clinical images).
Finally, the 2D vessel centerlines are extracted from segmented
vessels, along with the corresponding boundary points, using
a fast-marching level set method [34].

A. Rigid Motion Correction in Object Domain

One of the major issues in 3D reconstruction of CA trees
is that the acquired angiogram images from different views
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are misaligned. Even after selecting the end-diastole frames
for non-simultaneous image acquisition, the selection of image
frame from a discrete set retains certain amount of temporal
misalignment, leading to deformations in the coronary vessels.
Rigid movement of the heart, and hence, the vessels, can
mostly be attributed to the respiratory movement of the lung.
Patient or device-related movements during or between image
acquisitions also cause similar rigid movement.

In order to remove the effects of the rigid motion, the pro-
posed approach aims at estimating the optimal rigid trans-
formations for all angiographic image acquisitions, which
minimize the orthogonal distance between corresponding land-
marks in object domain. The proposed rigid motion correction
procedure requires the identification of a few (preferably 4−6)
corresponding landmark points (in our current implementation,
vessel bifurcation points) from all projection planes.

Let us assume the rigid-motion corrected 3D locations of
r landmark points are given by Bi for i = 1, · · · , r and the
original location of landmark Bi on the j th projection plane
is bi j for j = 1, · · · , s. Our aim is to estimate Bi , given
known bi j , j = 1, · · · , s, ∀i = 1, · · · , r . (Note that, through-
out the paper, 3D points on projected planes are represented
by lower-case letters, while other 3D points are denoted by
an upper-case letter.) Let us also assume the locations of the
X-ray source, a representative point on the projection plane j
and the normal to the projection plane are defined as Fj , M j ,
and N j , j = 1, · · · , s, respectively. Since the motion corrected
3D locations Bi are not known, these 3D landmark locations
are initially estimated as the nearest point to all 3D projection
lines

−−−→
Fj bi j , j = 1, · · · , s, i.e.

Bi = arg min
p

s∑
j=1

D(p,
−−−→
Fj bi j ), (1)

where D(p,
−−−→
Fj bi j ) denotes the orthogonal distance from point

p to
−−−→
Fj bi j . Throughout the rest of the paper, we refer to

any 3D point minimizing the sum of orthogonal distances
between lines or planes as their nearest orthogonal point. Let
us also define Bij as the nearest point on

−−−→
Fj bi j from Bi . Bij

is the location of the rigid-motion affected 3D landmark Bi

during j th image acquisition. Our objective is to estimate the
optimal translation t j and rotation R j for each acquisition
j = 1, · · · , s, so that the 3D landmarks Bij , i = 1, · · · , r
match with the corresponding 3D landmarks Bi , i.e., the
effects of rigid motion during acquisitions is minimized:

arg min
t j ,R j

r∑
i=1

∥∥Bi − (t j + R j ∗ Bij )
∥∥ ∀ j = 1, · · · , s. (2)

The optimization in Eq. (2) is solved using Horn’s
quaternion-based method [35]. Since the original 3D locations
of the rigid motion corrected landmark points are not known,
an iterative algorithm is developed, where, in each iteration,
the 3D landmarks are generated using Eq. (1) and the optimal
rigid transformations are estimated using Eq. (2). In each
iteration, the sources and landmarks on projection planes are
updated based on the rigid transformation

Fj � = t j + R j ∗ Fj and bi j � = t j + R j ∗ bi j . (3)

Fig. 2. Rigid-motion correction on two LCA image projections (left and
right). Red circle: rigid-motion corrected landmarks; green cross: original
landmark locations. From top to bottom: initialization and at convergence.

Fig. 3. Modelling non-rigid motion. Green: original centerline, red:
warped motion-corrected centerline.

The procedure is iterated until the nearest 3D landmarks for
each image acquisition coincide or the difference between
updated 3D landmarks in two successive iterations is smaller
than a pre-defined threshold (we used 0.0001 mm). An exam-
ple of the result of this algorithm for two projections
(AP-cranial and RAO-cranial) of the LCA of Patient 2 is
depicted in Fig. 2. The pseudo-code of the proposed algorithm
is provided in the Appendix file [36].

B. Correction of Non-Rigid Motion Artifacts

Although the proposed rigid motion correction can remove
most of the motion artifacts from angiogram images, non-rigid
motion may still remain due mostly to cardiac contraction
and relaxation. In order to model this non-rigid motion, our
method employs the radial basis function based image warping
technique, proposed by Bookstein [37].

The objective is to identify the deformation function f that
transforms the manually selected landmark locations bi j in
a 2D image plane to the back-projections bR

i j of the rigid
motion corrected 3D landmarks Bi , i = 1, · · · , r on the
same plane. Since Bis are the nearest 3D orthogonal points
to the manually selected landmark locations, their reprojec-
tions on image planes represent the corresponding landmarks
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without any motion artifact (including both rigid and non-
rigid movements). The assumption is that the deviation from
the reprojections of rigid motion corrected 3D landmarks
on projection planes to the corresponding manually selected
landmarks is due to the underlying non-rigid deformation
of vessels, and can thus be applied to correct the vessel
centerlines.

