EMB §

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 1, JANUARY 2020 35

IEEE (1)
IEEE gignol \;
—o—— oo

Framework for Photon Counting Quantitative
Material Decomposition

Mikael A. K. Juntunen

, Satu I. Inkinen

, Juuso H. Ketola, Antti Kotiaho™,

Matti Kauppinen, Alexander Winkler, and Miika T. Nieminen

Abstract—In this paper, the accuracy of material decom-
position (MD) using an energy discriminating photon count-
ing detector was studied. An MD framework was established
and validated using calcium hydroxyapatite (CaHA) inserts
of known densities (50 mg/cm3, 100 mg/cm?, 250 mg/cm?,
400 mg/cm?®), and diameters (1.2, 3.0, and 5.0 mm). These
inserts were placed in a cardiac rod phantom that mimics
a tissue equivalent heart and measured using an exper-
imental photon counting detector cone beam computed
tomography (PCD-CBCT) setup. The quantitative coronary
calcium scores (density, mass, and volume) obtained from
the MD framework were compared with the nominal val-
ues. In addition, three different calibration techniques,
signal-to-equivalentthickness calibration (STC), polynomial
correction (PC), and projected equivalent thickness cali-
bration (PETC) were compared to investigate the effect
of the calibration method on the quantitative values. The
obtained MD estimates agreed well with the nominal val-
ues for density (mass) with mean absolute percent errors
(MAPESs) 8 £ 11% (9 £+ 15%) and 4 + 6% (9 £+ 14%) for STC
and PETC calibration methods, respectively. PC displayed
large MAPEs for density (27 £+ 9%), and mass (25 + 12%).
Volume estimation resulted in large deviations between true
and measured values with notable MAPEs for STC (40 +
90%), PC (40 £ 80%), and PETC (40 &+ 90%). The framework
demonstrated the feasibility of quantitative CaHA mass and
density scoring using PCD-CBCT.

Index Terms—CdTe, iterative reconstruction, material
decomposition, photon counting, spectral CT.
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|I. INTRODUCTION

PECTRAL computed tomography (CT) enables dis-

crimination of different materials and improved tissue
contrast by utilizing polychromatic X-ray attenuation infor-
mation [1]-[3]. Consequently, it has been applied for several
diagnostic tasks such as bone and calcium removal from CT
angiography [2], characterization of gout [4], and assessment
of myocardial blood flow [5], [6]. In health care, spectral CT
is currently performed using dual-energy CT (DECT) scan-
ners that employ spectrally indiscriminate energy-integrating
detectors (EIDs). The maximum number of separable tis-
sues in DECT material decomposition (MD) with EIDs is
three [7]. Furthermore, DECT suffers from spectral overlap
which reduces the accuracy of MD. To increase the MD accu-
racy in DECT, either the peak kilovoltage (kVp) difference
between low and high energy spectra could be increased,
filtration could be changed between acquisitions to improve
energy separation or the patient dose could be increased.
As photon counting detectors (PCDs) can discriminate pho-
tons of different energies through pulse-height analysis, they
enable multi-energy spectral CT [8], quantitative MD [9], and
K-edge imaging [10], [11]. Furthermore, PCDs with more than
three bin counters allow decomposition of more than three
materials [12].

In MD, multi-energy data are decomposed into basis mate-
rials with distinct attenuation properties. MD in image space,
i.e. reconstruction space, utilizes the effective energies of
a multi-energy measurement to separate the CT reconstruc-
tion into basis materials [9], [13]. In contrast, projection
based MD models the X-ray attenuation process, allowing
the multi-energy projection data to be decomposed into
material-specific projections [11], [14]. Performing MD in
projection space is preferable as the modeling of X-ray attenu-
ation theoretically eliminates beam hardening [15]. MD based
on multi-energy data has been successfully used for quan-
tification of iodine [8], [9], gadolinium [9], and lipid [16]
content, as well as the amount of Calcium Hydroxyapatite
(CaHA) [7], [17], which is required for the assessment of
bone mineral density. These studies have shown strong cor-
relations with measured and true concentrations, confirming
that spectral CT can be used for quantitative MD and tissue
discrimination.

With PCDs, several phenomena, such as radiation scattering,
beam hardening effects, limited detective quantum efficiency,
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detector dead time, inaccuracies with spectral models, and
pulse pile-up, deteriorate the energy-resolving capabilities and
the accuracy of tissue quantification [18]. It is therefore
essential to develop both accurate models for detector char-
acteristics [19] (e.g. charge transport properties [20]), and
suitable correction techniques, such as calibration material
measurements dedicated for PCDs [21], [22], to counter the
factors degrading spectral discrimination. On the other hand,
calibration techniques may influence MD accuracy [23], and
care should be taken when choosing the appropriate methods.

For energy-independent EIDs, conventional flat-field correc-
tion using an air scan and dark field image is often sufficient,
since it corrects fixed-pattern noise, such as gain variations
and scintillator screen dust, commonly encountered with EIDs.
With clinical CT systems, however, additional complicated
correction methods beyond simple offset and air correction are
needed to achieve high-fidelity imaging performance over the
range of tube voltage settings necessary for clinical imaging.
Due to the nonlinearity and variation of inter-pixel detection
efficiencies with respect to energy, flat-field correction is
not adequate for PCDs either [24]. Commonly PCD calibra-
tion techniques rely on X-ray transmission measurements of
calibration materials that are used to correct the measure-
ment data. For example, the Signal-to-equivalent Thickness
Calibration (STC) [24], [25] method has been widely used
for PCDs, while the Polynomial Correction (PC) has been
used for decomposing calibration materials from dual-energy
measurements [26].

On the image reconstruction side, the commonly used
analytic CT reconstruction technique, filtered backprojec-
tion (FBP), may not provide sufficient image quality in
projection based spectral CT due to increased noise in
the material-decomposed projection data [10]. Therefore,
the choice of reconstruction technique has a significant impact
on the image quality of tissue-specific reconstructions. Instead
of the FBP method, penalized weighted least squares (PWLS)
approaches are often used for CT reconstruction [27] and
tissue-specific reconstruction [10], [28] as they accommo-
date noise statistics and regularization into the reconstruction
scheme.

