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Adaptive Gaussian Weighted Laplace Prior
Regularization Enables Accurate Morphological

Reconstruction in Fluorescence
Molecular Tomography

Hui Meng, Kun Wang , Yuan Gao , Yushen Jin, Xibo Ma, and Jie Tian , Fellow, IEEE

Abstract— Fluorescence molecular tomography (FMT),
as a powerful imaging technique in preclinical research,
can offer the three-dimensional distribution of biomarkers
by detecting the fluorescently labelled probe noninvasively.
However, because of the light scattering effect and the
ill-pose of inverse problem, it is challenging to develop an
efficient reconstructionmethod, which can provide accurate
location and morphology of the fluorescence distribution.
In this research, we proposed a novel adaptive Gaussian
weighted Laplace prior (AGWLP) regularization method,
which assumed the variance of fluorescence intensity
between any two voxels had a non-linear correlation with
their Gaussian distance. It utilized an adaptive Gaussian
kernel parameter strategy to achieve accurate morpholog-
ical reconstructions in FMT. To evaluate the performance
of the AGWLP method, we conducted numerical simulation
and in vivo experiments. The results were compared with
fast iterative shrinkage (FIS) thresholding method, split
Bregman-resolved TV (SBRTV) regularization method, and
Gaussian weighted Laplace prior (GWLP) regularization
method. We validated in vivo imaging results against pla-
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nar fluorescence images of frozen sections. The results
demonstrated that the AGWLP method achieved superior
performance in both location and shape recovery of fluo-
rescence distribution. This enabled FMT more suitable and
practical for in vivo visualization of biomarkers.

Index Terms— Fluorescence tomography, multi-modality
fusion, brain.

I. INTRODUCTION

FLUORESCENCE molecular imaging (FMI) can nonin-
vasively image biomarkers by detecting the distribution

of targeted fluorescence probes in biological tissue [1]–[3].
However, due to the absorption and scattering effect of
photon propagation, FMI only provides the qualitative planar
photon distribution information on the surface of an imaging
object, which does not reflect the 3D spatial distribution of
fluorescence probes. This limits the application of FMI for
studies on the spatial heterogeneity in tumors. Therefore,
continued efforts have been devoted to developing fluorescence
molecular tomography (FMT), which is supposed to restore the
3D distribution of interior fluorescence probes [4], [5]. FMT
holds great potential for the research on tumor heterogeneity,
because there is still not an ideal tool for in vivo 3D visual-
ization of special biomarkers [6], [7].

To improve the quality of FMT reconstruction, several
methods have been proposed. One effective strategy is uti-
lizing the spatial distribution of different biological tissues,
which can be segmented from computed tomography (CT) and
magnetic resonance imaging (MRI), as a prior information to
construct the photon propagation model [8], [9]. Furthermore,
optimization methods with different regularizations were also
used to alleviate the ill-posed problem in FMT reconstruction.
One of the major methods is adopting assumption that the
fluorescence source is sparse compared with the entire recon-
struction region, so either sparse regularization terms (L0, L1,
Lp (0<p<1), etc.) [10]–[13] or greedy strategies [14], [15]
were able to be employed. Besides, total variation regulariza-
tion methods [16]–[18] have been proposed to preserve sharp
transitions in FMT reconstruction. Tikhonov regularization
with different regularization matrices have also been widely
used in reconstruction [8], [19]. Although most of these meth-
ods continuously improved the location accuracy of fluores-
cence sources, there was only few success in the accurate
morphological reconstruction of fluorescence distributions.
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In the study of orthotopic glioma morphological
FMT reconstruction, several work have been reported
that the morphology of fluorescence distribution can be
recovered [7], [20]–[22]. The major strategy of these recon-
struction methods is adopting the tumor region prior which
segmented from the other structural imaging modalities (CT,
MRI). Thus, the region of reconstructed fluorescence source
is heavily depended on these non-optical imaging modalities,
and did not present the specific distribution of biomarker. The
distribution of targeted fluorescence probes is not entirely
consistent with the real or segmented tumor region [23]–[25],
which suggests that such pre-defined prior from imaging
segmentation is likely to be improper for obtaining accurate
biomarker distribution. Thus, there is a pressing need for a
method that can provide accurate morphological reconstruction
of the fluorescence source distribution without the segmented
tumor region prior. However, existing methods for FMT
reconstruction have not obtained satisfactory results [26].
The over-smoothed effect and low contrast-to-noise ratio still
influenced the shape recovery in FMT reconstruction. In this
study, we proposed an adaptive Gaussian weighted Laplace
prior (AGWLP) regularization method to overcome the over-
smoothed effect and improve contrast-to-noise ratio. AGWLP
method reconstructed the fluorescence source without using
the segmented tumor region prior and yet obtained superior
morphological reconstruction of fluorescence distribution in
glioma.