For notational simplicity, let pi = bi j and pR
i = bR

i j .
To model the transformation between pi and pR

i , we define

K = ((kmn)), where kmn = exp(−�zm−zn�2
r2 ), r being the

normalizing constant and zm = ∥∥pR
m − pm

∥∥. Let p˜ =
(p1, · · · , pr )

T , pR˜ = (pR
1 , · · · , pR

r )T , P = [1˜, p˜], and

L =
[

K P
PT 0

]
. The matrix W = L−1 ∗ pR˜ is called the

coefficient matrix. So, the warped 2D centerline, removing
non-rigid motions at the j th projection plane, is given by

cR
j = L� ∗W, (4)

where c j is the 2D centerline on the rigid-motion corrected
projection plane j and L� = [K R, 1˜, c j ], K R = ((k R

mn)),

k R
mn = exp(−

∥∥z R
m−z R

n

∥∥2

r2 ), and z R
m =

∥∥c j − pR
m

∥∥. Applying the
warping function, defined in Eq. (4) for each projection plane,
to the 2D centerlines in those projection planes, corrected 2D
centerlines are generated [38].

III. PROPOSED 3D CORONARY ARTERIAL

TREE RECONSTRUCTION

As already described in Section I, one of the main objectives
of this paper is to solve the challenge of falsely reconstructed
vessel segments. This subsection theoretically derives the
existence of this specific challenge and then develops a novel
3D centerline reconstruction algorithm that can solve this
problem, as well as several other X-ray imaging artifacts.

A. Theoretical Proof of the Existence of Falsely
Reconstructed Vessel Segments

Since the objective of this subsection is to prove the
existence of this reconstruction challenge, the generation of
an incorrect vessel segment as well as its true counter-part
using a simple vessel-like structure would suffice. The problem
is most visible during reconstruction of curved, C-shaped
vessels such as the RCA. So, in order to mimic a C-shaped
vessel in 3D space, a parabola is first drawn in the 2D plane
(z = 0) and then an arbitrary rotation is applied. Although the
following derivation has been presented on a simple parabolic
curve, it can be shown for other curves, such as higher-order
polynomials. Let, the 2D curve be: y2 = ax . So, the C-shaped
vessel in R

3 is represented as(
x y z

)T =
(

y2

a y 0
)T = 1

a

(
y2 ay 0

)T
(5)

To contain the curve in a finite-window, y is assumed to lie
in [−k, k], where k is any positive real number. An arbitrary
transformation R = Rz(γ )Ry(β)Rx(α) is applied to the curve,
which generates the final 3D object:

R.
1

a

(
y2 ay 0

)T = A(y) (6)

Let us now assume the X-ray source points be S1 and S2,
the mid-points of the projection planes be M1 and M2, and
the normals to the projection planes be N1 and N2. For line
passing through S1 and A

P1 = S1 + t1(A − S1). (7)

Since, P1 lies on the projection plane with mid-point M1 and
normal N1,

(P1 − M1).N1 = 0 i.e. t1 = (M1 − S1).N1

(A − S1).N1

Similarly, for the projection of A on plane (M2, N2),

t2 = (M2 − S2).N2

(A − S2).N2
.

Hence, the equations of projected curves are given by:

q1(y) = S1 + (M1 − S1).N1

(A(y)− S1).N1
(A − S1)

q2(y) = S2 + (M2 − S2).N2

(A(y)− S2).N2
(A − S2)

Now, lines passing through source points and points on pro-
jected curves are given by:

f1(y) = S1 + d1(q1(y)− S1) (8)

f2(y) = S2 + d2(q2(y)− S2) (9)

In case of pointwise correspondence,

f1(y1) = f2(y2) i.e. y2 = y1 or y2 = a Q3 − y1 Q2

Q2 − ay1Q1

where Q1 = (R−1S1)3 − (R−1S2)3

Q2 = (R−1S1)3(R−1S2)2 − (R−1S1)2(R−1 S2)3

and Q3 = (R−1S1)3(R−1S2)1 − (R−1 S1)1(R−1S2)3. (10)

The derivation of (10) is provided in the Appendix file [36].
A second solution will exist only if

∣∣∣ aQ3−y1 Q2
Q2−ay1 Q1

∣∣∣ ≤ k for
|y1| ≤ k. Hence, in case the 3D curve is quadratic in the initial
X−Y plane, there will always exist a mathematically accurate
but anatomically infeasible solution. For higher even-order
polynomial curves, at least one mathematically accurate but
anatomically infeasible solution will always exist (assuming
it lies within finite window). However, these anatomically
infeasible solutions may or may not exist for higher odd-order
polynomial curves, since all other solutions can be imaginary.