Currently, the severity of coronary artery calcification is
evaluated using CT calcium scoring method known as Agat-
ston score [29]. The score is given by a slice-specific product
of calcification area and a weighting factor that depends on
the maximum Hounsfield Unit (HU) value of the calcification
determined from a non-invasive CT scan [29]. The total Agat-
ston score of a coronary artery is the sum of the slice-specific
scores. Agatston score is associated with the risk of coronary
events and its negative predictive value for coronary artery
disease is high [30], [31]. Additionally, calcium hydroxya-
patite (CaHA) mass [32] and calcification volume [33] are
commonly evaluated metrics in cardiac CT studies, with the
CaHA mass being more reproducible than Agatston score [34].
Agatston score does not quantify the concentration of coronary
calcification exactly but rather estimates the concentration
through HUs. However, beam hardening artifact and the
selected peak kilovoltage affect the HU estimate and hence
the Agatston score [35], generating a need for a more accurate

Fig. 1. Experimental setup. (Left) Cardiac rod and CaHA inserts (red and
yellow). Soft tissue inserts (gray inserts) were positioned in the arteries
to remove the air gap near the CaHA inserts. (Right) CBCT setup with
C-arm X-ray source; a) X-ray source, b) rotation stage and cardiac rod
phantom, and c) PCD.

quantitative methodology to estimate calcium concentration
and mass. MD in projection space models the beam hardening
process and theoretically, it could provide a robust alternative
for calcium scoring.

This study aims to establish a framework for MD using
dual-energy PCD measurements and apply it for quantifying
coronary artery calcium (CaHA) in an experimental setting.
Furthermore, the effect of the calibration method on the frame-
work is investigated by comparing three different calibration
techniques; the STC, PC, and a new Projected Equivalent
Thickness Calibration (PETC). Finally, the quantitative accu-
racy of the developed framework is validated by characterizing
CaHA insert densities, masses, and volumes in a cardiac rod
phantom.

[I. MATERIALS AND METHODS
A. Experimental Setup and Imaging Phantom

Cylindrical CaHA inserts (n = 12) with varying densities
(50 mg/cm3, 100 mg/cm3, 250 mg/cm3, and 400 mg/cm3),
diameters (1.2 mm, 3.0 mm, and 5.0 mm) and a fixed height
of 7 mm were placed inside a cylindrical (9 cm diameter)
cardiac rod phantom (008C, CIRS, Inc., Norfolk, VA) (Fig. 1).
The 5.0 mm insert was positioned in the right coronary artery,
the 3 mm insert in the apex, and the 1.2 mm insert in the left
anterior descending coronary artery of the phantom (Fig. 1).

The tungsten X-ray source of a C-arm (Philips BV29,
Philips Healthcare, Netherlands), with inherent filtration equiv-
alent to 3.0 mm of Aluminum at 75 kVp, was operated at
100 kVp and 3.0 mA. The focal spot size of the source
was 0.6 mm. A PCD (Flite FX15, XCounter AB, Danderyd,
Sweden) was used as the radiation detector, and low tube
current was used to mitigate the effects of dead time and
pulse pile-up in the PCD. The PCD and the X-ray source
were mounted on an optical board and combined with a
motorized rotation stage (NR360S/M, Thorlabs, Inc., Newton,
New Jersey) on which the cardiac rod was placed, this setup
enabled PCD cone beam CT (PCD-CBCT) (Fig. 1). Source-
to-object and source-to-detector distances were set to 54.0 cm
and 85.48 cm, respectively. The angular velocity of the rotation
stage was set to 3°/s, resulting in 1 mAs exposure per 1° of
rotation with a total scan time of 120 s. The frame rate of the
detector was set to 24 frames/s to avoid count saturation. Eight
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Fig. 2. Material decomposition and reconstruction workflow; a) Raw data from the PCD, b) decomposition to calibration materials, c) propagation to
corrected counts using detector and source spectrum models and (10), d) material decomposition, €) material-specific reconstructions. The process
deviates for different calibration methods in the step b), while the rest of the workflow remains the same.

consecutive frames were averaged, resulting in 360 projections
over a 360° angle of rotation and a total tube exposure
of 360 mAs. No anti-scatter grid was used. For each CaHA
density, measurements were repeated three times, and inserts
were repositioned into the rod between measurements.

The used PCD was a flat-panel direct conversion detector
utilizing Cadmium Telluride (CdTe) of 750-um thickness as
a conversion medium. The detector consisted of 24 separate
tiles, each containing a 256 x 128-pixel matrix with 100-xm
pixel pitch resulting in a tilewise active area of 2.56 cm X
1.28 cm. These tiles formed a matrix with a 100-um
gap between tiles. The total active area of the PCD was
5.13 cm x 15.47 cm. Prior to MD, the detector matrix
was binned by a factor of two, resulting in an isotropic
200-um pixel size. Taking geometric magnification into
account, the isotropic voxel size of the reconstruction was
126 ym x 126 ym x 126 pm.

The PCD had two 12-bit counters per pixel with adjustable
energy thresholds that differentiated the incident photons into
two energy bins as follows; total energy (TE) bin containing
photons with higher energy than the lower threshold, and high
energy (HE) bin including photons whose energy exceeded
the higher threshold. Low energy (LE) image was obtained
through subtraction LE = TE — HE. The energy thresholds
of the PCD were set to 10 keV and 50 keV. The purpose
of the low energy threshold was mainly to remove electronic
noise, and the high threshold was chosen so that the counts
between the energy bins were approximately equal. Further-
more, a charge sharing correction implemented in the PCD
software was also used to improve spectral separation [36].

B. Beam Hardening and Scatter Correction

Three different calibration methods (STC, PC, and PETC)
were implemented for beam hardening and scatter correction
in this study. Each of these methods transforms the measured
counts of the raw data into calibration material thicknesses
(Fig. 2 a) — b)). After this transformation, the thicknesses are
projected into corrected counts (Fig. 2 c)).