AGWLP method adopted an emerging assumption that the
variance of fluorescence intensity between any two voxels
has a non-linear inverse correlation with their Gaussian dis-
tance [27]. Based on this assumption, an adaptive Gaussian
kernel parameter strategy was designed to adaptively adjust
the weight of Gaussian distance of voxels with different fluo-
rescence intensity. This strategy aimed to effectively overcome
the problems of over-smooth and low contrast-to-noise ratio in
FMT reconstruction, and improve the quality of morphological
reconstruction without tumor region prior.

To assess the performance of AGWLP method, simula-
tion and in vivo experiments in orthotopic glioma models
were implemented. Fast iterative shrinkage (FIS) thresholding
method, Split Bregman-resolved TV (SBRTV) regularization
method, Gaussian weighted Laplace prior (GWLP) regular-
ization method and kernel method [13], [16], [27], [28]
were used for comparisons. The results of AGWLP method
showed significant improvement in both localization and shape
recovery of the fluorescence distribution.

This paper is organized as follows: Section II introduces the
forward and inverse models of FMT reconstruction, the recon-
struction algorithm based on AGWLP method, the design
of in vivo experiments and the evaluation index. Section III
presents the results of simulation and in vivo experiments.
At last, Section IV gives conclusion and discussion of our
proposed method.

II. METHODOLOGY

A. Photon Propagation Model of Fmt

For steady-state FMT reconstruction, the propagation of
light in biological tissue can be modeled by the coupled

diffusion equations with Robin-type boundary condition [26],
which is defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (Dx (r)∇�x(r)) − μax(r)�x (r)

= −�δ(r − rl) r ∈ �

∇ · (Dm(r)∇�m(r)) − μam(r)�m(r)

= −�x(r)ημa f (r) r ∈ �

2Dx,m(r)∇�x,m(r) + q�x,m(r) = 0 r ∈ ∂�

Dx,m = 1/3(μax,am + (1 − g)μsx,sm)

(1)

where ∇ denotes the gradient operator, and r is the location
vector inside the imaging domain �. rl is the positions of
excitation source with the amplitude �, which is seated at
one transport mean free path beneath the surface of biological
tissue. Subscripts x and m are the excitation and emis-
sion process, respectively. �x,m(r) denotes the photon flux
density (W/mm2) at position r. μax,am and μsx,sm are the
absorption coefficients and scattering coefficients in mm−1,
respectively. Dx,m is the diffusion coefficient, and g denotes
the anisotropy parameter. ημa f (r) is the fluorescent source to
be reconstructed, where η is the quantum efficiency. q is the
optical reflective index.

Based on finite element analysis, (1) can be transformed
into the following equation [29]:

� = AX (2)

where � denotes the measured light flux on the object surface,
A denotes the system matrix, and X is the distribution of
fluorescent sources in biological tissues [30].

