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Spatio-Temporal Deep Learning-Based
Undersampling Artefact Reduction

for 2D Radial Cine MRI With
Limited Training Data

Andreas Kofler , Marc Dewey, Tobias Schaeffter, Christian Wald, and Christoph Kolbitsch

Abstract— In this work we reduce undersampling
artefacts in two-dimensional (2D) golden-angle radial cine
cardiac MRI by applying a modified version of the U-
net. The network is trained on 2D spatio-temporal slices
which are previously extracted from the image sequences.
We compare our approach to two 2D and a 3D deep
learning-based post processing methods, three iterative
reconstruction methods and two recently proposed meth-
ods for dynamic cardiac MRI based on 2D and 3D cascaded
networks. Our method outperforms the 2D spatially trained
U-net and the 2D spatio-temporal U-net. Compared to the
3D spatio-temporal U-net, our method delivers comparable
results, but requiring shorter training times and less training
data. Compared to the compressed sensing-based methods
kt-FOCUSS and a total variation regularized reconstruc-
tion approach, our method improves image quality with
respect to all reported metrics. Further, it achieves compet-
itive results when compared to the iterative reconstruction
method based on adaptive regularization with dictionary
learning and total variation and when compared to the
methods based on cascaded networks, while only requiring
a small fraction of the computational and training time.
A persistent homology analysis demonstrates that the data
manifold of the spatio-temporal domain has a lower com-
plexity than the one of the spatial domain and therefore,
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the learning of a projection-like mapping is facilitated.
Even when trained on only one single subject without data-
augmentation, our approach yields results which are similar
to the ones obtained on a large training dataset. This makes
the method particularly suitable for training a network on
limited training data. Finally, in contrast to the spatial
2D U-net, our proposed method is shown to be naturally
robust with respect to image rotation in image space and
almost achieves rotation-equivariance where neither data-
augmentation nor a particular network design are required.

Index Terms— Deep learning, neural networks, dynamic
MRI, image processing, compressed sensing, persistent
homology analysis.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a widely
used non-invasive imaging modality in clinical practice.

Especially for cardiac applications, MRI does not only provide
anatomical imaging with excellent soft tissue contrast but
also allows for functional assessment by using 2D cine MRI.
Such images show the heart anatomy for different phases of
the cardiac cycle providing valuable information of the heart
function [1], [2].

However, MRI suffers from long data-acquisition which
determines the achievable spatial and temporal resolution.
In order to shorten scan times, ensure sufficiently large spatial
coverage and high spatial and temporal resolution, a wide
range of undersampling and reconstruction techniques have
been proposed, ranging from Parallel Imaging to Compressed
Sensing (CS) and Dictionary Learning [3], [4]. Cine MRI pro-
vides a temporal sequence of images and therefore offers
the possibility to exploit the temporal correlation of adja-
cent frames in order to reduce undersampling artefacts. The
movement of the heart during the cardiac cycle is mainly
smooth and continuous. Ensuring that undersampling artefacts
along time are incoherent and using a sparsifying transform
along time such as Fourier transform [3], Principal Component
Analysis [5], [6], Wavelet transform [7] or a transform learned
from data [8], [9] combined with a L1-norm minimization
approach can strongly reduce undersampling artefacts. The
main challenges of these techniques are to ensure that the
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sparsifying transform really leads to a sparse signal and long
reconstruction times due to the iterative reconstruction.

Recently, Neural Networks (NNs) have been applied to
inverse problems as image reconstruction in MRI [10], [11],
[12], [13] and computed tomography (CT) [10], [14], [15].
Autoencoders, and in particular the U-net [16], a convolutional
NN (CNN) which was first introduced for biomedical image
segmentation, and different derivations of it [17], [18], have
been widely used for removing undersampling artefacts in
different medical imaging modalities.

In initial works, the images were most commonly recon-
structed or processed frame by frame, see e.g. [10]. In the
case of dynamic MRI, however, the temporal correlation of
2D MRI sequences can be exploited by aligning frames along
the channel axis. Thus, 2D CNNs can be trained to map
whole undersampled image sequences to their correspond-
ing fully sampled image sequences [19], [20]. Further, also
CNNs employing 3D-convolutions were shown to be trainable
on entire image sequences, either as post-processing meth-
ods [21] or as unrolled iterative reconstruction schemes [19].
However, in general, due to the resulting high dimensionality
of the considered problem, either a large dataset or the
application of data-augmentation techniques are indispensable
to obtain satisfactory results, see e.g. [19], [21].

Nowadays it is common practice to learn the filters of
the convolutional layers by considering the images in the
spatial domain. In this work, we propose to apply CNNs
to two-dimensional slices extracted from the spatio-temporal
dimension in order to remove undersampling artefacts from a
2D cine MR scan obtained with a 2D Golden radial sampling
scheme [22]. A persistent homology analysis shows that the
manifold of the spatio-temporal slices has a lower topological
complexity than the manifold of the two-dimensional spatial
image frames and suggests that the learning process of the
network can therefore be facilitated. We compare our pro-
posed approach to a 2D U-net trained frame-by-frame [10],
a 2D U-net trained image sequence-wise [20] and a
3D U-net [21] in terms of image quality, amount of required
training data and stability with respect to rotation of the
images. The latter is important because 2D cine MRI is
commonly obtained in oblique planes which are adapted to
the patients anatomy. Our spatio-temporal approach method
is also compared to three CS-based approaches for image
reconstruction of cine MRI: kt-FOCUSS [23], a total variation
minimization-based method [4] and a Dictionary Learning-
and total variation-based reconstruction method [9]. Further,
we compare our method to two methods for cine MRI based
on cascaded networks [19], [24].

The paper is organized as follows. In Section II, we shortly
discuss how NNs have been integrated within the problem
of image reconstruction in MRI so far. Section III introduces
our proposed method by discussing an a priori performed
persistent homology analysis of the data which is needed to
derive the approach as well as the network’s architecture.
We then show results of In-Vivo experiments and compare
our method to other Deep Learning- and CS-based methods
in Section IV and finish with a discussion and conclusion
in Section V.

II. PROBLEM FORMULATION

In dynamic MRI, the image reconstruction problem is given
by finding a solution of the inverse problem

Fx = y, (1)

where x ∈ C
N denotes the complex-valued image sequence

with N = Nx Ny Nt , F denotes the Fourier encoding matrix and
y corresponds to the measured data in k-space. As the data-
acquisition process in MRI is slow, undersampling schemes
are applied to fasten the measurement process. Therefore,
the inverse problem one encounters in applications is of the
form

FI x = yI , (2)

where FI = SI F and SI ∈ C
M×N denotes a binary under-

sampling operator with M � N which sets non-measured
values in k-space to zero. Thereby, I ⊂ J = {1, . . . , N}
corresponds to the set of indices of the measured Fourier
coefficients. Since M � N , the problem in (2) is under-
determined and therefore ill-posed. Hence, a direct solution
is not possible and usually regularization approaches have
to be applied in order to constrain the sought solution. Two
widely used regularization techniques are based on Dictionary
Learning [8], [9] and total-variation (TV) minimization [4],
[25]. However, since the methods employ the regularization
within an iterative reconstruction, solving the problem in (2)
is time consuming and NNs have been considered as a valid
and powerful alternative, see e.g. [10]–[12], [19], [21].