1) Signal-to-Equivalent Thickness Calibration (STC): A com-
mon beam hardening and scatter correction approach is
the STC method [24], [25], where a series of calibration
measurements, usually performed with polymethyl methacry-
late (PMMA) blocks or Aluminum (Al) sheets, are used to
find the calibration parameters (o, b, and a) for each detector
pixel by fitting an exponential function to the calibration data.
We used PMMA-based STC for calibrating the measurements
because PMMA has more similar scattering properties to soft
tissues compared to Al. This method translates the known
calibration material thicknesses (tg) into measured counts

yir)y =o'+ bled'le, )
where ¢ denotes calibration, i denotes the energy bin, and
the coefficient a is considered as an effective attenuation
coefficient incorporating an experimental correction for scatter
and beam hardening. The attenuating polychromatic photons
were approximated to follow the monochromatic exponen-
tial law be? [24]. The calibration parameter o relates the
counts measured due to scattering within a specific calibration
thickness interval. With this approximation, we obtain the
attenuation function (1).

Once the calibration parameters have been solved for every
detector pixel, the phantom measurement (y’) can be cor-
rected into PMMA equivalent thickness (¢},) by computing

) 1 yi _Oi
fh = —In ('"T) )

This approach is repeated for each energy bin i separately.
2) Polynomial Correction (PC): Another calibration method
is the polynomial correction (PC) technique [26]. With
this method, combinations of two calibration materials (Al,
PMMA) are measured in the calibration process. The second
order polynomial approximation for two energy bins i is

tpyuma = co+c1ly +caly 4+ ;L3 + caL1Ly + csL3, (3)
tal =do+diLy +daLy +dsL} +dyLi Ly +dsL3, (4)

where, L; = —ln(y(’;/yé 0)» and yr’;o is the flat-field image.
The polynomial constants (¢ and d) are determined from a
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least-squares fit of the calibration measurements. Phantom
measurement is calibrated into thicknesses of PMMA and Al
by directly applying (3) and (4).

3) Projected Equivalent Thickness Calibration (PETC): In
this study, we suggest a modification of the STC method,
by accounting for two calibration materials (PMMA and Al)
in an attempt to incorporate the differences in beam-hardening
and scattering properties of calcifications and soft tissues more
accurately. To do so, we solved the corrected count estimate

y”/ in energy bin i through a process where the STC estimate
at first calibration basis (Al)

Y (tar) = o'y + biue“i‘l'*" (5)
was projected to PMMA equivalent thickness %,  pys14

1 ln(yi(tAl)_OlLDMMA)‘ 6)

i
bPMMA

TAl PMMA = 5
ApMMA
The superscript i in PMMA equivalent thickness highlights
the fact that although the same basis material thickness (7)
was used for each energy bin, the projected equivalent thick-
ness (ti'”% puma) deviated between energy bins due to the
different attenuation properties of the calibration materials.
The corrected count-estimate (yi’/) was obtained by combining
the current thickness-estimate of PMMA and the projected
equivalent thickness (projection from Al to PMMA)

i,/ i
Y (tPMMA, tar— prpma)

i i
Apaanaa (PMMA T, pypga)

(7

In order to decompose the measurement data into a com-
bination of calibration basis materials (t = (ta;, tpyma)),
the obtained calibration maps for PMMA and Al (obtained
through the STC technique) were used in the minimization
problem

o i
= opyma + Dpymiace

A . PN
i =argmin |y 'O ®)
where y is the measured counts and y” denotes the current cal-
ibration count estimate, yielding the decomposed combination
of basis materials for a specific pixel. y and y’ are vectors
containing the counts of different bins. The Gauss-Newton
(GN) method [37, Ch. 9] with 1000 iterations was used to
minimize (8). y’ was updated during each iteration through
the subsequent utilization of (5) — (7). This method is visually
illustrated in Fig. 3 and referred in the rest of the study as
Projected Equivalent Thickness Calibration (PETC) method.

For each calibration method, the calibration material thick-
nesses were selected to cover the thickness variations of
the rod. Therefore, PMMA slabs with thicknesses of 0 cm,
5.3 cm, and 10.7 cm were measured and used in the STC
and PETC methods, and Al sheets with thicknesses of O cm,
2.1 cm, and 3.1 cm were measured for the PETC method.
For PC, combinations of PMMA thicknesses (0 cm, 5.2 cm,
and 10.4 cm) and Al thicknesses (0 cm, 0.05 cm, 0.1 cm, .. .,
0.6 cm) were used. As PC utilizes combinations of Al and
PMMA thicknesses in calibration, thinner Al plates were used
compared to PETC. PC also fits more calibration parameters
than PETC, and thus Al thicknesses were measured more

Y N
3
2 (<)
= (a) f
E i B B
@ _J‘”

Material 1 thickness (cm) Material 2 thickness (cm)

Fig. 3. PETC method. (Left) showing the STC map of Al and (right)

showing the STC map of PMMA. Using the calibration material estimate
t = (ta. tppmma), @) translates the Al thickness (t4)) to estimated counts
using (5), b) illustrates translation to PMMA basis, in ¢) the count estimate
from Al basis is projected to PMMA equivalent thickness (6), d) adds the
projected equivalent thickness and thickness estimate of PMMA (tppn14)
and e)-f) gives the final count estimate y"’(t) using (7).

densely in PC compared to PETC. Calibration measurements
were performed using the same imaging parameters as in the
phantom scans.