The above proof of existence of falsely reconstructed vessel
segments considers a simple example without any motion
artifact. However, if motion artifacts (rigid or non-rigid) exist
between projected image planes, the perfect pointwise corre-
spondence between vessel segments, as formulated in (10),
will sometimes not exist. The 3D projection lines, connecting
the vessel centerlines on projection planes with the X-ray
source, will often not intersect in that case and hence, create
ambiguity in reconstructing the corresponding 3D point on
the vessel tree. In the next subsection, a novel procedure is
developed that can solve the problem of falsely reconstructed
vessel segments during 3D centerlines reconstruction, even in
the presence of significant motion artifacts.
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Fig. 4. Reconstructed 3D skeleton of LAD artery by proposed approach.

B. Novel Point-Cloud Based Approach
for 3D Centerline Reconstruction

Although the proposed motion correction algorithms are
able to significantly reduce the effects of rigid and non-rigid
motions from the 2D vessel centerlines, significant distortions
still remain in the 2D vessel centerlines, which create ambi-
guity in identifying point-to-point correspondences as well as
in generating intersections between projection surfaces. Our
approach first attempts to identify all possible point correspon-
dences from the intersections between projection surfaces and
produces an initial dense point-cloud in the 3D space. The
point-cloud of 3D points is a data set containing the nearest
orthogonal points of the projection lines (both intersecting
and non-intersecting) generated from the points on 2D vessel
centerlines in projection planes to the corresponding X-ray
sources. Since the point correspondences are not established
at the initial stage of the algorithm, all possible nearest
orthogonal points are considered at this stage. Hence, if there
are, respectively, M and N number of points on 2D vessel
centerlines in two projection planes, the initial point-cloud will
consider M.N number of points.

From this initial point-cloud, redundant and irrelevant rep-
resentative points are then removed. Those 3D points are iden-
tified where the distance between projection lines connecting
X-ray sources to the corresponding points on 2D centerlines,
that is,

−−−→
Fj c j i , j = 1, · · · , s, i = 1, · · · , n j , is larger than a

fixed value �; i.e. the 3D point ( j, i ; j �i �) is removed if

D(
−−−→
Fj c j i ,

−−−−→
Fj �c j �i � ) > �, j � �= j = 1, · · · , s. (11)

We estimate the value of the threshold � as the average
maximum diameter of the vessel being imaged.

To consider the issue of foreshortening of vessels, the
proposed method allows many-to-one point correspondences
between centerlines on projected planes. However, considering
all many-to-one correspondences from each plane unnecessar-
ily crowds the point-cloud. Hence, for each point along the
centerline from every projection plane, at most k nearest point
correspondences (with distance less than �) are included. This
assumption significantly reduces the number of points in the
point-cloud and provides a more compact outer hull for the
generation of 3D centerline. The final refinement of the point
cloud takes into account the relative location of potentially
corresponding points on each projection curve. If these relative
locations differ by more than a predefined threshold, the corre-
sponding 3D orthogonal point is removed from the point cloud.

Algorithm 1 Generating 3D Centerline From Point-Cloud
Input : 2D centerline of vessel of interest from each

projection plane
Output: 3D centerline of the vessel

1 For every point along the 2D centerline in each
projection plane, find the point of intersection between
projection lines with every point along centerline in other
planes, or the nearest orthogonal point in case of
non-intersecting projection lines;

2 Retain points with orthogonal distance between
projection lines less than the average maximum diameter
of the vessel;

3 Compress the point-cloud by retaining some of the
nearest points (in terms of orthogonal distance between
projection lines) for each point along 2D centerline in
each of the projection planes and discarding the rest;

4 Initialize b to a small integer;
5 do
6 Draw a B-spline curve with b number of breaks

through the point-cloud;
7 If any point in the cloud lies at more than 3 times

average distance from the fitted spline curve at that
point, consider it as an outlier and discard it from the
point cloud;

8 b← b + 5;
9 while there are outliers;

10 Return the generated 3D curve as the 3D centerline of
the vessel

In this way, we avoid false reconstructions generated from the
intersection of proximal with distal locations.

Through the optimized point-cloud, a cubic B-spline curve
is fitted with b0 number of breakpoints (knots). The least
squares method is used to fit the spline to the noisy data,
where the smoothing effect is controlled by the selection of
uniform breaks. After the first B-spline curve has been fitted to
the initial set of points in the 3D point-cloud, the outliers are
removed from the 3D point-cloud. In our model, a 3D point
is considered an ‘outlier’ if the orthogonal distance between
the point and the spline curve is greater than a fixed distance,
which we set as d times the average of the Euclidean distances
of the points on the 3D spline curve to the points in the
point-cloud that are orthogonal to the curve at that point.
In the following step, another B-spline curve is drawn through
the reduced point-cloud set with the number of breakpoints
b increased by a small number z, thus reducing the over-
smoothing of the 3D centerline. The outlier points are again
removed from the point-cloud set and the process is repeated
until no outliers are found. The pseudo-code of the proposed
3D reconstruction technique is presented in Algorithm 1.