Most commonly, the networks are trained by considering the
images in the spatial domain. By doing so, the network learns
to distinguish between diagnostic content of the image and the
artefacts by exploiting the natural correlation of neighbouring
pixel values in spatial domain. Given a dynamic process, one
can further make use of the correlation of temporal slices
amongst each other. In [20], the work of [10] is extended
in the sense that a U-net is trained to directly map whole
2D image sequences of undersampled image reconstructions
to 2D image sequences of ground truth images. In [19],
the temporal dimension of the sequence is taken into account
in the same manner, where furthermore, a weighted data-
sharing and a data-consistency approach further improve the
quality of the reconstruction. For the 2D networks, frames
corresponding to different cardiac phases are aligned along the
channel axis. As shown in [19] and [21], CNNs employing 3D
convolutional layers can also be applied for the task of remov-
ing undersampling artefacts in dynamic sequences. Note that,
for a network employing 2D convolutional layers and assum-
ing the channel’s dimension to be the one along which feature
maps are combined by linear combination, aligning temporal
frames along the channel’s axis only slightly increases the
computational complexity of the CNN. In this case, the filters
size only increases for the first and the last convolutional
layers. Employing 3D convolutional layers, in contrast, adds
further non-negligible computational cost as well as hardware
requirements, increases training time, the number of trainable
parameters and therefore the number of samples required to
successfully train a network without experiencing overfitting.
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In the aforementioned methods, the resulting number of avail-
able training samples reduces to the number of 2D image
sequences. Since NNs are well known to require a large
number of training samples and as the collection of proper
data can be challenging, using these approaches, one usually
has to heavily rely on the use of data-augmentation techniques,
see e.g. [19], have access to a large dataset [21] or both in
order to obtain a good representation of the data manifold.
However, data-augmentation might also be non-trivial, time
consuming or not possible to be performed on the fly. In the
case of image reconstruction, the dataset is obtained by a prior
data-acquisition process. In a simulation-based framework, one
can for example apply arbitrary transformations to a ground
truth image, e.g. elastic transformations, and then simulate the
data-acquisition process. Also, using different undersampling
masks to obtain zero-filled reconstructions can further enrich
the data, see for example [19], [20]. However, assuming a
fixed dataset of pairs of undersampled image reconstructions
and ground truth images, transformations would have to be
applied to each pair, possibly altering the structure of the
undersampling artefacts in the input images.

The same holds true for including rotated versions of
training pairs into the dataset. As CNNs are not necessar-
ily rotation-invariant or rotation-equivariant, these properties
are usually achieved by properly augmenting the dataset
[26]. In contrast, other approaches explicitly incorporate
mathematical operations in the design of the network archi-
tectures and therewith attempt to reach rotation-invariance or -
equivariance [27], [28]. High quality images in cardiac MRI
are usually reconstructed by applying iterative methods. Thus,
obtaining realistic versions of images rotated by a non-trivial
rotation, i.e. by a rotation of θ �∈ { kπ

2 : k ∈ {0, 1, 2, 3}},
is computationally demanding, as the k-space data has to be
rotated and the iterative reconstruction has to be performed on
the rotated data. Therefore, rotation-equivariance, in this case,
can either be achieved by means of the network architecture
design or by a possibly time consuming data-augmentation
process.

III. PROPOSED APPROACH

In medical imaging, the number of available training sam-
ples is usually very small compared to the underlying math-
ematical dimension of the data, i.e. the number of pixels
of an image. Therefore, we are particularly interested in the
question of whether or not it is possible to train a CNN on a
highly limited dataset by making best use of the given data.
We propose to train a CNN employing 2D convolutional layers
on 2D spatio-temporal slices which can be extracted from
the cine image sequences over the cardiac cycle. Once the
network is trained, the image sequences can be reconstructed
by properly reassembling the spatio-temporal slices. Later,
we demonstrate that with our proposed approach, already a
small number of 2D cine MRI datasets suffices to success-
fully train a network. Furthermore, robustness with respect to
rotation in the spatial domain is achieved in a natural way by
the change of perspective on the given dataset and our method
is therefore almost rotation-equivariant.

Fig. 1. Different 2D and 3D Deep Learning-based approaches for under-
sampling artefacts reduction. 2D network for frame-wise mapping (a),
2D network for image sequence-wise mapping with cardiac phases
aligned as channels (b), 3D network for image sequence-wise mapping
with three-dimensional convolutional kernels (c), 2D network for our
proposed approach on two-dimensional spatio-temporal slices (d).

TABLE I
DIFFERENT DEEP LEARNING-BASED APPROACHES WITH THEIR

CORRESPONDING NUMBER OF AVAILABLE TRAINING SAMPLES

Consider a dataset of 2D cine MR images D of n subjects,
each with Nz slices of size Nx × Ny and Nt cardiac phases.
Figure 1 shows different possible Deep Learning-based meth-
ods for removing undersampling artefacts in dynamic MRI
sequences. In the first case, the artefacts are removed by train-
ing a network f� to map frames to frames, see Figure 1 (a).
Given the temporal correlation of adjacent frames, one could
also align temporal frames along the channel’s axis and apply
a network which is trained to map whole image sequences to
image sequences, see Figure 1 (b). The same approach can
be extended to map image sequences to image sequences but
with the network employing three-dimensional convolutional
filters, see Figure 1 (c). Our approach exploits spatio-temporal
correlation but employs 2D convolutional filters which are
trained on the spatio-temporal slices of the image sequences,
see Figure 1 (d). Table I lists the number of immediately
available training samples, i.e. without data augmentation,
for the different approaches. Note that with our proposed
approach, the number is by far the highest.

A. Persistent Homology Analysis

As a trained denoising autoencoder can geometrically be
interpreted to perform a projection-like mapping onto a mani-
fold [29], the study of topological features of the manifold of
the input and output images might be of interest for the design
of the network architecture, [14], [30]. Persistent homology is
a mathematical tool that can be used for analysing datasets
X ⊂ Rn [31]. For a two-classes classification problem,
singular homology has been used as a complexity measure of
the positively labelled submanifold of the input space and a
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Fig. 2. Procedure of the persistent homology analysis. The image shows
an example for six randomly extracted patches of an image in the spatial
domain and its corresponding barcode.

relation between this complexity and the depth of the networks
was proven in [32]. This and experimental evidence using
persistent homology [14], [30], motivates that it might be
beneficial to investigate the persistent homology of datasets
since it might explain the superiority of specific approaches
to others. For a concise introduction to persistent homology
see [33], Chapter 1. In general, persistent homology H∗
assigns a family of persistence modules {Hi(X) : i ∈ N} over
some field F to a set X ⊂ Rn , see [33], Chapter 2. We will
only use H0 which has a much simpler interpretation as
follows, see Figure 2. Let X ⊂ Rn be a finite set and let r ≥ 0.
Then, we can define a graph Gr (X) with vertices Vr (X) = X
and edges

Er (X) =
{
(x, y) ∈ X2 : x �= y and �x − y�2 ≤ r

}
.