B. Inverse Problem of Reconstruction

FMT reconstruction is aimed to solve the inverse problem
of (2). Because of the noise in the FMI measurement and the
ill-posed problem in system matrix A, unconstrained optimiza-
tion with Tikhonov regularization strategies are widely utilized
to obtain the optimal approximate solution of the fluorescent
source distribution X [19]. The unconstrained optimization of
FMT reconstruction with Tikhonov regularization is defined as

min E(X) = 1

2
‖ AX − � ‖2

2 +λ ‖ L X ‖2
2 (3)

where λ is the regularization parameter utilized to control
the tradeoff between the regularity term and fidelity term.
L-curve analysis was utilized to determine the value of λ in all
experiments (Fig. S1 and Fig. S2). L denotes the regularization
matrix and it is defined widely as an identity matrix. However,
Tikhonov regularization with identity matrix usually causes the
over-smoothed effect in FMT reconstructions. Therefore, the
anatomical structure and intensity distribution are adopted as
the prior information to construct the regularization matrix to
alleviate this problem.

C. Reconstruction Based on Adaptive Gaussian
Weighted Laplace Prior Regularization

In this section, we proposed a practical AGWLP method,
which was inspired by the GWLP method firstly developed
for bioluminescence tomography (BLT) [27], to improve the
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overall effect of FMT reconstruction. GWLP constructs the
regularization matrix L with the Gaussian distance of each
couple voxels, and the regularization matrix is given as
follows [27]

LG = (li, j )N×N (4)

li, j =

⎧⎪⎪⎨
⎪⎪⎩

1 i = j

− ρsk exp(
− d2

i, j

4R2 ) i, j ∈ St & i �= j

0 otherwi se

(5)

ρsk = 1/(
∑

∀i, j∈St,i �= j
exp(

−d2
i, j

4R2 )) (6)

where each element li, j in LG is named as the decay element.
St denotes the sub-image t, and di, j is Euclidean distance
between voxels i and j . ρsk is the radial mollifier. R is the
radius of the Gaussian kernel, which is a constant for all voxels
in the GWLP method. Although GWLP successfully provided
morphological information of glioma in BLT reconstructions,
the drawbacks of over-smooth and low contrast-to-noise ratio
exhibited in FMT reconstructions. To overcome these prob-
lems, here we proposed the AGWLP method utilizing an adap-
tive rather than a fixed Gaussian Kernel parameter designed in
GWLP. AGWLP divided the targeting voxels into three groups,
the high-intensity group �h , the middle-intensity group �m ,
and the low-intensity group �l .

�h = {
k|Xn

k ≥ θh Xn
max, 1 ≤ k ≤ N

}
(7)

�m = {
k|θlX

n
max ≤ Xn

k ≤ θh Xn
max, 1 ≤ k ≤ N

}
(8)

�l = {
k|Xn

k ≤ θl Xn
max, 1 ≤ k ≤ N

}
(9)

where Xn
k and Xn

maxdenote the intensity of the k-th voxel
and the maximum intensity of voxels calculated in the n-th
iteration, respectively. θh and θl are thresholds used to divide
voxels into the three groups. Because large Gaussian kernel
parameters tend to decrease the intensity variance of adjacent
voxels and cause the smoothing effect [31], we assigned
a large Gaussian kernel parameter RL to voxels belonging
to �h and �l . Therefore, the high-intensity region can be
better defined, as well as the background signals can be
weakened. Furthermore, a small Gaussian kernel parameter
RS was assigned to voxels in �m to preserve the boundary
information of the fluorescence source. Based on this strategy,
the regularization matrix L AG is defined as follows

L AG = (li, j )N×N (10)

li, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j

− ρsk exp(
− d2

i, j

4R2
L

) i, j ∈ St & i �= j & i ∈(�h ∪�l)

− ρsk exp(
− d2

i, j

4R2
S

) i, j ∈ St & i �= j & i ∈ �m

0 otherwi se

(11)

ρsk = 1/(
∑

∀i, j∈St ,i �= j.i∈(�h ∪�l )
exp(

− d2
i, j

4R2
L

)