The generated 3D centerlines provide a visually satisfactory
representation of the 3D skeleton of the vessel tree. How-
ever, the 3D skeleton generated using Algorithm 1 can still
contain falsely reconstructed vessel segments, even after the
point-cloud refinement steps described in this Section.

Regions with falsely reconstructed vessel segments can
be identified because the generated 3D B-spline will fall
between true and false nearest orthogonal points. As a result,
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Algorithm 2 Generating Optimum 3D Centerline From
Point-Cloud by Minimizing Reprojection Error
Input : 2D centerline of vessel of interest in each

projection plane
Output: 3D centerline of the vessel

1 do
2 Run Algorithm 1 to generate the 3D centerline of the

vessel;
3 Back-project the 3D centerline on the original

projection planes;
4 Compare with 2D centerlines: if the back-projection

of a point perfectly matches with 2D centerline at all
projection planes, assign 1, otherwise assign 0;

5 From the sequence of 1’s and 0’s, construct segments
of correct and incorrect reconstructions;

6 For incorrect segments, generate point cloud, similar
to Algorithm 1, where, for each point along incorrect
segments on 2D centerline, some of the nearest points
are retained. No restriction on the orthogonal distance
between projection lines;

7 For correct segments, keep only the point-to-point
correspondences;

8 Construct the point-cloud set combining both correctly
and incorrectly reconstructed segments;

9 while back-projected points do not coincide with the 2D
centerlines on projection planes and the maximum
number of iterations has not reached;

10 Return the generated 3D centerline of the vessel

the backprojection of this curve will fail to accurately
match the centerlines in 2D projection planes. Thus, we back-
project the generated 3D centerlines on the original 2D
projection planes and mark the curve segments, where the
distance between them is larger than a threshold, as incor-
rectly reconstructed. The correctly reconstructed segments can
now be used to find one-to-one correspondences between
projection points, which are used to further refine the
point-cloud at these regions. This in turn allows the fitting
of a B-spline with an increased number of break points.
The process is iterated, gradually reducing the incorrectly
reconstructed regions until the back-projections of gener-
ated 3D centerlines accurately match with the correspond-
ing 2D centerlines at all projection planes, thus minimizing
the average reprojection error. The pseudo-code of the pro-
posed optimum 3D centerlines reconstruction is presented in
Algorithm 2.

The algorithm described up to this point reconstructs the
geometry of the centerlines only. For the complete 3D CA
tree reconstruction, we use the vessel surface reconstruc-
tion method introduced by Galassi et al [4]. This uses the
non-uniform rational basis splines (NURBS) method for the
generation of luminal cross-sections along centerlines, para-
meterizing a luminal contour over boundary points Qi of a
vessel in different projections, as follows:

γ (u) =
n∑

i=1

Bi,p(u)Qi , u ∈ [0, 1], (12)

where p is the degree of the curve and Bi,p(·) is a rational
basis function of Qi of pth degree. The final 3D lumen surface
is generated by applying the NURBS surface formulation:

L(u, v) =
n∑

i=1

m∑
j=1

Bi,p(u)B j,q(v)Qij , u, v ∈ [0, 1]. (13)

The cross-sections of diseased coronary arteries vary from
roughly circular to various arbitrary shapes, depending on
the extent and orientation of atherosclerotic plaques. Hence,
we have used the NURBS model and parameterized the
luminal contours and lumen surface to produce a flexible
and versatile model, capable of representing from simple
curves (e.g. circles, ellipses) to more complex free-form ones,
depending on the boundary points in the lumen.

In our implementation, the initial smooth B-spline curve is
generated using 20 control points (b0 = 20). The set distance
for outlier removal is defined as 3 times the average of the
Euclidean distances of the points on the 3D spline curve to
the points in the point-cloud that are orthogonal to the curve
at that point (d = 3). Algorithm 1 produces the final smooth
3D centerline from point-cloud by iteratively increasing the
number of control points b by 5 (z = 5), while simultane-
ously removing the outliers from the point-cloud. Although
this procedure usually converges after 10 − 15 iterations,
the iterative increase of control points makes the algorithm
susceptible to the overfitting of the B-splines. Hence, in
order to produce anatomically plausible representation of 3D
centerlines, we restrict the maximum number of control points
to 50 in our implementation of Algorithm 1. Algorithm 2
for generating the optimal 3D centerlines by minimizing the
reprojection errors does not take more than 3 iterations to
converge.