This graph is the Rips complex restricted to simplices of
dimension at most 1 [31], Chapter 1.3. Let �(Gr (X)) be the
set of connected components of Gr (X). Then, we can define

H r
0 =

⊕
i∈�(Gr (X))

F2

where F2 is the field with two elements. For 0 ≤ r < r 

we have a map �(Gr (X)) → �(Gr 
(X)) which induces a
map H r

0 → H r 

0 . The family of these maps is called the 0-th

persistent homology of X . A good visualization of persistent
homology is the persistent barcode, see Figure 2. For a real
number r > 0, the number of connected components of Gr (X)
is equal the number of intersections of the vertical line at x = r
with the barcodes, see Figure 2. This is also the 0-th Betti
number β0 of Gr (X) which is a measure of complexity
for Gr (X), see [31], Chapter 2.3. Hence, the faster the
persistent barcode of a dataset X decreases, the less complex
the dataset is.

By xI , x and rI := xI − x we denote the vector repre-
sentations of direct reconstruction from undersampled radially
acquired data using a non-uniform fast Fourier transform
approach (NUFFT), the ground truth reconstruction and the
residual, respectively. Since our network reduces artefacts
arising from the NUFFT reconstruction as a post-processing
step similar to denoising, we operate on the real-valued
magnitude images. However, the method can also be applied
to complex-valued images by treating real- and imaginary part
separately. Note that, in order to keep notation as simple as

possible, by abuse of notation, we do not explicitly distin-
guish between a spatio-temporal slice and a 2D frame, but
the meaning of the symbols should easily emerge from the
context. Therefore, in the spatio-temporal training scenario,
xI denotes a spatio-temporal slice extracted from an under-
sampled NUFFT reconstruction, x its corresponding artefact-
free spatio-temporal slice and rI its spatio-temporal residual.
In the spatial training scenario, xI , x and rI denote 2D
frames. In the following, we compare the complexity of the
manifolds given by the set of the ground truth images and
their residuals in the spatial as well as in the spatio-temporal
domain and denote them by Mimg

xy , Mres
xy and Mimg

xt,yt , Mres
xt,yt .

Note that, in contrast to [14], we find ourselves in the situation
where spatio-temporal slices and spatial images do not have
the same mathematical dimension, and therefore, to be able
to compare the manifolds, we restrict our considerations to
image patches of the same shape. We performed a persistent
homology analysis of the manifold to be learned by using
GUDHI [34], [35]. We randomly selected 1400 patches of
size 18 × 18, obtaining a set X ⊂ R182

for which we
computed its persistent homology. To be able to compare
the persistent barcodes at the same scale, we normalized
the patches by the maximal pairwise L2-distance of points
in X . The persistent homology analysis was performed for
all patches extracted from the spatio-temporal slices and from
spatial image frames by repeating the experiment ten times
and averaging the obtained number of connected components
for each r ≥ 0 over the experiments. The corresponding
barcode diagrams in Figure 3 (a) and (b) clearly show that in
the spatio-temporal domain as well as in the spatial domain,
the residual manifolds are more complex than the manifolds
of the ground truth images, i.e. the connected components
merge at larger scales r . Figure 3 (c) also shows that for the
ground truth images, the spatial manifold is more complex than
the spatio-temporal manifold which is intuitively clear, as the
spatial-temporal slices exhibit the temporal correlation of the
sequence. This suggests that a network should achieve the best
performance when trained to learn the ground truth spatio-
temporal manifold. Furthermore, we see that in the case of
the spatio-temporal domain, the topological complexity tends
to be independent of the number of subjects whose patches
are extracted to perform the analysis, see Figure 3 (c) and (d).
In contrast, in the spatial domain, a higher number of subjects
used to extract the patches slightly reduces the topological
complexity of the data. Therefore, we conclude that a small
number of 2D image sequences may already contain a good
representation of all possible two-dimensional spatio-temporal
slices and thus, the number of 2D image sequences needed
to successfully train a network in the spatio-temporal domain
should be lower than for training the network in the spatial
domain.

B. Network Architecture

In the following, we always refer to � as the set of
trainable parameters of a network and denote a U-net by u�.
Figure 4 shows the single components of a U-net without
residual connection, similar as originally proposed in [16].
The network consists of five stages, where each stage is a
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Fig. 3. The number of connected components β0 of Gr (X) for different
datasets X at different r. Pairwise comparison of the persistent barcodes
for Mres

xt,yt and Mimg
xt,yt (a), for Mres

xy and Mimg
xy (b), for Mimg

xy and Mimg
xt,yt

(c) and for Mres
xy and Mres

xt,yt (d). Persistent codes of Mimg
xy and Mimg

xt,yt
for different n, (e) and (f). For the sake of visibility, in (e) and (f), only the
endpoints of the bars are displayed.

block of four convolutional layers with 2D filters of shape
3×3, followed by batch-normalization [36] and a component-
wise ReLU as activation function. The stages are intercepted
by 2 × 1-max-pooling layers in the encoding phase and by
bilinear interpolation layers followed by 3 × 3 convolutional
layers with no activation function in the decoding phase.
The initial number of feature maps extracted from the first
convolutional layer is set to 64 and is doubled in each block
in the encoding phase. The network’s output is given by
a 1×1-convolutional layer which corresponds to a linear com-
bination of the last extracted feature maps. The replacement of
the original 2 × 2-max-pooling by a contraction solely along
the spatial dimension empirically turned out to deliver superior
results. The black arrows in Figure 4 denote concatenations
between the last and the first layer of the corresponding
encoding and decoding phases.

Recall from Figure 3 in Section III-A that the manifolds of
the ground truth images have a lower topological complexity
compared to the manifolds of their corresponding residuals.
Therefore, according to [14] and [30], one should train the
network to learn the features of the artefact-free images. Note
that, if the U-net employs a residual connection as in [10],
the output is of the form ũ�(xI ) = xI + u�(xI ). If x is used
as a label, ũ� is trained to learn the residual up to a change of
sign, as u� is the only part of the network containing trainable
parameters. Therefore, being consistent with [14], [30], [37],

Fig. 4. The U-net with three encoding stages and four convolutional
layers per stage, no residual connection and batch-normalization (BN).
In the case we train on the spatial domain, max-pooling is performed in
both spatial dimensions, whereas in our proposed approach max-pooling
is solely performed along the spatial dimension without contracting the
data along the temporal dimension.

Fig. 5. Residual and Image Learning: For a NN ũΘ with residual
connection, learning the residuals is achieved by using the ground truth
images x as labels (left). Learning the ground truth images x is achieved
by using the residuals rI as labels (right).

in order to exploit the simpler topological complexity of the
ground truth images and still be able to benefit from the
residual connection as in [10], we propose to train a U-net
with residual connection to estimate the image residuals rI

of the spatio-temporal slices. More precisely, if by ũ� we
denote a U-net with residual connection which is trained to
map xI to the ground truth residuals rI , and rcnn = ũ�(xI ) =
xI + u�(xI ) = xI − xcnn, then the estimates of the images are
obtained by xI − rcnn = xI − (xI − xcnn) = xcnn ≈ x.

