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Abstract— Retinal template matching and registration is
an important challenge in teleophthalmology with low-cost
imaging devices. However, the images from such devices
generally have a small field of view (FOV) and image qual-
ity degradations, making matching difficult. In this paper,
we develop an efficient and accurate retinal matching
technique that combines dimension reduction and mutual
information (MI), called RetinaMatch. The dimension reduc-
tion initializes the MI optimization as a coarse localiza-
tion process, which narrows the optimization domain and
avoids local optima. The effectiveness of RetinaMatch is
demonstrated on the open fundus image database STARE
with simulated reduced FOV and anticipated degradations,
and on retinal images acquired by adapter-based optics
attached to a smartphone. RetinaMatch achieves a success
rate over 94% on human retinal images with the matched tar-
get registration errors below 2 pixels on average, excluding
the observer variability, outperforming standard template
matching solutions. In the application of measuring ves-
sel diameter repeatedly, single pixel errors are expected.
In addition, our method can be used in the process of
image mosaicking with area-based registration, providing
a robust approach when feature-based methods fail. To the
best of our knowledge, this is the first template matching
algorithm for retina images with small template images from
unconstrained retinal areas. In the context of the emerg-
ing mixed reality market, we envision automated retinal
image matching and registration methods as transforma-
tive for advanced teleophthalmology and long-term retinal
monitoring.

Index Terms—Retina image template matching, tele-
ophthalmology, dimension reduction, mutual information,
health monitoring.

I. INTRODUCTION

ELEMEDICINE applications are emerging at a rapid
pace due to innovations in hardware and software,
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and changing attitudes of clinicians, providers and con-
sumers. Teleophthalmology is an important component of
telemedicine, and it is now arguably the standard of care
in linking patients in remote areas to ophthalmologists.
Recently, low-cost teleophthalmology has been facilitated by
smartphone-based fundus imaging. In addition, the emerging
virtual and mixed reality sector may enable new teleophthal-
mology scenarios for long-term eye imaging and monitor-
ing. However, in the case of portable fundus photography,
non-mydriatic image quality is more vulnerable to distortions,
such as uneven illumination, noise, blur and low contrast [1].
In this paper, we address the challenging problem of auto-
mated retinal image matching and registration to enable future
teleophthalmology applications.

A. Motivation

The eye provides a unique opportunity to image internal
biological tissue in vivo and many diseases can be diagnosed
and monitored through ocular imaging. For example, diabetic
retinopathy is a common retinal complication associated with
diabetes, causing microaneurysms, exudates and hemorrhages
on the retina [2], [3]. Changes of retinal arteries and veins,
as well as their ratios, can be indicators of hypertension [4].
The timely detection of these pathological changes via regular
retinal screening and analysis is particularly important for
early diagnosis and prevention.

High-quality fundus images of the retina are traditionally
acquired in a laboratory setting with expensive and cum-
bersome equipments. Acquiring high-quality fundus images
poses a significant challenge for patients in rural and other
underserved areas who must overcome significant hurdles to
receive regular checkups in the clinic. Visiting an ophthalmol-
ogist is often inconvenient for patients in the city as well. In
contrast, emerging portable and low-cost fundus cameras allow
fast, accessible imaging of the retina, albeit with a decrease
in image quality. Using portable fundus cameras outside the
clinic connects rural patients with their doctors [5], [6]. By
daily retinal monitoring and trend analysis of the data, ocular
disease may no longer be considered the silent disease, as early
onset is likely to be detectable and even predicted [7].