The proposed approach is executed in Ubuntu 16.04 LTS
64-bit OS on an Intel(R) Core(TM) i5-7200U CPU @
2.50GHz × 4 and 16 GB RAM. In our non-optimized Matlab
implementation of the complete 3D CA tree reconstruction,
the initial 2D preprocessing step (consisting of tubular struc-
tures identification, vessel segmentation, and 2D centerlines
extraction) requires 45−60 seconds of runtime. The next step,
motion correction (both rigid and non-rigid) takes approxi-
mately 10 − 15 seconds. The proposed point cloud-based 3D
centerlines reconstruction procedure takes 2.5− 3 minutes to
run, where approximately 90% of the run-time is used to
generate the point-cloud. The final steps of reconstructing 3D
luminal cross-sections and 3D lumen surface require relatively
longer time (about 10− 12 minutes) depending on the length
and number of coronary vessels. If, instead of using the
NURBS fitting, the luminal cross-sections and lumen surface
are fitted with circular contours, the run-time would be brought
down to 1−1.5 minutes. An example of the 3D reconstructed
LAD, LCx, and RCA, along with the complete reconstructed
3D CA tree (of Patient 2), is qualitatively depicted in Fig. 5.

IV. EXPERIMENTAL ANALYSIS

The performance of the proposed 3D CA tree reconstruction
algorithm has been qualitatively and quantitatively evaluated
on 45 patients enrolled in clinical studies (including 5 patients
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Fig. 5. From left to right: 3D reconstructed LAD, LCx, RCA, and the complete CA tree of Patient 2.

Fig. 6. Average reprojection errors of the landmark points after rigid motion correction in left coronary artery.

with OCT imaging). For each patient, 2−3 X-ray angiographic
projections are captured for imaging RCA and 3−6 projections
are captured to image LCA. Since the left anterior descending
(LAD) and left circumflex (LCx) arteries are usually not visi-
ble optimally on the same angiographic projections, different
sets of LCA projections are used for reconstructing LAD and
LCx. Among the total of 45 patients used for evaluation of 3D
centerlines reconstruction, the LAD artery is visible from at
least two projections for 40 patients. In case of the LCx artery,
at least two X-ray projections are available from 37 patients.
Similarly, in 32 out of 45 patients, the RCA is captured in at
least two angiographic projection planes. Since our objective
is to reconstruct the complete CA trees, the 3D reconstruction
procedure of LAD, LCx, and RCA vessels also incorporates
the attached sub-branches. Hence, the reconstructed 3D tree
of LAD artery includes the diagonal and septal vessels, while
the reconstructed 3D tree of LCx artery includes the marginal
vessels. Similarly, the 3D reconstructed RCA tree includes the
posterior descending artery, posterior left ventricular branch,
acute marginal arteries, etc.

Since the objective of the proposed approach is to accurately
reconstruct the geometry of the 3D coronary arterial tree, its
performance has been evaluated in two separate ways. The
3D centerlines reconstruction is evaluated by backprojecting
the 3D centerlines on the original projection planes, as well
as on any additional projection plane not used for the 3D
reconstruction. The reconstruction performance of 3D lumen
volume is evaluated by comparing the reconstructed luminal
cross-sections with the same derived from OCT.

A. Evaluating the Performance
of Rigid Motion Correction

The qualitative performance of the proposed rigid-motion
correction on two LCA image projections is visible in Fig. 2.
The performance of the proposed rigid-motion correction
method is quantitatively evaluated by comparing the 2D loca-
tions of landmark points (in this case, bifurcation points)
on each projection plane with the back-projected locations of

Fig. 7. Average reprojection errors of the landmark points after rigid
motion correction in right coronary artery.

rigid motion-corrected 3D landmark points. For quantitative
evaluation, the average reprojection errors, i.e. the average rms
errors of the landmark points from all X-ray projections, are
measured and the results are presented in Fig. 6 for LAD and
LCx arteries and in Fig. 7 for RCA. The average reprojection
error for LAD artery in 40 patients is 0.498 mm, while the
same for LCx artery in 37 patients is 0.336 mm. Since the
effect of non-rigid motion artifacts is relatively higher in the
RCA, the average reprojection error for RCA in 32 patients is
0.517 mm. In total, the average reprojection error, combining
the LAD, LCx, and RCA trees in 45 patients, is measured as
0.448± 0.396 mm.

The effectiveness of the proposed rigid motion correction
approach is evaluated for 3D centerlines reconstruction. The
existing 3D centerlines reconstruction method proposed in [4]
by Galassi et al. is used for both rigid motion corrected
and not rigid motion corrected X-ray angiographic projections
and the comparative performance analysis is depicted using
violin plots in Fig. 9, which demonstrate the kernel density of
the data distribution allowing the visualization of multimodal
distributions of reprojection errors. In all cases, the tails of the
violins are trimmed to the range of the data distribution and
scaled to maximum width of 1.