Figure 5 shows different approaches for training a U-net to
remove undersampling artefacts by training on spatio-temporal
slices. Note that, using x as labels for training a U-net with
residual connection and using the residuals rI as labels for
training a U-net without residual connection is equivalent in
the sense that the trainable parameters are fitted to learn the
residuals rI . On the other hand, if we want the network to
learn the artefact-free images, we can either use the x as labels
and not employ a residual connection or use the residuals rI

as labels and employ a residual connection. This holds for
training the network on two-dimensional frames as well as on
two-dimensional spatio-temporal slices.

By ures
xy and uimg

xy we denote spatial U-net models when
trained to learn the spatial residual manifold Mres

xy and the

spatial ground truth image manifold Mimg
xy , respectively. Anal-

ogously, we identify ures
xt,yt and uimg

xt,yt as spatio-temporally
trained U-nets trained to learn the spatio-temporal manifolds
Mres

xt,yt and Mimg
xt,yt , respectively.

C. Loss Function

Dependent on what we want the network to learn, we train
the network architecture to minimize different loss functions.
Let Dres

xy ,Dimg
xy and Dres

xt,yt,Dimg
xt,yt denote the set of available

training samples, i.e. the pairs (xI , rI ) or (xI , x), depending
on the domain the data is considered in and on which labels
are used for training. By Nxy and Nxt,yt we denote their
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corresponding cardinality. Recall that we use the U-net ũ�
to estimate the residual rI = xI − x and therefore, the image
estimate is given by xcnn = xI − ũ�(xI ). Therefore, in order to
define the loss function for a network with residual connection
to learn the ground truth images, we use the residuals as
labels and vice versa. The models ures

xy and uimg
xy are trained

by minimizing the L2-errors between the predicted 2D frames
and their corresponding labels which are given by

Lres
xy (�) = 1

Nxy

∑

(xI ,x)∈Dimg
xy

�ũ�(xI )− x�2
2,

Limg
xy (�) = 1

Nxy

∑
(xI ,rI )∈Dres

xy

�ũ�(xI )− rI �2
2, (3)

respectively. In the spatio-temporal case, the models ures
xt,yt and

uimg
xt,yt are analogously trained by minimizing the loss functions

Lres
xt,yt(�) = 1

Nxt,yt

∑

(xI ,x)∈Dimg
xt,yt

�ũ�(xI )− x�2
2,

Limg
xt,yt(�) = 1

Nxt,yt

∑
(xI ,rI )∈Dres

xt,yt

�ũ�(xI )− rI �2
2. (4)

IV. IN-VIVO EXPERIMENTS

A. Data Acquisition

In the following experiments we evaluate the proposed
approach on 2D Golden radial cine MRI images of 19 subjects
(15 healthy volunteers + 4 patients) obtained with a bSSFP
sequence on a 1.5T MR scanner (Achieva, Philips Healthcare,
Best, The Netherlands) during a 10 s breathhold (TR/TE =
3.0/1.5 ms, FA 60◦). The spatial dimensions are Nx × Ny =
320 × 320 with an in plane resolution of 2 mm and 8 mm
slice thickness. The number of cardiac phases which were
reconstructed based on ECG signal is Nt = 30. Coil sensitivity
information was used to combine the image data of each
coil after NUFFT-reconstruction. No further normalization was
applied to the image data. The reference images used as
ground truth images in the data were reconstructed with kt-
SENSE [3] using Nθ = 3400 spokes, which already corre-
sponds to an undersampling factor of ∼ 3 in each cine image.
In addition, dynamic images with Nθ = 1130 (3.4 s scan time)
were reconstructed using standard gridding (NUFFT), leading
to an undersampling factor of ∼ 9. For each of the 15 healthy
volunteers and two patients, Nz = 12 slices were acquired
while for two patients, only Nz = 6 slices were obtained due
to limited breathhold capabilities. Note that, in contrast to the
healthy volunteers, the patients data contains images where the
heart movement dysfunction can be diagnosed provided that
the temporal information is enough accurate.

B. Evaluation Metrics

The performance of our method was evaluated in terms of
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [38] and Haar-Wavelet based perceptual similarity
index measure (HPSI) [39] as similarity measures and nor-
malized root mean squared error (NRMSE) as error-measure.

Note that HPSI has been reported to achieve higher correlation
with human opinion scores on different benchmark databases
than SSIM [39]. The quantitative measures are reported for
the two-dimensional frames as well as for the two-dimensional
spatio-temporal slices after the image sequences were cropped
to 160 × 160 × 30 in order to compute the statistics over the
regions of interest of the images.

C. Training Set-Up

Due to our relatively small dataset, all the following
experiments were performed in a four-fold cross-validation
setting. We split our dataset in portions of 12/3/4 subjects for
training/validation/test data, where for one of these configu-
rations, the test data corresponds to the image data coming
from patients with heart movement dysfunction. Obviously,
the resulting number of training samples in the spatio-temporal
domain is much higher than in the spatial case and therefore,
for a fair comparison of the methods, we train the networks
by keeping the number of backpropagations fixed. Dependent
on the perspective on the dataset, this results in a different
number of epochs the networks are trained for. For data-
balance reasons, we crop the image sequences using a cut-
off of 50 pixels in x- and y direction. Therefore, the spatial
dimensions per frame reduce to 220 × 220. Due to the
relatively small number of temporal frames and the large
receptive field of the U-net, we also conducted experiments
evaluating the performance of the networks trained on spatio-
temporal slices by mirroring the boundaries. However, as we
did not experience any increase or decrease of performance in
explicitly handling the boundary conditions, we conducted all
experiments on spatio-temporal slices of shape 220 × 30. The
convolutional layers use zero-padding in order to maintain the
spatial shape of the samples constant over each stage. Given
a U-net as displayed in Figure 4, we are able to use a mini-
batch size of 44 when training in the spatio-temporal domain.
Thus, we set the mini-batch size in the spatial training case
to 6 in order to have a constant number of pixels which the
networks are fed with per forward pass, i.e. 44 · 220 · 30 =
290 400 = 6 · 220 · 220. The networks are trained for 5 · 104

backpropagations by stochastic gradient descent (SGD) using
a learning rate which was gradually decreased from 10−5 to
10−7 and from 10−6 to 10−8 for the training in the spatio-
temporal domain and in the spatial domain, respectively. The
learning rates were chosen in a prior parameter study on the
validation set.