A typical example of a portable fundus camera involves
a clip-on lens adapter attached to a smart-phone system [5].
These consumer-grade optical devices have two main disad-
vantages: small FOV and lower image quality than lab-based
fundus cameras. The FOVs of current clip-on lenses range
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Fig. 1. Alignment functions with respect to translations between the template and the white boxed area. The full FOV image in (a) is taken with the
fundus camera in the clinic. The top left image in the magenta square is the template captured by a typical adapter-based fundus camera D-eye,
having only translations along two axes. (b)(c)(d) show the alignment function between the template and regions within the white boxed area. The
true alignment position is (0, 0) — see red dots. Only NMI shows an obvious maximum at the alignment position. Note that the optimal value of SSD

is minimum and NCC and NMI are maximums.

from 5° to 20° in undilated eyes [5], [8]. In this case, many
small images captured in the undilated eye at different loca-
tions are necessary to obtain adequate retinal imaging. The
same retinal locations need to be re-imaged and matched in
order to monitor changes longitudinally over time. Accord-
ingly, all of the captured small FOV images can be registered
and compared to a stored wide FOV retinal image. This
reference image is a baseline which can be stitched together
by a series of small FOV images, or can leverage wider
FOV images captured from a conventional ophthalmoscope.
Taking the small FOV images as the templates to be matched,
it is a template matching process, as shown in Fig. 1(a).
The template only covers a small area on the retina, thus is
unlikely to be affected much by the nonlinear deformation due
to the non-planar eyeball surface. The location of the template
in the full image may be represented by an affine linear
transformation, i.e. including translation, rotation, shear, and
scaling. This provides a mathematical framework to formulate
template matching as an optimization problem.

As described above, an accurate template matching method
to deal with small FOV and low quality template images is
needed in teleophthalmology. Since the method will be imple-
mented on portable devices, the efficiency of computation is
also a driving requirement.

B. Related Work

Much of the foundational work on template matching of
retinal images is based on more general image registration
methods, which have been comprehensively studied in recent
years. However, general retina registration methods focus on
matching image pairs that both have a large FOV with local
deformations or different image modalities. Many existing
retinal template matching algorithms are limited to detecting
specific objects from the image, where the template always
contains a certain feature, such as the optic disc, exudate and
artifacts [9]-[11].

Retinal image registration itself is challenging: the non-
vascular surface of retina is homogeneous in healthy reti-
nas, while exhibiting a variety of pathologies in unhealthy

retinas [12]. Retina images captured by adapter-based optics
provide less information and have low image quality, which
further increases the difficulty of template matching. It is
instructive to introduce current retina image registration meth-
ods which can be used for template matching and their feasibil-
ity in addressing our stated problem. Retina image registration
approaches can be classified into area-based and feature-based
methods. Feature-based methods optimize the correspondence
between extracted salient objects in retina images [12]-[16].
Bifurcations, fovea, and the optic disc are common features
used for retinal image registration. A small FOV template has
little probability of containing specific landmarks on the retina,
thus the fovea and optic disc are not applicable. Vascular bifur-
cations are more common, while similarly, the small number of
bifurcations in the template cannot form the basis of a robust
registration. Besides, the extraction of the vascular network in
poor quality images is difficult. General feature point based
approaches are also implemented in retina registration, such
as SIFT-based [17], [18] and SURF-based methods [19], [20].
These approaches can register the images in complex scenarios
and are computationally efficient. They assume the feature
point pairs can be reliably detected and matched to estimate the
transformation. Although feasible in most cases, the process
can fail on low-quality retina images without enough distinct
features.

Area-based approaches match the intensity differences of
an image pair under a similarity measure, such as SSD (sum
of squared differences) [21], CC (Cross-Correlation) [22] and
MI (mutual information) [23], then optimize the similarity
measure by searching in the transformation space. Avoiding
pixel-level feature detection, such approaches are more robust
to poor quality images than feature-based approaches. How-
ever, retina images with sparse features and similar back-
grounds are likely to lead the optimization into local extrema.
Fig. 1 shows an example of the area-based method with three
similarity measures. The small template image is captured
by the adapter-based D-eye optics which is registered onto
a full fundus image. Both of the images are acquired by
the same modality. SSD and normalized CC (NCC) do not
have an obvious peak at the alignment position (0,0), giving
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no clear information on the alignment quality. Normalized
MI (NMI) shows a maximum at the alignment position, while
it still has local extrema which can interfere with the global
optimization. Besides, when the size difference between the
template and full image is too large, registration with MI can
be computationally prohibitive.