From the violin plots presented in Fig. 9, it is clearly
observed that the use of proposed rigid motion correction
significantly improves the accuracy of 3D centerlines recon-
struction, in terms of reprojection errors, for all arterial trees
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Fig. 8. From left to right: reconstructed 3D centerlines by proposed algorithm, the reprojections of 3D centerlines on two original angiographic
planes, and the reprojection on an additional angiographic plane, not used for reconstruction. Top to bottom: Patient 2-LCx, 7-RCA, 8-LAD, and
40-LCx.

(LAD, LCx, and RCA). The improvements in the reconstruc-
tion performance are statistically significant with respect to
parametric paired-t test, where 0.01 is the desired level of
significance. The performance improvement for all arterial
trees of each of the patients is individually presented as violin
plots in the Appendix file [36]. After the proposed rigid
motion correction, the 2D centerlines are warped to correct the
remaining non-rigid deformation in each plane, qualitatively
depicted in Fig. 3 for Patient 2.

B. Performance Evaluation of 3D
Centerlines Reconstruction

The performance of the proposed 3D centerlines reconstruc-
tion approach is evaluated by comparing the reprojected 3D
centerlines on each of the angiographic projection planes with

the original 2D centerlines on those planes. The performance
is quantitatively measured using the reprojection errors and
presented as box plots in Fig. 10. In our analysis over 45
patients, the proposed approach produces average reprojection
error of 0.081 mm for 3D centerlines reconstruction of 40 LAD
arteries and average error of 0.085 mm for reconstruction of
37 LCx arteries. The average reprojection error for the 3D
reconstruction of 32 right CA trees is 0.113 mm. Overall,
the average reprojection error for 3D reconstruction of 109
vascular trees from a total of 45 patients is 0.092±0.055 mm.
The centerlines reconstruction performance on all 45 patients
is compared with the existing 3D CA reconstruction algorithm
by Galassi et al [4], after motion correction using our pro-
posed rigid motion correction algorithm. The overall result on
109 arteries, presented in Fig. 10, clearly demonstrates the
substantial reduction in the reprojection errors. The improve-
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Fig. 9. Comparison between reprojection errors, measured after
reprojecting the reconstructed 3D centerlines as in Galassi et al., with
and without the rigid motion correction.

Fig. 10. Evaluating the reprojection errors after 3D centerlines recon-
struction.

ments are also statistically significant with respect to paired-t
test. For visual comparison, the upper limit of Y-axis in Fig. 10
is fixed to 10. The reconstruction performance on all arterial
trees of each of the patients is individually presented as violin
plots in the Appendix file [36].

The qualitative performance of the proposed 3D centerlines
reconstruction algorithm is presented in Fig. 8. The first
column presents the reconstructed 3D skeleton at one 3D view,
while the next two columns depict the reprojection of the 3D
centerlines on two original projection planes. The images show
an accurate reprojection of the reconstructed centerlines. The
quality of the reconstructed vasculatures has also been visually
assessed and confirmed by two expert cardiologists. It should
be noted that, in order to remove the non-rigid motion artifacts,
the proposed approach warps the 2D vessel centerlines in
each plane and slightly deviates from the vessel locations.
Hence, if significant amount of non-rigid motion artifacts
exist between projection planes, the reprojections of generated
3D centerlines on 2D projection planes will slightly deviate
from the vessel centerlines, as visible in the third row of
Fig. 8. However, the reprojection errors in this case will not be
affected, since they are computed based on motion-corrected
2D centerlines.

C. Performance Evaluation Over Projection
Planes Not Used for 3D Reconstruction

Since the proposed 3D reconstruction algorithm can effec-
tively generate the 3D CA tree based on only two angiographic

Fig. 11. Validation over independent projection planes.

projections, any additional image projection, if available, can
be applied to qualitatively, as well as quantitatively, validate
the performance of the proposed technique. Measurements
of the reprojection errors are obtained by back-projecting
the reconstructed 3D centerlines on the additional projection
planes and the results are quantitatively depicted as violin plots
in Fig. 11. The qualitative results are presented in column 4
of Fig. 8. From the total of 45 patients, more than two angio-
graphic projections were available in only 16 cases (4 LAD,
7 LCx, and 5 RCA). For objective qualitative evaluation of
the reconstruction performance, we present a sample of 4
cases for visualization in Fig. 8. We have selected these 4
cases so that their reprojection accuracy on the third plane is
representative of the whole 16-case set (0.907± 0.354 mm vs
0.910 ± 0.352 mm.) From the results presented in column 4,
it can be observed that, even without using any information
from that projection plane, the proposed 3D reconstruction
algorithm is able to quite accurately produce the centerlines
on that image plane. In this regard, it should be noted that the
additional projection planes were not corrected for either rigid
or non-rigid motion artifacts, which explains minor deviations
in the reconstructed centerlines. The application of those steps
should be able to significantly reduce the reprojection errors
in each case. The remaining 3D reconstruction results are
qualitatively depicted in the Appendix file [36].