D. Residual Vs. Image Learning

Here we compare the performance of the spatial U-net
models ures

xy and uimg
xy and our spatio-temporal approaches

ures
xt,yt and uimg

xy . The models were trained by minimizing the
loss functions defined in (3) and (4), respectively. Figure 6
shows qualitative results for different possibilities of train-
ing illustrated in Figure 5. We see that in both domains,
consistent with the previously shown persistent homology
analysis, the networks removed the artefacts at their best
when they were trained to learn the artefact-free images.
From Figure 6 we also already see the superiority of our
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Fig. 6. Comparison of different training approaches for U-nets with
residual connection. NUFFT reconstruction with Nθ = 1130 radial
lines (a), spatially trained U-nets ures

xy (b) and uimg
xy (c), proposed spatio-

temporal approaches ures
xt,yt (d) and uimg

xt,yt (e), ground truth (f). The
point-wise error images are magnified by a factor of ×3. All images are
displayed on the same scale.

approach, see (d) and (e), compared to the spatially trained
U-net which slightly tends to smooth out image details and
less accurately removed artefacts in spatio-temporal domain,
see (b) and (c). Table II shows the results obtained for the
spatial U-nets ures

xy and uimg
xy and the spatio-temporal U-nets

ures
xt,yt and uimg

xt,yt for n = 12, which confirms the heuristics

TABLE II
PERFORMANCE FOR THE SPATIAL AND OUR SPATIO-TEMPORAL

APPROACHES DEPENDENT ON THE USED ARCHITECTURES

given in Section III-A. Note that for the experiment, no data-
augmentation was used and therefore, the results differ from
the ones reported in Table IV. As a result, we conclude that
for the task of removing undersampling artefacts or image
denoising, the relation between the topological complexity of
the residuals and the fully-sampled image reconstructions can
be used to determine which labels to train the network on
as well as how to design the network architecture. Since the
radial acquisition is designed to be incoherent along the tem-
poral dimension, in all our following experiments we use the
U-net architecture as shown in Figure 4 where we make use
of the residuals as labels and employ a residual connection as
shown in Figure 5 for the case of image learning. In the next
Subsection, we also see how learning the manifold Mimg

xt,yt
can reduce the training time as convergence of the training
and validation errors is achieved faster.

E. Training With Limited Amount of Data

Here we demonstrate the performance of our proposed
approach when we restrict the number of available training
samples. For this purpose, we trained the same network
on different datasets where we fixed a different number of
subjects n whose images we included in the training dataset.
We show that with our proposed approach we are able to obtain
comparable results even with a small number of subjects.
Note how in the spatial training scenario, the given training
data is naturally constrained by the fact that for a fixed slice,
different time frames of the ground truth images exhibit a
high similarity. Therefore, regardless of the fact that in the
spatial domain the ground truth image manifold has a lower
complexity than the residual manifold, a network which is
trained to learn the ground truth images should be expected
to suffer from the limited variability of the data. In contrast,
due to the temporal incoherence of the undersampling pattern,
this issue should be overcome when learning the residuals.
In the spatio-temporal domain, the availability of the data is
not an issue as we have n Nz(Nx + Ny) � n Nz Nt samples.
Therefore, one would expect the performance of the network to
be to some extent independent of the number of subjects n the
samples are extracted from. Also, according to the performed
persistent homology analysis, the training of the network
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Fig. 7. Results on the test set for Nθ = 1130 radial lines when the number of subjects whose spatio-temporal slices are extracted was varied.
Note that no data-augmentation was used. Proposed method for n = 1 (a), n = 2 (b), n = 8 (c), n = 12 (d), the spatial U-net for n = 12 (e) and
the kt-SENSE reconstruction with 3400 radial lines (f). The point-wise error images are magnified by a factor of ×3. All images are displayed on the
same scale.

Fig. 8. Loss behaviour during training with Nθ = 1130 for different
number of volunteers n contained in the dataset. Training loss (solid)
and validation loss (dashed) for the spatial and spatio-temporal U-nets.
Spatial residual learning (a), spatial image learning (b), spatio-temporal
residual learning (c), spatio-temporal image learning (d). Note that the
scales differ due to the different losses and the different domains in which
the networks are trained.

should be facilitated when trained to learn the manifold of
the ground truth images.

Figure 8 shows the behaviour of the loss decay for the
spatial approach ((a) and (b)), the spatio-temporal training
approach ((c) and (d)), and in both cases, for the situation
where the residuals are learned ((a) and (c)) and where the
ground truth images are learned ((b) and (d)). We see that
for the spatial U-net, for the residual learning and the image
learning, increasing the number of subjects n leads to a
decrease of the gap between training and validation error.
Further, we see that the gaps are larger in the case where
the ground truth images are learned which can be related to
the low variability of the dataset. In both cases, for n = 12
the gap is small enough to assume that the networks have
been properly trained and generalize well. For n = 1 and
for n = 1, 2, 4, the spatially trained U-nets ures

xy and uimg
xy

poorly generalize in both training scenarios, as the networks
almost immediately start to overfit the data, see (a) and (b).
Spatial training of the networks without data-augmentation
is possible for n = 2, 4, 8, 13 for the residual learning and

for n = 8, 13 for the image learning. However, our method
outperforms the spatially trained U-net as it better maintains
diagnostic details in spatial and spatio-temporal domain, see
Figure 7 for the case n = 12. For the spatio-temporal
approaches, the gaps between training and validation error are
smaller compared to the ones for the spatial approaches. This
holds for the residual learning as well as the image learning
scenario. Further, when the network is trained to learn the
ground truth images, the errors converge faster than in the
residual training approach, compare Figure 8 (c) and (d). Also,
the convergence rate is highly independent on the number of
subjects n. From these experiments, we first conclude that our
proposed method is well suited for training a network on a
limited number of subjects. Second, forcing the network to
learn the manifold given by the ground truth images Mimg

xt,yt
facilitates the training, which leads to a faster convergence of
the errors and therefore to lower training times. Figure 7 shows
a slice of the output of an image in the test set which was
obtained with our proposed method. For all n, the artefacts
have been successfully removed. We also see that even for
n = 1, the dataset is already rich enough in order to allow
for a good depiction of cardiac contraction and expansion
during the heart cycle. Table III shows the achieved average
of the quantitative measures. Even if in terms of quantitative
measures the network performs better the larger the training
data, the differences are marginal and hardly perceivable by
the human eye, see Figure 7. Therefore, we conclude that since
the data has a particularly simple structure, little data is already
sufficient for a successful training.

F. Rotation Equivariance

CNNs are well known to be able to achieve properties as
translation-invariance and -equivariance [40]. However, they
are not naturally invariant or equivariant with respect to
rotation and one of the still most used methods to achieve
these properties is to appropriately augment the dataset, [26],
[41]. In contrast, other approaches [27], [28], [42] explicitly
incorporate invariant/equivariant convolutional operations in
the networks which comes at the cost of a more complex net-
work design. As a rotation in image space, i.e. due to a rotation
of the field of view in order to adapt the scan to the geometry
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TABLE III
RESULTS ON THE TEST WHEN THE NUMBER OF SUBJECTS WHOSE

IMAGES WERE INCLUDED IN THE TRAINING SET IS VARIED

of the patient’s heart, might easily be encountered, we are
interested in achieving rotation-equivariance, i.e. f�(ψ(xI )) =
ψ( f�(xI )) for an already trained network f� and rotation ψ
in the xy-plane. For the following experiment, we generated
new different test sets Dψθ

xy and Dψθ
xt,yt by applying rotations

ψθ with rotation-angle θ and tested the networks which were
previously trained on the non-rotated images on the different
test sets. By doing so, we were able to isolate and measure
the direct effect of the sole rotation in image space on the
performance of the network.