To assess the scatter-correction mechanisms of the calibra-
tion techniques used in this study (STC, PC, and PETC), the
post-correction scatter-to-primary ratio (SPR) with the cardiac
rod phantom was evaluated for each method. The term “post-
correction SPR” is used to distinguish between the actual
physical SPR of the measurement and the post-calibration
SPR. For reference, we also evaluated the physical SPR from
a flat-field corrected measurement. The measurements for
evaluating the SPR are described in the Appendix A.! In
summary, the thickest part of the cardiac rod was imaged
with and without a lead (Pb) collimator with a rectangular
14 mm x 2.8 mm x 115 mm opening. The uncollimated
rod measurement was corrected with the calibration tech-
niques (STC, PC, and PETC). The collimated measurement
(m1 = P) contained only primary photons (P), whereas the
corrected uncollimated counts (m, = S + P) were a com-
position of primary and scattered (S) photons. The SPR was
calculated as

2—m

m 1
SPR=—2—"1 % 100%. 9)
mi

C. X-Ray Attenuation and Detector Model

The X-ray attenuation through M basis materials and the
resulting detector counts in detector pixel (k) and energy bin
i (4;) was modeled using the attenuation law

. i . - % ,um(E)Ak,m
A}((Ak)z/cD(E)R’(E)D(E)e = dE, (10)
0

where R/(E) is the detector energy response of energy bin
i at energy E. ®(E) and D(E) are the incident source
spectrum and detection efficiency for energy E. u,, is the mass
attenuation coefficient of material m. Ay, is the projected

1Supplementary materials are available in the supplementary files /multi-
media tab.
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mass density (PMD) along path I

A = / p,, Cem)dl, (10

I

where p,, is the density of m™ basis material in basis

reconstruction voxels x,. The energy-dependent mass atten-
uation coefficients (u,,(E)) were obtained from the NIST
database [38]. Source spectrum (®(E)) was simulated using
the spektr toolbox [39] for MATLAB (v. 9.4, The Math-
Works Inc., Natick, MA, 2018) and the detection efficiency
of CdTe was computed from the attenuation law. The energy
response of the PCD was modeled using a particle transport
simulation package (VGATE 7.2) [40] and a charge transport
model [41] that propagates the induced charge in the detector
crystal (CdTe).

A particle transport simulation package utilizing the
Geant4 toolkit [42], [43] with PENetration and Energy
LOss of Positrons and Electrons (PENELOPE) code sys-
tem [44] was used to model the particle interactions within
the PCD. A pixelated (100 x 100 pixels) CdTe detector
with 100 gm x 100 gm pixel and 750-xm CdTe thickness
was created. Compton and Rayleigh scattering, photoelectric
effect, bremsstrahlung, ionization, and atomic de-excitation
(i.e. fluorescence and Auger effect) were taken into account
in the model. The monochromatic energy responses of the
PCD were modeled using y-source simulations within the
energy range of 10 keV — 100 keV with 1 keV increments.
The types of the interactions, interaction times, energies, and
locations were tracked for each individual primary photon
and daughter particle generated during the interactions of the
primary photons within the CdTe.

The propagation of charge cloud generated by photon hits
was modeled with MATLAB using a charge transport model
similar to [41]. The bias voltage was set to —400 V [41] and
the charge transport properties of CdTe, e.g. electron and hole
mobility, resistivity and pair creation energy, were obtained
from [45]. An eight-neighbor charge sharing correction with
500 ns signal integration time was incorporated in the model.
The signal integration time was chosen based on prior research
for a CdTe detector [45, p. 57].

The accuracy of the resulting energy responses obtained
from the particle and charge transport models were experimen-
tally validated by sweeping the detector high energy threshold
from 11 keV to 80 keV with 1 keV increments and measuring
the response of the PCD for an Americium-241 (*1Am)
(E, = 59.5keV, activity 3.7 GBq) radioisotope [36], [46]. Full
width at half-maximum (FWHM) and main peak location were
evaluated from the 2*! Am response to study the energy reso-
lution of the PCD. Peak-to-valley ratio and the ratio between
peak area and valley area were also computed to assess the
robustness of charge sharing correction and the effect of the
K-escape photons of Cd and Te on the measured and simulated
energy responses. These parameters were separately calculated
for each detector tile and the simulated response model. The
simulated and measured 2*! Am responses were filtered using a
moving average filter with a denominator coefficient of 1 and
window length of 5. For the evaluation of FWHM and the

ratio between peak area and valley area, a Gaussian function
was fitted to the filtered main response peak. The peak area
was defined as the area of the Gaussian fit. Valley area was
determined as the area outside the Gaussian fit, i.e. the area of
the low-energy tail of the response. Similar to [47], the X-ray
source spectrum (100 kVp, 3.0 mA) was swept with 2 keV
increments using the C-arm to validate the overall accuracy
of the energy response model over the entire source spectrum.
The lower energy threshold was fixed at 10 keV in both 24! Am
and C-arm sweep measurements.

D. Material Decomposition

After correcting the phantom measurements to combina-
tions of calibration material thicknesses (for STC: PMMA,
for PETC and PC: PMMA and Al) for each pixel %,
they were propagated to corrected counts A" (f) =
(liorr’l(tk),iiorr’z(tk)) using (10), where A°°™! and jcom2
are the corrected counts of LE and HE bins, respectively
(Fig. 2 c¢)). Basis materials (PMMA and CaHA) were then
decomposed (Fig 2 d)) by obtaining the PMD (Ay =
(Ak,PMMA> Ak,carA)) that solves the problem

Ay = arg min |48 = 2(Ap) |5 12
k arggkllzl})u k Av|; (12)

A GN method was used to find the MD as reported previ-
ously [48]. The GN approach relies on a two-step minimization
process with the update rule

i . .
A](c]Jr ) — A]({j) + p/E])’ (13)

where the current decomposition estimate at pixel k is updated
with a GN step (p,i’ )), which is obtained by solving

(Jk(l))TJk(])pIEJ) — _(‘Ik(]))Tr]Ej)’ (14)
where the Jacobian (Jk(j )) of the residual (r,Ej )) is updated
during each GN iteration (j) with T denoting the trans-
pose. Gradient descent algorithm [49] was used to solve the
least-squares problem (12). 100 GN iterations were required
for convergence in decomposition. The Jacobian in (14)
was block-diagonalized as in [48] to decompose each pixel
simultaneously.

As the dual-material calibration methods (PC and PETC)
decompose the measurement data into two basis materials
(PMMA and Al), we could alternatively map the (PMMA,
Al) content directly to (PMMA, CaHA) content with a linear
transformation [50]. With this method, the mass attenuation
coefficient of CaHA is estimated as a linear combination
of the mass attenuation coefficients of PMMA and Al over
the used X-ray energy range. This approach would remove
the need for detector model, count propagation, and material
decomposition steps (Fig. 2. c) — d)). With STC, however, this
approach would not be possible as it decomposes the counts
into thicknesses of one basis material (PMMA) in different
energy bins. The count propagation and material decompo-
sition steps are, therefore, required with STC to obtain the
CaHA content. As we wanted to have a consistent material
decomposition workflow between the calibration methods for
a reasonable comparison between their calcium quantification
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accuracy, we did not use the linear mapping from (PMMA,
Al) basis to (PMMA, CaHA) content in this study. However,
we included a comparison between the density quantification
accuracies of our framework and the linear translation method
for PC and PETC in Appendix B.?