D. Validation of the 3D Reconstructed Lumen Volume
Over Optical Coherence Tomography

In order to evaluate the accuracy of the reconstructed 3D
lumen volumes, we compared our approach with optical coher-
ence tomography (OCT), an invasive medical imaging modal-
ity providing high-resolution endoluminal visualization of the
lesion anatomy [39]. OCT applies back-reflected infrared light
to perform in situ micron scale tomographic imaging of the
vessel anatomy and internal microstructure of plaques [40].
For 5 patients, out of our total set of 45 patients enrolled in
clinical studies, the OCT catheter (2.7F) was automatically
pulled back at speed of 20mm/sec and rate of 100 frames
per second, with manual injection of 20ml of contrast solution.
The lumen cross-sectional areas were manually measured from
every frame of the OCT video of each patient. From the
corresponding X-ray angiographic projections of each patient,
the starting position of the OCT catheter is visually located
at the distal part of the vessel in one projection and the end
position is identified based on the length of the pull-back of
OCT catheter on the 3D reconstructed vessel centerline. Since
the OCT frames were generated by pull-back with uniform
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Fig. 12. Top to bottom: Patient 41 − 45. Comparison of luminal areas
derived from the OCT and the proposed approach for each OCT frame;
and the lumen structure along the pull-back of OCT catheter.

speed, the length between the estimated starting and end
positions on our 3D reconstructed vessel is uniformly parti-
tioned and the cross-sectional areas from the 3D reconstructed
lumen (Eqn. (12)) are computed. The quantitative results are
presented in Figs. 12 and 13 for both OCT derived luminal
areas and luminal cross-sections derived by the proposed 3D
reconstruction.

From the results presented in Figs. 12 and 13 for 5 patients,
it is observed that the reconstruction from the proposed
algorithm accurately matches the OCT derived luminal cross-
sections. For statistical analysis of the comparison between
OCT and our method, the χ2-test is applied to test the
null hypothesis: the luminal cross-sectional areas derived by
our proposed reconstruction is in agreement with the same
derived from OCT in each frame. The calculated p-values are
substantially above the usual significance threshold (they are
higher than 0.85 in all cases), inferring our method is not
significantly different from OCT.

Fig. 13. Left: luminal cross-section derived from OCT for Patient 45,
with green contour representing the same generated using proposed
technique. Right: violin plot of reprojection errors from reconstructed 3D
centerlines.

V. DISCUSSION AND CONCLUSION

Several 3D CA tree reconstruction methods have been
developed in the past two decades. However, many of the
methods have not provided any quantitative evaluation of their
reconstruction performance. Many of the existing methods
followed breath-holding and no patient movement protocol
during image acquisition. A few reconstruction methods that
have quantitatively demonstrated their performance on clinical
images suffer from sub-optimal reconstruction in terms of
average reprojection error. Also, to the best of our knowledge
none of them has explicitly addressed the problem of falsely
reconstructed vessel segments.

In this regard, the objective of our work is to develop a
new 3D CA tree reconstruction algorithm, maintaining the
standard clinical image acquisition procedure, without the
need for any additional constraint to reduce motion between
acquisitions. The proposed approach first aims to remove the
effects of both rigid and non-rigid motion, so that the point
correspondences can be identified for 3D centerline generation.
Next, it introduces and theoretically proves the problem of
falsely reconstructed vessel segments in 3D CA reconstruction.
A novel point-cloud based approach is then proposed for
reconstruction of 3D centerlines that takes into consideration
the problem of false vessel reconstruction, as well as fore-
shortening. The proposed algorithm minimizes the average
reprojection errors to produce the optimally reconstructed 3D
vessel skeleton. Experimental analysis over 45 patients has
generated the average reprojection error of 0.092± 0.055 mm
for 3D centerline reconstruction. The performance has been
further evaluated by reprojecting the 3D centerlines on pro-
jection planes that were not involved in the 3D reconstruction
procedure and it has produced average reprojection error of
0.910 ± 0.352 mm in 16 cases available from our set of 45
patients, even without discarding the motion artifacts.