+
∑

∀i, j∈St ,i �= j.i∈�m
exp(

− d2
i, j

4R2
S

)) (12)

In this study, the initial parameters were set as RL = RS ,
so the first iteration solution is equal to (4). The parameters
θh and θl were set as 0.95 and 0.1, respectively. In dual-
source reconstruction, RS and RL were chosed to be 1 and 6,
respectively. In morphological reconstruction, we used Rs =
0.4 and RL = 20 to obtain accurate FMT reconstruction.
The comparisons of different parameters R and θ are pro-
vided in the Supplementary Material Section S.I.B and S.I.C,
respectively. Supplementary materials are available in the
supplementary files / multimedia tab.

Fletcher-Reeves conjugate gradient (CG) method [32] was
introduced to solve the inverse problem of (3). Thus,
the AGWLP method can be summarized in Algorithm 1.

Algorithm 1 AGWLP Method
Preprocess
1: Mapping the fluorescence images to the high-resolution
CT data.
2: Segmenting CT data into muscle, skull, and brain, then
labeling them as sub-images.
Step 1: Calculating the system matrix A by (1)
Step 2: Initializing the regularization matrix by (4) and
constructing the optimization function by (3).
Step 3: Using CG method to solve the inverse problem.
In each loop, the regularization matrix are updated by (10),
and the calculated intensities of voxels are corrected based
on the non-negativity prior.

D. In Vivo Experiment

Male BALB/c nude mice were obtained from the Beijing
Vital River Laboratory Animal Technology Co. Ltd. All animal
experiments were implemented under the guideline approved
by the Institutional Animal Care and Use Committee at
Peking University. A newly designed fluorescence probe,
Tf-IRDye800, was employed for in vivo imaging. To
prepare it, 0.34 mg NH2-PEG-COOH (Innochem) and 0.1 mg
IRDye800-NHS (LI-COR Bioscience) were dissolved in 4 mL
phosphate-buffered saline (PBS, pH 7.4) and stirred for 1 hour.
Then we added 6.6 mg transferrin (Sigma-Aldrich), 0.16mg
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochlor-
ide (Innochem), and 0.09mg N-Hydroxy succinimide
(Innochem) to the mixture, and the mixture was incubated at
the room temperature for 24 hours under constant shaking
at 500 rpm. Finally, the probe was purified by ultrafiltration
through a membrane (cutoff = 50 kDa) and redissolved
in 5 mL PBS.

All animal experiments were implemented under isoflurane
gas anaesthesia (500 mL/min, Matrx VMR Small Animal
Anesthesia Machine, Matrx, USA), and all efforts were made
to alleviate the pain of the mice. To build the orthotopic
glioma models, 5×105 U-87 MG cells in 6 μl PBS were
injected into the brain of each mouse (0.5 mm anterior and
2 mm right to the bregma at a depth of 2.5 mm). After
7 days, the tumor-bearing mice were injected with 200 μL
Tf-IRDye800 through the tail vein. After 6 hours, the surface
fluorescence images and CT data were acquired utilizing a
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TABLE I
OPTICAL PARAMETERS USED IN NUMERICAL SIMULATION AND

IN VIVO EXPERIMENTS

pentamodal imaging system designed by our group [33], [34]
and the MRI scan (1.5t, M3TM, Aspect Imaging, Israel) was
implemented subsequently.

During the optical image acquisition, we used a 750 nm
continuous wave semiconductor laser with the output power
of 450 mW to provide the excitation illumination. We collected
fluorescence images using an electron multiplying charge cou-
pled device (EMCCD) camera (iXonEM+888, ANDOR, UK)
with 4 × 4 binning and 0.5 s exposure. A 25 nm band-pass
filter centered at 820 nm was used to capture the emission
light and limit the background noise. Besides the collection of
optical images, we acquired CT data to provide structural prior
information. Major corresponding organs like skull, brain, and
muscle were segmented from the CT data, and their optical
properties [35], [36] were shown in Table. I. T2-weighted
MR images were collected with the following parameters:
TR 6000 ms, TE 50 ms, slice thickness 0.8 mm, and slice
spacing 0.1 mm [27].