E. Image Reconstruction and Quantitative
Calcium Scoring

A PWLS algorithm with the Huber penalty [51], [52]
and variance based weighting was applied to reconstruct CT
data from the decomposed CaHA basis projection images
(Fig. 2 e)). As the material decomposition algorithm is com-
putationally time-consuming, the projection data was binned
by a factor of two and eight subsequent frames were averaged
to speed up the material decomposition process to a reason-
able level. The variance was evaluated from these averaged
pixels, and the weighting matrix (Eb_ml) was constructed by
diagonalizing the reciprocals of these variance-estimates for
each binned pixel.

To estimate the variance of the decomposed projections,
CaHA basis projections at full 513 x 1547 resolution and
for each measured frame were required. As iteratively decom-
posing the projection data at full resolution was considered
too time-consuming, the non-iterative areal bone mineral
density (aBMD) [53] was used to approximate the material
decomposition. aBMD can be calculated from the dual-energy
measurement using

Zﬁ%gﬁ ggg ln(icorr,Z) _ ln(icorr,l)

AcaHA = (15)

tpuma(E))”’

tcarna(Er) — ﬂCdHA(EZ)upMMA(EZ)

where Ac,m4 denotes the aBMD and u is the mass attenua-
tion coefficient. The energies for LE and HE bins (E; and E)
were calculated as weighted average energies of the LE and
HE spectra. Variance for each iteratively material decomposed
pixel was estimated from the aBMD decomposed frames
within a 2 x 2 binning area and from eight subsequent frames.
These pixels were included in the variance-estimation as they
are averaged prior to MD.

The PWLS minimization problem for the m'™ basis material
in matrix form was the same as in [54]:

Xm>0 m

N
Xm = arg min [”me - bm||224 +p Z R (|| Dexim ”2)}’
k=1
(16)

where the reconstruction X, was obtained through our own
implementation of the gradient descent method with Barzilai-
Borwein step size update with 100 iterations. The projec-
tion matrix W was constructed using the ASTRA (v. 1.8,
iMinds-Vision Lab, University of Antwerp, Belgium) [55] and
Spot (v. 1.2) [56] toolboxes. In (16), b, is the sinogram of
the material decomposed projections, Dix, , denotes the finite
difference gradient approximation of pixel k, N is the number

2Supplememary materials are available in the supplementary files /multi-
media tab.

of reconstructed voxels, and R is the Huber penalty

le] <&

A7)
lel =5, lel =0,

2

where penalty parameter f and the threshold 0 were set
to 400 and 50 mg/cm?, respectively. As the Huber penalty
adapts the regularization based on pixel differences, it can
simultaneously provide robust edge preservation and efficient
noise-removal [52]. Reconstructions were computed using
MATLAB.

The calcifications were segmented using the seeded region
growing algorithm [57]. A detailed description of the method
can be found in the Appendix C.> Briefly, the algorithm
contains three major steps: 1) Seed point selection using a
fixed threshold. The threshold was determined by multiplying
the mean background density with an experimentally selected
fixed multiplication factor (1.25). 2) The choice of tolerance
for the region growing algorithm using a histogram-analysis
of the local neighborhood of the seed pixel. 3) Region grow-
ing algorithm initiating from the seed pixels and using the
tolerance obtained from 2).

Calcification volumes were evaluated from the segmenta-
tions and the mass of the calcification was determined as a
product of mean density and volume. In the evaluation of mean
calcification density, a morphological erosion was performed
on the three-dimensional segmentation mask. A sphere of five
pixels radius was used as the structuring element. Morpho-
logical erosion removed partial volume effect and blurring
near calcification boundaries arising from the limited spatial
resolution of the system. Finally, the mean density within the
eroded mask was determined. Morphological erosion was not
used in the evaluation of mass or volume.

The quantitative accuracy for each calibration method was
evaluated. Mean value, coefficient of variation (CV), and
standard deviation (SD) were determined from three repeated
measurements for mass, density, and volume. Regression
slope, Pearson correlation (r2 and p-values), boxplots with
percent error, Bland-Altman (BA) plots, and mean absolute
percent error (MAPE) were used to illustrate correlation and
deviation between nominal and measured values. MAPE was
calculated as

MAPE = i
t=1

where X, is the measured value and Y; is the nominal value.
The analyses were carried out using MATLAB.

Y — X;
Y;

100%
X
n

; (18)

IIl. RESULTS
A. Validation of the Detector Model

When the sweep measurement using the PCD was compared
with the simulated gamma photon response of 2*! Am E, =
59.5 keV), a clear drift to higher energy was observed in
the location of the main response peak (Fig. 4 and Table I).

3Supplememary materials are available in the supplementary files /multi-
media tab.
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Fig. 4. (Left) Measured and simulated 24! Am responses. A high energy
drift is observed in the measured response of a tile. (Right) Simulated
and measured 100 kVp sweeps showing differences at high energies
(60 keV — 100 keV). We visualized the response of a tile that represents
the average high-energy drift in the 241 Am response.

TABLE |
SUMMARY OF SIMULATED AND MEASURED 241 Am
SWEEPS (MEAN + SD)

Response FWHM Peak location Peak-to- Peak-to-
(keV) (keV) valley ratio | valley area

Measured | 14.2+0.7 68+3 94+£14 2.04 +£0.07

Simulated 14.2 60 59 2.19

The drifts were between 7 keV — 14 keV and depended
on the detector tile. No large deviation was observed in the
pixelwise responses within specific tiles. Similar observations
were also made from the simulated and measured tilewise
100 kVp C-arm spectra (Fig. 4). The simulated and measured
low energy spectra (10 keV — 60 keV) agreed well, whereas
substantial differences were evident at high photon energies
(60 keV — 100 keV).