One of the main advantages of our proposed reconstruction
method is that it can be applied when only two image pro-
jections are available. Most state-of-the-art 3D reconstruction
methods, such as [24] and [25], only work when at least three
image projections are available, which is often infeasible in
clinical practice (mostly for RCA). Although the method of
[26] is applicable on two projections, it is suggested to be used
on multiple angiographic projections. The second advantage of
our proposed approach is that it can take care of falsely recon-
structed vessel segments, as well as non-rigid deformation
in the vessels, by identifying optimal point correspondences
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iteratively from a point-cloud of all possible correspondences.
In contrast, both [24] and [25] use epipolar constraints for
identifying point correspondences. So, even though they apply
reprojection errors for correspondence identification using
additional projection planes, they generate a significant num-
ber of incorrect vessel centerlines. The method of [26] first
produces large number of false reconstructions using their
approach and then tries to remove them based on a significance
score. However, approaches like this are limited in that, when
motion is present, vessel branches cannot be classified into
true or false: a single branch might contain parts from the
true reconstruction and parts from the false one.

Our proposed approach partitions the reconstructed cen-
terlines in Algorithm 2 into accurate and incorrectly recon-
structed segments, which creates a natural ordering in the
2D centerlines on projected planes. This, in turn, solves the
problem of falsely reconstructed vessel segments generated
from intersecting projection surfaces. In reality, a 3D vessel
segment is falsely reconstructed, most commonly, in regions
with small radius of curvature. This is because the projection
surfaces generated from the 2D projections of that segment
are likely to intersect at multiple 3D locations. For simplicity,
if we divide a curved vessel segment (often C-shaped) into
two parts: from the start of the segment to the ‘vertex’ and
from ‘vertex’ to the end of the segment, the false solutions
are generated when a projection line from the first part
intersects with a projection line from the second part and vice
versa. Since the proposed reconstruction technique partitions
the vessel into accurately and incorrectly reconstructed seg-
ments, accurate correspondences between vessel segments are
established. So, the projection lines generated from the first
part of C-shaped vessel segment in one projection are only
matched against the same from other projections and produce
the accurately reconstructed 3D vessel segment. In addition,
the proposed 3D reconstruction technique assumes many-
to-one point correspondences between 2D centerlines from
all projection planes in order to produce the point-cloud
set. Hence, it automatically considers the problem of vessel
overlapping and foreshortening in the model. In this regard,
it should be mentioned that the proposed algorithm only
uses the manually identified landmarks (bifurcation points)
for rigid and non-rigid motion correction. The proposed 3D
reconstruction algorithm is completely automated and makes
no use of these landmarks. In case no motion artifact is present
between image projections (e.g images generated from biplane
system), the landmark identification step is not required.

The third advantage of our proposed reconstruction method
is its performance compared to the existing literature. The
results presented in Table I, shows clearly lower reprojec-
tion errors on original projection planes. The experimental
analysis on a larger (more than 100) dataset, compared to
the state-of-the-art methods, also proves the robustness of
our method. Note that the proposed method does not depend
on identifying point correspondences between projections,
but produces point correspondences from the generated 3D
centerlines. The proposed algorithm develops a pipeline where
the 3D centerlines generation and point correspondences

TABLE I
COMPARATIVE 3D RECONSTRUCTION PERFORMANCE OF PROPOSED

ALGORITHM WITH STATE-OF-THE-ART TECHNIQUES

identification are simultaneously optimized in an iterative
fashion.

Since the proposed approach requires only two angiographic
projections for the reconstruction, it generates the luminal
contours by NURBS fitting over only 4 boundary points (2N
boundary points from N projections). Hence, although the
proposed approach can generate a quite accurate representation
of the luminal contours, which are also statistically similar
to the same derived from the OCT, the availability of any
additional projection plane will provide a better representation
of lumen contours and in turn, improve the 3D reconstruc-
tion of lumen surface. For the 3D centerlines reconstruction,
the availability of any additional projection plane should not
make much of a difference, as proven in Section IV-C. The
proposed non-rigid motion correction algorithm deforms the
2D centerlines based only on rigid motion corrected landmarks
and hence, it is capable of producing undesirable warping
along the centerlines. However, the aim of non-rigid motion
correction step is to deform the centerline, guided by the
rigid motion corrected landmarks, for improved estimation
of the point-cloud. Since the initial point-cloud considers all
points on the 2D centerlines and finds optimal 3D center-
lines by minimizing reprojection errors, any incorrect warping
is automatically rectified by discarding non-correspondences
from the point-cloud, as evidenced by its improved
performance.

The development of a completely automated 3D CA tree
reconstruction has larger clinical significance. A completely
automated method can generate the 3D view of the coronary
vasculatures during cardiac interventions and hence, reduce
the likelihood of subjective interpretation of 3D CA tree
from 2D projections. The generated 3D model can also be
applied for quantification of coronary stenosis and hence, can
be useful for measuring its severity [4]. The proposed 3D
reconstruction method has been developed to solve the recon-
struction of motion induced CA trees, but its applicability can
be wide, including the reconstruction of cerebral vessels and
branching non-cardiovascular structures, such as the biliary
tree.
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