After the in vivo triple-modality imaging, frozen sections of
each mouse head were collected utilizing freezing microtome
(CM1950, Leica, Germany). Meanwhile, the ex vivo near
infrared fluorescence (NIRF) images of frozen sections were
acquired using a Live Cell Imaging System (AF6000 Modular
System, Leica, Germany) attached with a sensitive CCD
camera (Princeton Instruments, ProEM 1024B). Lastly, these
specimen were stained by hematoxylin and eosin (H&E) for
verifying the actual tumor area.

E. The Evaluation Index

To quantitative evaluate the accuracy of FMT reconstruction
in both source location and shape recovery, location error (LE),
contrast-to-noise ratio (CNR) and Dice index were used as
the quantitative indexes. LE measures the distance variation
between the centers of the actual region and the reconstructed
region. LE is defined as

L E =‖ La − Lr ‖2 (13)

where La and Lr denote the center coordinates of the actual
region and the reconstructed region, respectively. || · ||2 repre-
sents the operator of Euclidean distance.

CNR indicates the detectability of fluorescent sources within
reconstructed images from the background [37]. The higher the
CNR value, the easier it is to distinguish the source from the
background. The definition of CNR is presented as follows:

C N R = μRO I − μRO B√
ωRO I σ

2
RO I − ωRO Bσ 2

RO B

(14)

where μRO I and μRO B are the mean intensity values of the
region of interest (ROI) and region of background (ROB),

Fig. 1. The views of simulation models with the dual-source (a) and the
chestnut shaped source (b).

σ 2
RO I and σ 2

RO B are the respective variances. ωRO I and ωRO B

are the ratios of ROI and ROB relative to the whole region.
Furthermore, we adopted the Dice index to assess the quality
of morphological reconstructions.

Dice = 2|X ∩ Y |
|X | + |Y | (15)

where X and Y represent the point sets of the reconstructed
region and the actual region, respectively. Higher Dice index
reveals a better similarity of the two regions in both location
and morphology.

III. RESULTS

In this section, we evaluated the performance of AGWLP
using numerical simulation studies and in vivo probe dis-
tribution studies. This section is organized as follows: first,
dual fluorescence source experiments were presented to verify
the location accuracy and robustness (Fig. 1(a)). Second,
the morphological reconstruction accuracy was evaluated in
the chestnut shaped source reconstruction (Fig. 1(b)). Last,
in vivo reconstructions of the fluorescent probe distribution in
orthotopic glioma mouse models were demonstrated to prove
the practicability of AGWLP.

A. Dual-Source Reconstruction

The dual-source simulation studies were firstly implemented
to evaluate the location accuracy and robustness of AGWLP.
A mouse CT atlas [27] was utilized to construct a heteroge-
neous phantom, and two spherical sources, S1 and S2, were set
inside the brain, as shown in Fig. 1(a). The centers of S1 and
S2 are (23.5, 4.4, 7.0) mm and (18.9, 4.4, 7.0) mm. The radius
and depth of sources are 0.56 mm and 2 mm, respectively.
In the forward process, the simulation model was divided into
13150 nodes and 69826 tetrahedral elements. To avoid the
inverse crime, elements used in the inverse process were dif-
ferent from the forward process, which contained 9726 nodes
and 51055 tetrahedrons.

Fig. 2 shows the reconstructed dual fluorescence sources
in 3D rendered and 2D axial images using different methods.
The 2D axial slices crossing both fluorescent centers (Z =
7 mm) are specially selected for the comparison, and quantifi-
cations of LE are listed in Table. II. These comparisons were
performed with zero (Fig. 2(a)) and 15% (Fig. 2(b)) Gaussian
noise in surface flux signals, respectively, and results revealed
good source location tracing ability of all methods besides
SBRTV. Comparing with other methods, SBRTV failed to
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Fig. 2. FMT reconstruction results of dual fluorescent sources using
different approaches. (a) 0% and (b) 15% Gaussian noise was added in
simulations. Both 3D rendering images and 2D axial slices are presented
for comparisons. White circles in 2D axial slices indicate the ground truth
of the fluorescent sources.