In addition to the observed high energy differences between
simulated and measured energy responses, large tile-to-tile
variations were observed in the energies of the **'Am
y -peaks (Table I and Fig. 5). Apart from the varying locations
of the main response peaks, the measured low-energy tails
(10 keV — 43 keV) of different tiles agreed well (Fig. 5) and
the low SD (0.07) for the ratio between peak areas and valley
areas indicated similar characteristics between responses of
each tile. These variations, FWHMs, peak locations, peak-
to-valley ratios and peak-area-to-valley-areas for measurement
and simulation are summarized in Table I.

B. Evaluation of Scatter-to-Primary Ratio

The calculated post-correction SPRs for different calibration
methods are tabulated in Table II. The physical SPRs for the
flat-field corrected measurements were higher when compared
to the post-correction SPRs of the calibration methods used
in our study. Notably, the STC and PC techniques resulted in
negative post-correction SPR values for each energy bin. Both
negative and positive values were observed with our proposed
PETC method.

To illustrate the insufficiency of the flat-field correction with
PCDs in these scattering conditions, we visually compared it
with STC, PC, and PETC, and observed that the detector tiles
were clearly visible in the flat-field corrected images (Fig. 6).

0 10 20 30 40 50 60 70 80
Energy (keV)

Fig. 5. 241 Am sweep for two adjacent detector tiles. (Left) HE bin image
with high threshold at 65 keV. (Right) Measured energy responses in
the tiles. Clear tilewise differences between high-energy responses were
observed. For illustration purposes, we visualized the highest variation
between two adjacent detector tiles.

TABLE Il
MEASURED SCATTER-TO-PRIMARY RATIOS FOR DIFFERENT
CALIBRATION METHODS

Calibration LE bin HE bin TE bin
method (%) (%) (%)
Flat-field 23.0 16.0 18.5
STC -5.8 2.7 -9.8
PC -0.1 2.2 -6.5
PETC 4.0 6.8 -0.7

C. Quantitative Material Decomposition

Overall, the decomposition framework provided robust sep-
aration between the basis materials (PMMA and CaHA) for
each calibration method used in this study (Fig. 7). Due to
the limited spatial resolution of the imaging setup, the recon-
structions of 1.2 mm inserts appeared blurred (Fig. 8), and
the MAPEs of the density estimates for 1.2 mm inserts were
37 £ 3%, 52 £ 2%, and 38 £ 4% for STC, PC, and
PETC, respectively. Thus, 1.2 mm inserts were excluded from
density analysis. However, they were included for volume and
mass analysis. Additionally, all 50 mg/cm?® inserts and the
100 mg/cm? insert with the diameter of 1.2 mm were not
separable from the cardiac rod (Fig. 8), and therefore could
not be analyzed.

The measured densities for the calibration methods (STC,
PC, and PETC) are illustrated with Table III and BA plots
(Fig. 9 a) — ¢)). Strong linear correlations were observed
between measured and true CaHA densities for both STC
(regression slope = 0.98, r2 = 0.97, p < 0.000]) and
PETC (regression slope = 0.87, P2 = 0.99, p < 0.0001).
PC displayed moderate correlation with the density estimates
(regression slope = 0.66, r2 = 0.99, p < 0.000I). Although
the STC method showed a strong correlation, the decreased
coefficient of determination and higher CV (7.9%) indicated
increased variability with the density estimates when compared
to PETC (CV = 6.2%). However, STC outperformed the PC
method, which portrayed an even higher CV (19.9%). These
interpretations were confirmed by the BA plots (Fig. 9 a) — ¢)).
Additionally, the obtained densities with the STC method
delineated clearly between different insert diameters (3 mm
and 5 mm) (Fig. 9 a)), suggesting a relationship with insert
diameter and STC calibrated density. For PETC and PC,
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Fig. 6. Outcomes of different calibration methods from top to bottom; flat-field correction with logarithm transform, STC, PC, and PETC. First two
columns illustrate the calibrated raw data. Third column shows the material decomposed CaHA basis. CaHA images have been decomposed with
mass attenuation coefficient of CaHA resulting in area density image (unit g/cm2). Note that flat-field corrected energy bin images are unitless.

88.2 mm

Fig. 7. PWLS reconstructions using PETC showing the 5 mm and 3 mm inserts with density 400 mg/cm3 (Left) TE reconstruction, (middle) PMMA

reconstruction, (rlght) CaHA reconstruction. Windowing for reconstructions; (left) [-500, 500] grayscale values (middle) [400, 1300] mg/cm®,

[75, 400] mg/cm

no similar relationship was observed, and the measured
densities were similar between different insert diameters
(Fig. 9 b) — ¢)). However, calcium density could not be
accurately resolved with the PC method (Fig. 9 b)). PETC
resulted in the lowest MAPE (4 £+ 6%) in the quantification
of calcium density, when compared to 8 &+ 11%, and 27 £
9%, for STC and PC, respectively.

The volume-estimates correlated strongly with true values
for STC (regression slope = 0.98, r2 = 0.89, p < 0.0001),
PC (regression slope = 0.93, 2 = 0.87, p < 0.0001), and
PETC (regression slope = 0.97, rz = 0.87, p < 0.0001).
However, the density-specific dependence in volume errors

(right)

with each method, illustrated by BA plots (Fig. 9 d) — f)),
indicated that none of the calibration methods quantified
CaHA volumes accurately, but all of them exhibited a density-
dependence in volume estimation. No large differences were
observed in the distribution of volumes between calibration
methods, and they exhibited similar values for regression
slopes, comparable CVs (23.7%, 25.8%, and 25.8% for STC,
PC, and PETC), visually similar BA plots, and similar MAPEs
40 4 90%, 40 % 80%, and 40 £ 90% for STC, PC, and PETC,
respectively.

Distinct variations in quantitative accuracy were observed
in the evaluation of CaHA mass between the methods.
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Fig. 8. PWLS reconstructions of different calcification inserts using
PETC. Windowing was set separately for each density; [75, 450] mg/cm3,

[75, 300] mg/cm?3, [75, 130] mg/cm? for 400 mg/cm3, 250 mg/cm?3, and
100 mg/cm3.