We rotated the measured data in k-space and reconstructed
the training set for different angles θ . Note that the process
is time consuming since the images were reconstructed with
kt-SENSE. Therefore, we only reconstructed rotated images
for θ = ±66◦,±33◦ and for each θ we further rotated
the frames by ±90◦ and 180◦, obtaining an overall number
of 19 rotated test sets. Figure 9 compares our approach
to the 2D spatially trained U-net in terms of quantitative
measures calculated over the 2D frames of the different test
sets with different rotation angles. For θ = 0, the measures
indicate the average measure achieved on the training set.
First, we see again that the spatio-temporal training approach
clearly outperforms the spatial training approach in terms of all
quantitative measures. Further, while rotating the 2D frames
yields a noticeable decrease of performance of the network
trained in the spatial domain, the network trained on the spatio-
temporal slices performs similarly well on the different rotated
test sets and is therefore almost rotation-equivariant.

G. Experiments With Shallower Networks

Even if we used the network architecture shown
in Figure 4 for all experiments, the strength of the method
lies in the change of perspective on the data. To demonstrate
this, we applied different network architectures following our
suggested approach. More precisely, we tested different types
of CNNs which can be seen as special cases of the U-net.
If by E and C we denote the numbers of encoding stages and
convolutional layers per stage of a U-net, E3 C4 corresponds
to the network displayed in Figure 4. E1 C8, on the other hand,
denotes a single-scale fully CNN with eight convolutional
layers and no max-pooling. Figure 10 shows results obtained
with different network architectures parametrized by E and
C. We see that the networks E1 C8 and E4 C4 which differ

Fig. 9. Performance of the networks when tested on rotated copies
of the images contained in the training set. While the network trained in
the spatio-temporal domain is robust with respect to rotation, the network
trained on images in the spatial domain loses generalization power when
tested on rotated copies of the images it was trained on. The dashed lines
correspond to the corresponding measure achieved on the training set.

Fig. 10. Results obtained with different CNNs following our proposed
aproach uimg

xt,yt. E1C8 (a), E4C4 (b) and E5C2 (c), kt-SENSE reconstruc-
tion with Nθ = 3400 radial lines (d). Our approach therefore offers the
possibility to further reduce the network complexity as well as training
times.

in terms of number of trainable parameters by approximately
a factor of 10, achieve similar performance. This suggests
that the number of trainable parameters and consequently, also
training times, could further be reduced without significantly
losing performance. Figure 10 shows results obtained by
E1 C8 (a), E4 C4 (b) and E5 C2 (d), where the networks were
trained for 3 · 104 backpropagations. The training of E1 C8,
for example, see Figure 10 (a), amounted to only 40 minutes.

H. Comparison With Other Deep Learning-Based
Methods

Here we compare our approach to other methods based on
post-processing with deep NNs. Since we only have access
to a limited dataset, for the following experiments, we made
use of data-augmentation by using all our rotated images,
flipping, shifting the images along the channel axis and
adding random constant values to the whole image sequences.
By doing so, we created a potentially infinite training set.
Note that we did not include elastic deformations as a data-
augmentation technique, as the data-acquisition process is not
simulated and elastic deformations might alter the structure
of the undersampling artefacts in the input data. The first
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TABLE IV
COMPARISON OF DIFFERENT DEEP LEARNING-BASED

POST-PROCESSING APPROACHES

method of comparison is the already discussed spatially trained
U-net uimg

xy . It is trained to map frames to frames and corre-
sponds to the method discussed in [10] and [14]. The second
method of comparison is a natural extension of the first and
corresponds to the 2D U-net approach shown in Figure 1 (b)
which we refer to as uxy,t . The net is trained to map whole
image sequences to whole image sequences by aligning the
cardiac phases along the channel’s axis and was presented
in [20]. Further, we compare our method to the 3D U-net
approach uxyt presented in [21], see Figure 1 (c). While
for the 2D NNs, we cropped the images to 220 × 220 and
220 × 220 × 30 in order to let the networks focus on the
diagnostic content of the images, for the 3D U-net, the images
used for training needed to be cropped to 128 × 128 × 20,
as the network is computationally more expensive. The shape
was the one used in [21]. In order to obtain image sequences
of 320×320×30, the outputs of the networks were treated as
patches and the image sequences were reconstructed from the
patches by properly averaging over regions with overlapping
patches. In contrast to the models employing 2D convolutional
layers, which were trained using SGD, the 3D U-net uxyt

was trained in the same setting as suggested in [21] using
ADAM [43]. Figure 11 and Table IV show and summarize
the obtained results with the described networks. For more
detailed information about the reassembling of the image
sequences from the patches, see Section IV-K.

The spatially trained U-net uimg
xy correctly removed the

undersampling artefacts in the spatial domain. However,
the reduction of the artefacts is less accurate than for uimg

xt,yt , see
Figure 11 (b) and (e). Although we report a successful training
in terms of consistent decrease of training as well as validation
error, the model uxy,t poorly removed the artefacts. Intuitively,
the temporal incoherence of the radial undersampling pattern
which differs from the one in [20] hinders the learning of the
residual manifold and the network is therefore not suitable for
our used undersampling scheme. Further, in [20], a zero-filled
reconstruction is used as input of the network and therefore,
the relation between the manifolds of the residuals and the
ground truth images might differ as well from our case.
In contrast, learning the manifold of ground truth sequences is
highly facilitated by the temporal correlation of the 2D frames.
In fact, already a network with one single convolutional
layer with Nt channels and 64 filters accurately removed all

Fig. 11. Comparison with different Deep Learning-based post-
processing methods. NUFFT reconstruction with Nθ = 1130 radial lines
(a), uimg

xy (b), uxy,t (c), uxyt (d), proposed approach uimg
xy (e), ground truth

kt-SENSE reconstruction (f). The point-wise error images are magnified
by a factor of ×3. All images are displayed on the same scale.

the artefacts from the image sequence. However, temporal
information is lost and we point out we were not able to obtain
satisfactory results by the application of deeper networks.
The 3D U-net uxyt and our proposed method uimg

xt,yt perform
comparably well. Both correctly removed the undersampling
artefacts in spatial as well in spatio-temporal domain and
led to a good preservation of the heart movement. In terms
of the image-error-based PSNR and NRMSE measures, our
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Fig. 12. Quantitative measures for all discussed Deep Learning-based
post-processing methods when trained on datasets including different
number of subjects n. Missing values for some n denote that the network
was not properly trainable on the restricted dataset.

method performs slightly better than the 3D U-net uxyt which,
on the other hand, yields slightly better results in terms
of SSIM and HPSI. However, the differences are marginal
and barely visible. Further, note how our proposed method
achieves similar results as the 3D U-net uxyt even when
trained on one single patient, see Table III. Figure 12 shows
the statistics calculated on the 2D frames for all different
discussed Deep Learning-based post-processing approaches
where the number of subjects n contained in the training
dataset was varied. The case n = ∞ corresponds to n = 12
with all previously mentioned data-augmentation techniques.
Clearly, our proposed method of training on the 2D spatio-
temporal slices is the most suitable for obtaining satisfactory
results when training a network on a highly limited dataset.
The models uimg

xt,yt and ures
xt,yt are the only ones to allow the

successful training of a network on data extracted from one
single subject. For uimg

xy and ures
xy , the results obtained for

n = 2 and n = 4 were obtained by early stopping due
to early overfitting. The models uxy,t and uxyt are properly
trainable starting from n = 8. The 3D U-net uxyt and our
method uimg

xt,yt achieve comparable performance in terms of
the reported measures for n = ∞.