TABLE II
QUANTITATIVE RESULTS OF LE IN THE DUAL-SOURCE SIMULATION

trace the correct barycenter of S2 in both noise levels. For
FIS, GWLP, and AGWLP, even though the extra 15% noise
indeed increased their biases, all corresponding LEs were still
smaller than 0.1 mm in general (Table. II), which proved they
all achieved high accuracy in source location reconstructions.

However, regarding to the morphological reconstruction,
FIS provided over-sparse results, whereas GWLP provided
over-inflated results within the same scale range. On the
contrary, AGWLP demonstrated a much better spatial over-
lap between reconstructed and true sources regardless the
noise level (Fig. 2). These comparisons suggested the
AGWLP method had superior morphological reconstruction
capability.

Besides these results, the comparisons of AGWLP and ker-
nel method in dual-source reconstruction were demonstrated
in the Supplementary Material Section S.II.A. Supplementary

materials are available in the supplementary files / multimedia
tab.

B. Chestnut Shaped Source Reconstruction

Different from using regular spherical sources, we adopted a
chestnut shaped source in the simulation model to further com-
pare their performances for rebuilding the source morphology
(Fig. 1(b)). The center of the chestnut shaped source is (20.8,
3.9, 6.1) mm. The axis length along x-axis, y-axis and z-axis
is 3.2 mm, 1.6 mm, and 2.3 mm, respectively. The depth of the
source is 1.7 mm. In the forward process, the simulation model
was meshed to 13202 nodes and 70266 tetrahedral elements.
In the inverse process, the meshed simulation model contained
9726 nodes and 51055 tetrahedrons.

Fig. 3 presents the reconstruction results of four methods,
and Table. III lists their quantifications of LE, Dice, and
CNR, respectively. Different from the previous simulation
experiment, FIS, instead of SBRTV, showed the largest
LE (0.51 mm), indicating the worst location tracing. GWLP
and AGWLP offered much smaller spatial biases (both LE <
0.1 mm) than FIS and SBRTV did (Table. III). Regarding
to the source morphology, FIS still offered an over-sparse
reconstruction, which was consistent with the dual-source
simulation. SBRTV and GWLP achieved much better morpho-
logical reconstructions (Fig. 3(a)), as the Dice was increased
from 0.18 to 0.50 and 0.44, respectively. It is still AGWLP
that provided the most accurate reconstruction of the source
morphology, with Dice of 0.79.

Besides the most accurate reconstruction of the source
location and morphology, AGWLP also achieved the best
recurrence of the source intensity. Comparing with FIS,
SBRTV, and GWLP, AGWLP provided remarkably higher
fluorescent intensity within the reconstructed source volume
(Fig. 3(a)). The comparison of intensity profiles between each
method revealed that AGWLP showed the highest similarity
to the true reference in transverse, coronal, and sagittal views
(Fig. 3(b-d)). The over-smoothed effect appeared in SBRTV
and GWLP were effectively suppressed. This was further
quantified by CNR. The CNR obtained by AGWLP was 12.87,
which was about 5.4 times that of FIS, about 1.5 times that of
SBRTV, as well as about 2.8 times that of GWLP (Table. III).
All these simulated results demonstrated a solid validation
that AGWLP achieved the most accurate fluorescence source
reconstruction in location, morphology, and intensity.

The different performance of AGWLP and kernel method
were provided in the Supplementary Material Section S.II.B.
Supplementary materials are available in the supplementary
files / multimedia tab.