TABLE Il
NOMINAL AND MEASURED CaHA DENSITIES (MEAN + SD)
STC PC PETC
Nominal Measured Measured Measured
(mg/cm®) (mg/cm’®) (mg/cm’®) (mg/cm’®)
MAPE (%) MAPE (%) MAPE (%)
400 420+ 30 278+ 6 3808
4+£5 34+11 5+2
250 280 +30 179+ 6 254+3
6+ 10 28 +3 1.2+1.2
100 122+12 79+4 114 +2
19+ 12 20+ 4 14+£2

Mean and SD were calculated from the set of different insert diameters
(3 mm and 5 mm).

Strong linear correlations were identified for both STC
(regression slope = 1.10, r> = 0.99, p < 0.0001) and
PETC (regression slope = 0.96, r2 = 0.99, p < 0.0001),
but a slight increase in CV was observed with STC (CV =
10.7%) when compared with PETC (CV = 7.1%). Similarly
to density estimation, PC showed the weakest correlation with
the nominal masses (regression slope = 0.68, r? = 0.99,
p < 0.0001). Furthermore, for a specific insert diameter
(5 mm and 3 mm), the boxplots for STC illustrated increas-
ing percent mass error estimation with increasing density
(Fig. 10). This trend was distinguishable for each density
with diameters 5 mm and 3 mm, whereas the inverse effect
was observed for PETC. No similar phenomenon was seen
with the PC method. The overall mass quantification errors
between PETC (MAPE = 9 + 14%) and STC (MAPE =9 +
15%) were highly similar. Visual assessment of the BA plots

(Fig. 9 g) —1)) and the CVs (10.7%, 36.4%, and 7.1% for STC,
PC, and PETC), however, confirmed PETC to be the most
robust in mass evaluation. PC exhibited high quantification
error in the evaluation of mass (MAPE = 25 4+ 12%).

IV. DISCUSSION

In this study, we established and validated a framework
for MD with our experimental PCD-CBCT system and STC,
PC, and PETC calibration techniques using quantification of
coronary calcium as a case study. Strong correlations were
observed in the evaluation of CaHA density and mass for STC
and PETC methods, with PETC showing the best accuracy in
the quantification of CaHA inserts. PC did not provide accurate
quantification of CaHA density, volume or mass.

The STC, PC, and PETC methods reduced scatter com-
pared to flat-field correction as observed in the reduced
post-correction SPR values. The SPRs with the flat-field
correction were comparable with breast CBCT and a 10 cm
50% glandular — 50% adipose composition phantom using an
air gap of 41.5 cm at 80 kVp (SPR = 21%) [58]. In these
scattering conditions, the STC, PC, and PETC methods will
reduce scattering effectively. For CBCT of the heart, however,
the scattering from the torso further increases the SPR, thus
complicating the imaging process, but this assessment was left
for subsequent studies.

In the presence of extensive scatter in CBCT, using only
one calibration material in STC led to lower quantitative
accuracy when compared to PETC. This was most likely due
to the assumption in STC that all tissues have the same beam
hardening and scattering properties as the calibration material.
As CaHA has a higher effective atomic number compared to
PMMA, it has an increased probability to attenuate through
photoelectric effect compared to PMMA. Consequently, for
the same amount of measured counts PMMA images contain
more scatter than the CaHA image. As the STC method
corrects scattering using an estimate obtained from PMMA
measurements, the CaHA images of the cardiac rod containing
less scattering were overcorrected. This is supported by the
negative post-correction SPR values with STC indicating an
overcorrection of scatter with the cardiac rod. The overcorrec-
tion manifested as thickness dependence in the estimation of
calcification density, and thickness and density dependence in
the quantification of mass as observed in Fig. 9 and Fig. 10.

Although PMMA is a widely used calibration material
for soft tissues due to both having similar attenuation and
scattering properties, calcified tissues behave differently from
PMMA. Al differs significantly from PMMA as a calibration
material and affects the measured spectrum more through
photoelectric effect and beam-hardening. As hypothesized in
the introduction of the PETC method, PMMA accurately
characterized the scattering and beam hardening from soft
tissue equivalent rod and a combination of PMMA and Al
effectively modeled the increased fraction of photoelectric
effect with CaHA. The simultaneous utilization of two calibra-
tion materials in the PC and PETC methods, therefore, reduced
the diameter dependence of density estimates (Fig. 9 b) — ¢)).

Of the two dual-material calibration techniques, PC could
not accurately quantify the calcifications but underestimated
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Fig. 9. Measured errors illustrated by Bland-Altman plots for density (top row), volume (middle row), and mass (lower row) for three measurement
repetitions. (Left) Showing the STC method, (center) visualizing the PC method, and (right) illustrating the PETC method.

the CaHA densities (Table III). We hypothesize that this
is related to the differences in calibration measurements of
PETC and PC; in PETC we measured the calibration mater-
ial thicknesses separately without combination measurements,
whereas combinations of calibration materials were measured
in PC. The combination measurements in PC warrants further
investigation since the order of the calibration plates might also
affect the results. For instance, Al sheet will act as a filter
for the scattered photons originating from the PMMA plate
if the Al sheet is positioned after the PMMA plate. However,
future research focusing specifically on the calibration process
is required to reliably explain these observations.

The importance of the choice of calibration technique can
also be observed through a visual comparison between the
calibration methods (Fig. 6). The detector tiles were clearly
visible in the flat-field corrected images, whereas STC, PETC,

and PC achieved comparably good tile uniformity. These
results are consistent with a more comprehensive comparison
study on tile-variation between flat-field correction and STC
correction, where STC outperformed the flat-field correction
in tile uniformity [59].