I. Comparison With State-of-the-Art Iterative
Reconstruction Methods

Here, we compare our proposed approach to established
state-of-the-art iterative reconstruction methods for cine car-
diac MRI. Since iterative reconstruction methods are time
consuming, we only reconstructed images from the patients’
data which corresponds to one training/validation/testing set-
ting of our four-fold cross-validation set-up. For comparison,
images were reconstructed with kt-FOCUSS, a CS-based
approach [7], an iterative reconstruction approach using spatial
and temporal total variation (TV+TVT) for regularization [4]
and a method employing regularization based on learned
spatio-temporal dictionaries as well as spatial and total

TABLE V
COMPARISON WITH DIFFERENT ITERATIVE

RECONSTRUCTION METHODS

variation minimization (DL+TV) [38]. The latter method was
extended by combining the approach proposed in [38] with [8]
by learning the dictionaries jointly from the real and imaginary
part of the image data. Further, we extended the method to be
applicable to multi-coil datasets. We implemented the method
using the operator discretization library (ODL) [44] for all
needed operators.

Figure 13 shows examples of the results obtained on the
patients’ data for the mentioned iterative reconstruction meth-
ods and our proposed model uimg

xt,yt . Although our method was
trained on healthy volunteers, pathological heart wall motion
(septal flash in Figure 13 (a)-(e) and hypo-kinetic anterior
and posterior wall with strongly reduced ejection fraction in
Figure 13 (f) - (j)) is clearly visible with the proposed method.
Also small features, such as the chordae tendinae connecting
the valves and the papillary muscles, are well preserved, see
Figure 13 (i). Table V shows the obtained results with the
iterative reconstruction methods as well as with our proposed
network uimg

xt,yt . We see that our method clearly outperforms
the methods kt-FOCUSS and TV+TVT with respect to all
reported quantitative measures. The most significant increase
of performance is achieved against kt-FOCUSS, where, on the
2D frames, our method yields an increase of approximately
6 dB, 4.9% and 2% in terms of PSNR, SSIM and HPSI.
Further, our proposed method’s NRMSE is approximately half
of the one of kt-FOCUSS. TV+TVT surpasses kt-FOCUSS
in terms of all reported measures. Even if DL+TV surpasses
TV+TVT with respect to all reported measures but HPSI,
DL+TV tends to slightly smooth image details, possibly
caused by a too strong regularization as well as the smoothing
effect of the average of the reconstruction from patches.
Further, note that the complex-valued patches were obtained
by a disjoint sparse coding of the real and imaginary part of
the patches as in [8]. Our method uimg

xt,yt outperforms DL+TV
with respect to all reported measures except for SSIM on the
spatio-temporal slices. Note that the reconstruction time for
DL+TV is higher than for our method by several orders of
magnitude, see Section IV-K.

J. Comparison With State-of-the-Art
Cascaded Networks

For the sake of completeness, we compare our method
to the two state-of-the-art methods for 2D cine MRI based
on cascaded networks presented in [19] and [24]. Cascaded
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Fig. 13. Comparison with different state-of-the-art iterative reconstruction methods. kt-FOCUSS (a) and (f), TV+TVT (b) and (g), DL+TV (c) and
(h), proposed method (d) and (i), kt-SENSE reconstruction with Nθ = 3400 radial lines. The point-wise error images are magnified by a factor of ×3.
All images are displayed on the same scale.

networks combine iterative reconstruction methods and NNs
in the sense that they can be interpreted as unrolled iterative
schemes where the networks play the role of regularizers
learned from data [12], [45]–[47]. While the NNs remove
the artefacts from the undersampled image reconstructions,
the data-consistency (DC) layers ensure that the outputs
provided by the single networks match the measured data
in k-space domain. In [19], the used NNs are 3D CNNs,
while in [24], the 3D CNNs are replaced by 2D recurrent
CNNs. For the comparison, we used the codes available
in [19] and [24]. Note that the main underlying assumption for
cascaded networks is that the forward and adjoint operators
can be integrated in the network architecture. For our data,
the forward operator is given by a NUFFT encoding operator
which measures k-space data from nc = 12 coils. Since
building a deep cascade of CNNs is not possible by including
our operator in the DC layers, we trained the networks on
the image and k-space data for each coil separately. The
final image estimates were then obtained by combining the
images from the single coils using coil sensitivity information.
Table VI summarizes the results of the cascaded networks.
The 3D CNN cascade approach yields slightly better image
quality metrics compared to our approach, most probably
due to the integration of the forward and adjoint operators
in the DC layers. Note that for this experiment, the input
images xI were retrospectively simulated from the kt-SENSE

TABLE VI
COMPARISON WITH DIFFERENT CASCADED CNNS

reconstructions x and therefore, the statistics for our approach
differ from the ones reported in Tables IV and V, where
the images are reconstructed from real k-space data obtained
from the scanner. Further, we report that, even if we did not
observe overfitting, for the fold where the test set consists of
patient data, the cascaded networks show a significant decrease
in performance. This might indicate that the networks are
more susceptible to possible significant differences between
the training and test set data. Figure 14 shows qualitative
results for the comparison of the two cascaded networks and
our approach. The statistics in Table VI were obtained by
averaging the results on the test set for each fold. On each
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Fig. 14. Comparison with different cascaded CNNs: 2D CRNN Cascade
(a), 3D CNN-Cascade (b), proposed (c) and the reference kt-SENSE
reconstruction (d). The Figure show results for the fold where only
patient’s data is included in the test set. Qualitatively, all the three
methods perform similarly.

test set, the measures were obtained by testing the networks
for which the trainable parameters led to the smallest average
error on the whole validation set. The results for the different
folds can be found in the supplementary materials which are
available in the multimedia tab.

K. Reconstruction Times

We report the reconstruction times needed for the recon-
struction of the images with the different previously discussed
methods. First, we note that the methods employing iterative
reconstruction are the most demanding in terms of compu-
tational times. kt-FOCUSS, kt-SENSE and TV+TVT are in
the same range, where the reconstruction times per slice vary
from approximately 110 s to approximately 180 s. The DL+TV
method is by far the most computationally expensive method,
as the regularized inverse problem has to be solved for each
coil separately. Therefore, the average overall reconstruction
time per slice amounts to roughly 13 000 s, where nearly
1 500 s are needed by ITKrM [48] which replaced the compu-
tationally heavier K -SVD [49], 7 800 s by the sparse coding
with orthogonal matching pursuit, 310 s for the reconstruction
from the sparsely approximated patches and 2 058 s for the
preconditioned conjugate gradient (PCG) method.