C. In Vivo Experiment

To assess the practicability of the AGWLP method for
small animal studies, we conducted the in vivo FMT in
three orthotopic glioma mouse models. Through the maxi-
mum mutual information registration [38], the reconstructed
FMT images given by four methods were merged with
the MRI data according to the boundary of the mouse
brain [27].
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Fig. 3. FMT reconstructions of the chestnut shaped source using different methods. (a) The 3D rendering, transverse view, coronal view, and
sagittal view of the source given by FIS, SBRTV, GWLP, and AGWLP, respectively. The intensity distribution of the reconstructed results along the
x-axis (b), y-axis (c), and z-axis (d) in comparison with the actual fluorescence source profile. White dotted lines in (a) indicate the location of the
intensity profile. White circles in (a) present the ground truth of fluorescent sources. Black dotted lines in (b-d) indicate the threshold of 0.45.

TABLE III
QUANTITATIVE RESULTS FOR FOUR FMT RECONSTRUCTION

METHODS IN THE CHESTNUT SHAPED SOURCE SIMULATION

Fig. 4(a) presents the 3D rendering of the CT data with
the MRI-segmented tumor region (blue) and AGWLP recon-
structed fluorescence source region (red) for each tumor-
bearing mouse. Apparently, these two regions overlapped, but
did not completely coincide. Moreover, the four FMT recon-
struction methods also showed very different performances
in this in vivo experiment. FIS still provided over-sparse
reconstructions in all three mice, which was consistent with
simulation experiments (Fig. 4(b)). The fluorescence sources
given by SBRTV and GWLP were relatively similar. They both
partially solved the over-sparse problem in FIS. However, their
reconstructed areas were still smaller than the corresponding
tumor regions defined by MRI in all three mice, and they were
also obviously smaller than the fluorescent areas defined by the
ex vivo NIRF imaging of frozen sections (Fig. 4(b) and (c)).
The major reason causing such “shrunken” reconstruction
was the over-smooth effect. The high signal region (coded
in yellow and red) only appeared in the small central area
in the reconstructed source, but it gradually faded from the
center to the periphery (coded in purple and blue). Even

though we could adjust the color scale to artificially extend
its source volume, the overall CNR was always small. This
phenomenon was especially stronger in the deeper region of
the brain. Comparing with the ex vivo references, both SBRTV
and GWLP failed to reconstruct fluorescence source in deeper
tissues, which compromised the morphological information of
the probe distribution.

AGWLP successfully overcame the over-smooth problem in
each mouse. Comparing with SBRTV and GWLP, it offered a
much larger area of high signal intensities (Fig. 4(b)). The pur-
ple and blue area in the source periphery was narrower, giving
a sharp boundary of the reconstructed source. This remarkably
improved the overall CNR of reconstructed sources. More
importantly, it obtained more fluorescent information from the
deeper tissue in each mouse, which was also closer to the real
probe distribution visualized in the NIRF images of frozen
sections (Fig. 4(c)).

To analyze the results quantitatively, Dice index between
the reconstructed results of each method and the ex vivo
NIRF images of frozen sections was calculated and listed
in Table. IV. The average ± standard deviation (SD) of the
Dice index given by AGWLP was 0.86 ± 0.04, which was
significantly higher than that of the other methods (improve-
ments in percentage: FIS: 323.0%, P < 0.001; SBRTV: 48.3%,
P < 0.05; GWLP: 23.4%, P < 0.05). These results further
revealed the superior performance of AGWLP in obtaining
the morphology of the in vivo fluorescence probe distribution
in orthotopic glioma mouse models.
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Fig. 4. In vivo FMT of three orthotopic glioma bearing mouse models. (a) 3D rendering of the triple-modality imaging. The MRI segmented tumor
(blue region) and FMT reconstructed fluorescence source (red region) are fused in the CT data volume. (b) Comparison of reconstructed fluorescence
sources using four methods in the same axial slice of FMT and FMT-MRI. (c) H&E stained cryoslicing images and their corresponding near infrared
fluorescence images of frozen sections.