Overall, a more accurate thickness estimation might have
been obtained by measuring more calibration thicknesses for
the STC and PETC methods. The choice of three calibration
measurements for STC was based on prior research with an
XCounter detector [59], and the instructions given by the
PCD manufacturer. Three calibration thicknesses were also
used for PETC to make the results comparable with STC.
Therefore, three calibration points per calibration material in
PETC and STC were chosen. As the PC method contains
more fit parameters than STC and PETC, we measured more
calibration points (36 thickness combinations) for PC.
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In the energy response evaluation of the PCD, we observed
excellent tilewise agreement between low energy tails (ener-
gies 10 keV — 43 keV) of the *! Am response. These tails
originate from the interactions between detector crystal and
the Ly, Ly and L, -escape X-rays of 241 Am daughter particle
23TNp (13.9 keV, 17.8 keV, and 20.8 keV, respectively) and
K-escape photons of Cd (26.7 keV) and Te (31.8 keV) (Fig. 4,
Table I). Due to these photon escape effects, the low-energy
tails did not solely arise from charge sharing. Therefore,
the charge sharing correction of the PCD software could not
remove the low-energy tails entirely.

Clear inter-tile variation and high-energy drifts were
observed in the tilewise energy responses of the PCD (Fig. 5).
High-energy drifts might have been caused by a pulse-height
discrimination calibration that was not optimized for higher
energies. Moreover, the inter-tile variation was likely caused
by the lack of tile-specific transfer functions, since they have
a critical role in the reliable conversion of pulse-height in
the PCD. We did not account for these drifts as a compre-
hensive drift-model characterization would have required sev-
eral monochromatic radiation sources (e.g. from synchrotron)
within the used energy range, and this was considered to
be out of the scope of this study. Disregarding these drifts,
the response model and measurements had similar peak area-
to-valley areas (simulated model = 2.19, measured = 2.04 £+
0.07) (Table I) and exhibited the same FWHM (14.2 keV).
Nevertheless, the substantial deviation between the simulated
and true spectra at high energies generated a major source of
error for quantitative MD.

As a case study for our quantitative MD framework,
we applied it for the quantification of coronary calcium using
a simple cardiac rod phantom. Currently, calcium scoring is
performed with single-energy CT. However, the utilization
of dual-energy information in CT angiography has improved
the calcium quantification accuracy compared to single-energy
CT [60]. Although our results indicated that MD using PCDs
enables accurate quantification of coronary calcifications, these
results are not yet applicable to diagnostic cardiac CT. Current
PCDs are severely limited in their ability to process high pho-

ton fluxes encountered with clinical CT protocols complicating
their use in clinical cardiac imaging [18]. Furthermore, cardiac
motion needs to be addressed for long scan times with low
flux. This aspect needs to be investigated with motion correc-
tion schemes e.g. using ECG gating [61] in future studies.

Several limitations should be addressed when interpreting
the results. Since the cardiac rod fitted into the small field of
view of our PCD, it was imaged instead of a torso phantom.
This was done to avoid the interior tomography geome-
try [62], which can affect the quantitative values. Also, the lack
of suitable anti-scatter grid or post-collimation affected the
measured counts through increased scattering. Addition of
beam-collimation would most likely have improved the accu-
racy of the framework for each calibration technique.

Furthermore, the non-optimal positioning and the large focal
spot of the X-ray tube introduced geometric inaccuracy to the
imaging system. This inaccuracy manifested as blurring of the
calcification boundary in the reconstructions (Fig. 8). Although
the tube could not be positioned exactly perpendicular to the
detector surface and through the rotation axis, the resulting
error was mitigated by mounting the C-arm to the optical
table using a lift jack and mounting poles. The blurring of the
calcifications due to the large focal spot could also have been
mitigated by reducing the magnification by decreasing the
object-to-detector distance. However, our main concern was to
reduce the effects of X-ray scattering. Therefore, we decided to
utilize a large air gap between the object and the detector [63]
to reduce the effects of scatter at the detector.

Finally, the image reconstruction method may have intro-
duced bias to the obtained quantitative results. Particular care
was therefore taken during image reconstruction and analy-
sis; the same regularization parameter, chosen after a visual
comparison between reconstructions obtained with different
regularization parameters, was used for each measurement.
We also observed ringing artifacts in tissue-specific recon-
structions (Fig. 7). These artifacts were caused by dead pixels
located in the tile borders.

Regarding noise estimation in the PWLS reconstruction,
more accurate noise-estimate could have been obtained by
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estimating the noise directly from the material decomposed
frames. However, this procedure would have resulted in high
computational demands due to the requirement of iterative
decomposition of each measured frame at full resolution
(513 x 1547). Therefore, variance-estimation was obtained
from aBMD decomposed projections to achieve reasonable
computation times. A noteworthy observation is that (10)
reduces to the aBMD estimate (15) when assuming a mono-
chromatic dual-energy measurement with the same energies
as the weighted average energies of the polychromatic LE
and HE measurements. Therefore, aBMD was a justifiable
approximation to use in the estimation of variance in the
material decomposed projections.

The choice of a particular segmentation technique can
introduce inaccuracies to the quantitative results. Commonly
in Agatston scoring, a fixed segmentation threshold is used.
Due to the large variation between the used insert densities
(100 mg/cm? — 400 mg/cm?), using one fixed threshold did
not provide visually sufficient segmentation accuracy, and
would have required manual intervention to correct the seg-
mentations. Thus, we decided to use a locally adaptive region
growing method to properly account for the varying insert
densities. The segmentations were visually assessed to confirm
the accuracy of the segmentations. We believe that the main
reason for the observed high errors in volume quantification
was likely related to the limited spatial resolution of the
imaging system.

Future work will address a validation of the framework
using a torso phantom in interior tomography geometry.
This validation is required for proving a clinically relevant
demonstration of scatter-resilience with our framework. Future
research should also investigate the accuracy of the framework
in the quantification of contrast agents such as gadolinium
and iodine which has been successful in prior research [9].
Finally, the minimum radiation dose required for accurate MD
combined with the optimal low-dose reconstruction technique
warrants further investigation.

V. CONCLUSION

We decomposed PCD measurements successfully to
CaHA and PMMA bases and reconstructed them into
material-specific images. Moreover, we were able to obtain
accurate quantification of CaHA density and mass in a cardiac
rod phantom with the introduced multi-energy framework. In
light of our results, we propose that MD using PCDs can be
used for accurate coronary artery calcium mass and density
quantification. More studies are, however, needed to verify
these results in a clinical setting for cardiac CT.
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