TABLE VII
COMPARISON OF THE RECONSTRUCTION TIMES SLICE

Note that we trained all the 2D U-nets on image sequences
which were previously cropped to 220 × 220 × 30. Also, due
to memory limits, the shape of the image sequences which are
processed by the 3D U-net was 128×128×20. Therefore, for
the methods uxy , uxy,t and uxyt , the 320 × 320 × 30 image-
sequences were reconstructed from patches. In particular,
we used strides of size 25 × 25 for the spatial and spatio-
temporal 2D U-nets and strides of 32 × 32 × 5 for the
3D U-net, resulting in 5 · 5 · 30 = 750, 5 · 5 = 25 and
7 · 7 · 3 = 147 samples to be processed for the reconstruction
of a single slice. For our method uimg

xt,yt , the strides are 50
(in x- and y direction), resulting in 3·(220+220) samples to be
processed per slice. Processing one sample on a Titan Xp GPU
takes on average 0.0093 s for uimg

xy and ures
xy , 0.0236 s for uxy,t ,

0.0340 s for uxyt and 0.0034 s for our proposed approaches
uimg

xt,yt and ures
xt,yt . Table VII summarizes the reconstruction

times for a slice of size 320 × 320 × 30 for all the reported
methods with the aforementioned strides. The times needed
to denoise a slice obviously heavily depend on the number of
patches the sequence is reconstructed from and could be easily
reduced by using larger strides. For the 2D methods, one could
also obtain the 320 × 320 × 30 image sequences by directly
applying the networks to the 320 × 320 × 30 samples. Note
that for the 3D U-net this not possible because of memory
limits. The training times needed for the 2D CRNN cascade
and the 3D CNN cascade amounted to approximately 1 day
and 3 days and 14 hours while processing a single slice and all
cardiac phases takes about 16.8 s and 8.8 s, respectively,. Note
that the reconstruction of one slice involves the processing of
the images of all nc = 12 coils.

V. DISCUSSION AND CONCLUSION

In this work, we have presented a new approach for the task
of undersampling artefacts reduction in 2D cine MRI. Even if
the employed U-net is a widely used network architecture for
various inverse problems, to the best of our knowledge, this
is the first work in which the U-net is applied to 2D spatio-
temporal slices. We have investigated and demonstrated several
advantages of the approach compared to the training in the
spatial domain. Consistent with [14], [30], [37], the performed
persistent homology analysis confirms the motivation that the
superiority of the proposed approach can be attributed to
the simpler topological complexity of the two-dimensional
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spatio-temporal slices. Further, the analysis suggests that the
architecture should be chosen such that the network is trained
to learn the ground truth images rather than the residuals.
Note that our analysis is consistent with the results presented
in [10] and [14], where streaking artefacts resulting from
a sparse view CT acquisition are most efficiently removed
when U-net learns the residual manifold, which was shown
to have a lower complexity than the one of the ground truth
images [14]. This is related to the fact that the undersampling
pattern in sparse view CT is regular. Conversely, in CS MRI,
where the undersampling schemes, e.g. golden-angle radial
undersampling, are designed to be incoherent with the assumed
sparsifying basis [50], one would expect the residual manifolds
to have a more complex topological structure and therefore,
the network’s architecture should be chosen appropriately.
Further investigation of the relation between the topological
complexity of the residuals and the artefact-free images in dif-
ferent imaging modalities and the performance of the trained
networks will be investigated in the future.

Our approach allows to successfully train a U-net on highly
limited data, overcoming the problem of unavailability of large
datasets or the need to rely on data-augmentation. We demon-
strated that our method already outperforms the spatially
trained U-net when trained on one single healthy volunteer
in terms of all quantitative measures. When trained on a small
number of volunteers, our network is already able to accurately
preserve the heart movement and delivers results which are
similar to the ones obtained when training on 12 subjects.
In contrast to the spatial training approach, the proposed
method naturally almost achieves rotation-equivariance by
the sole change of perspective on the data. The network
does therefore neither require changes in the architecture, nor
data-augmentation based on rotation to achieve this property.
Clearly, the reason lies in how a rotation in image space
results in a transformation similar to a translation in the spatio-
temporal domain, and therefore, since the network consists of
convolutional and max-pooling layers, it is stable with respect
to rotation in image space. Even if the reconstruction of a
single slice and all its cardiac phases requires the evaluation
of a large number of samples, reconstruction is fast and can
be achieved in approximately 4.4 s on a Titan Xp GPU.

As discussed in [17] and [18], the U-net tends to smooth
out image details when trained in the spatial domain. In the
proposed approach, however, image details in the spatial
domain are well preserved. Our method, on the other hand,
well preserves image details and further outperforms all other
tested 2D CNNs with respect to all reported measures and
achieves results comparable to the 3D U-net even when trained
only on two subjects. Due to the small size of the data when
considered in spatio-temporal domain, training times could be
shortened to 3 hours compared to 6 hours for the 3D U-net.
Further, since the spatio-temporal manifold Mimg

xt,yt has a
particularly simple structure, the reducing the artefacts reduces
to a simpler task than in the spatial domain and training times
could be further reduced by earlier stopping the training.

As for all Deep Learning-based post-processing methods,
the main limitation of our proposed method is the possible
lack of data-consistency. Even if our method is based on

post-processing of the magnitude images, the method could
be easily extended to process the real and imaginary part
of the spatio-temporal slices separately. Therefore, handling
complex-valued data does not represent a limitation and data-
consistency could be enforced by for example performing
several iterations of PCG for minimizing a properly chosen
functional including a data-consistency and regularization term
based on the output of our method, see for example [51].

We have compared our proposed method to several state-
of-the-art methods for iterative reconstruction in dynamic
MRI. Our method outperforms kt-FOCUSS and TV+TVT
with respect to all reported measures and achieves similar
results as the dictionary learning- and total variation-based
method DL+TV. However, our method is faster than DL+TV
by several orders of magnitude as it performs a one-step
regularization based on an initial NUFFT reconstruction. The
iterative reconstruction methods kt-FOCUSS, TV+TVT and
DL+TV used for comparison require the tuning of several
parameters which were kept fixed for all patients. Therefore,
further patient-specific parameter tuning might further improve
the image quality in Figure 13 (a), (b), (c), (f), (g) and (h).
In particular, DL+TV makes specific parameter tuning diffi-
cult due to its prohibitive reconstruction times.

Further, we have compared our method with two state-of-
the-art methods based on cascaded CNNs [19], [24] trained
on retrospectively simulated data. Although the 3D cascaded
network’s performance is slightly superior to our method,
note that for the cascades the input images are zero-filled
reconstructions using a Cartesian mask whose support is given
by the indices of the k-space coefficients which were inter-
polated from the radially acquired k-space data. Therefore,
the input images for the cascades contain artefacts which are
inherently different from the ones obtained by our NUFFT
reconstruction using nc = 12 coils and Nθ = 1130 spokes.
Also, even if our method only performs subsequent post-
processing, the obtained results are qualitatively competitive
with the ones obtained by the cascaded networks and we point
out that our approach could also be easily extended to be
integrated in cascaded networks. This will be subject of future
work.

In this work, we used kt-SENSE to obtain the ground truth
samples from a 10 s breathhold. Although this yielded high
image quality, residual undersampling artefacts which might
impair the trained U-net might still be visible. Also, kt-SENSE
already makes assumptions about the temporal smoothness of
the image data. Therefore, further improvement of our method
might be achieved by increasing the duration of the breathhold
scan to achieve higher ground truth-image quality.
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