TABLE IV
QUANTITATIVE RESULTS OF DICE FOR FOUR FMT RECONSTRUCTION

METHODS IN in vivo EXPERIMENTS

The reconstruction results of five orthotopic glioma mouse
models using FIS thresholding method, SBRTV regulariza-
tion method, GWLP regularization method, kernel method
and AGWLP method were presented in the Supplementary
Material Section S.II.C. Supplementary materials are available
in the supplementary files / multimedia tab.

IV. CONCLUSION AND DISCUSSION

In this paper, a novel AGWLP strategy was proposed to
achieve the morphological FMT reconstruction independent
from the tumor region prior segmented from anatomical
imaging modalities. Based on the assumption that the vari-
ance of fluorescence intensity between any two voxels has
a non-linear correlation with the Gaussian distance between
them [27], AGWLP utilized an adaptive Gaussian kernel
parameter strategy to dynamically adjust the Gaussian weight
depending on the fluorescence intensity of reconstruction.
With the help of this strategy, AGWLP overcame the over-
smoothing problem and improved the contrast-to-noise ratio
of reconstructed sources.

To validate its performance, we conducted the dual-source
simulation and chestnut shaped source simulation experiments.
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FIS, SBRTV and GWLP were employed for qualitative and
quantitative comparisons. All results revealed that AGWLP
achieved the best fluorescence source reconstruction in both
3D localization and morphology recovery. To further assess
the practicability of AGWLP, we administrated the transferrin
targeting NIRF probes in three orthotopic glioma mouse
models, and acquired FMI-CT-MRI triple-modality imaging
data. The ex vivo H&E stained cryoslicing images and NIRF
images of frozen cryo-sections were also acquired as gold
standards to verify the performance of AGWLP. Consistent
with our simulation experiments, AGWLP still achieved the
best reconstruction of the in vivo probe distribution by min-
imizing the over-smooth effect and improving CNR. The
average Dice index given by AGWLP reached 0.86, which
was significantly higher than that of the other three methods.
These results proved that AGWLP successfully achieved the
accurate morphological reconstruction of fluorescence sources
in tumor-bearing mice.

To our best knowledge, this is the first study that acquired
such level of accuracy regarding to the morphological recon-
struction of fluorescence distribution in tumor-bearing mouse
models with only organ level structural prior rather than
the tumor region prior segmented from CT or MRI. This
enabled FMT as a more powerful molecular imaging tool for
small animal studies in the field of oncology. Our in vivo
experiment (Fig. 4) vividly demonstrated that there were
marked differences between the glioma cell distribution (H&E
staining), the fluorescence probe distribution (NIRF images
of cryo-sections), as well as the MRI defined glioma dis-
tribution. AGWLP based FMT provides a new quantitative
approach that can visualize such differences in vivo with
reliable morphological accuracy, so that the biochemical
events at the cellular and molecular level within glioma-
bearing mouse models can be further investigated in more
details.

The major limitations of AGWLP are that the threshold
used to classify the intensity level of voxels and Gaussian
kernel parameters were selected based on experience. It is
necessary to propose an adaptive parameter selection algo-
rithm to set these parameters objectively. Furthermore, since
AGWLP needs to update the regularization matrix based
on the calculated results during the iteration, it takes about
two minutes to accomplish one FMT reconstruction using a
personal computer. Besides that, AGWLP was only utilized
to reconstruct the fluorescence probe distribution in the brain
in this study. Its application and performance in other tumor
types or diseases need further investigations, which is also a
major work in our future studies.

In conclusion, a novel AGWLP strategy was developed
for morphological reconstruction of FMT. Compared with
the traditional methods, it achieved more accurate results in
both localization and morphological recovery of fluorescence
probe distribution. We believe this method pushed FMT
into a new level of chasing higher spatial accuracy, and
brought great promise in benefiting the application of FMT
for in vivo molecular imaging studies of tumor-bearing mouse
models.
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