C. Contributions

In this paper, we present RetinaMatch, a new template
matching method that overcomes the challenges posed by
registering small FOV and low-quality retinal images onto
a full image. This approach is an improvement over the
area-based methods that only optimize the MI metric [23],
since it achieves more accurate and robust template matching
near the alignment position, as shown in Fig. 1.

The unique aspect of our approach is that we combine
dimension reduction methods with the MI-based registration
to reduce the sensitivity to local minima, while improving the
matching efficiency. An overview of our novel template match-
ing framework is shown in Fig. 2. Specifically, the principal
component analysis (PCA) and block PCA are used to localize
the template image coarsely, then the resulting displacement
parameters are used to initialize the MI metric optimization.
The initial parameters provided by the coarse localization are
in the convergence domain of MI metric. In this way, the trans-
formation search space for optimization is narrowed signifi-
cantly. The PCA computation is accelerated with randomized
methods [24]-[26], which improves the coarse localization
efficiency. Both the use of PCA for coarse localization and the
use of randomized methods for acceleration are unique meth-
ods of implementation. Further, we have carefully compared
PCA against several other dimension reduction techniques,
and we find that PCA offers the best tradeoff in simplicity,
accuracy, and efficiency. Another contribution is that this paper
proposes an efficient image mosaicking algorithm based on
the image dimension reduction. It accelerates the matching of
overlapped images among unordered data, especially in image
mosaicking with area-based registration methods.

The proposed method is validated on the STARE retinal
dataset [27] with synthetic deformations, and in vivo data cap-
tured by a low-cost (<US$400) adapter-based optical device
D-eye. The performance of different dimension reduction tech-
niques are also compared on the STARE dataset. RetinaMatch
can find the correct mapping even when the image is of poor
quality with non-distinct features, whereas other methods fail
due to unstable feature detection and local extrema.

Il. PRELIMINARIES
A. PCA for Location Estimation

Dimension reduction methods allow the construction of
low-dimensional summaries, while eliminating redundancies
and noise in the data. To estimate the template location in
the 2d space, the full image dimension is redundant, thus we
apply dimension reduction methods for the template coarse
localization. In this section we describe the dimension reduc-
tion methods we use in this paper.

Generally, we can categorize dimension reduction tech-
niques as either linear or nonlinear. The most prominent linear
technique is principal component analysis (PCA), which dates
back to the work of [28] and [29]. PCA is selected as the
dimension reduction method in RetinaMatch since it is simple
and versatile. Specifically, PCA forms a set of new variables
as a weighted linear combination of the input variables.
Consider a matrix X = [xq, X2, ..., Xg] of dimension n x d,
where n denotes the number of observations and d is the
number of variables. Further, we assume that the matrix X is
column-wise mean centered. The idea of PCA is to form a set
of uncorrelated new variables (so called principal components)
as a linear combination of the input variables:

z; = Xw;, (D

where z; is the ith principal component (PC) and w; is the
weight vector. The first PC explains most of the variation in
the data, the subsequent PCs then account for the remaining
variation in descending order. Thereby, PCA imposes the
constraint that the weight vectors are orthogonal. This problem
can be expressed compactly as the following minimization:

minimize |X — ZW|%
subject to W' W =1, @)

where |.||F is the Frobenius norm. The weight matrix W
that maps the input data to a subspace turns out to be
the right singular vectors of the input matrix X. Often
a low-rank approximation is desirable, i.e., we compute
only the & dominant PCs using a truncated weight matrix
Wi = [wi, wo, ..., Wkl

PCA is generally computed by the singular value decom-
position (SVD). Many algorithms have been developed
to streamline the computation of the SVD and PCA
for high-dimensional data that exhibits low-dimensional
patterns [30]. In particular, tremendous strides have been made
to accelerate the SVD and related computations using ran-
domized methods for linear algebra [24]-[26]. Since we have
demonstrated high performance with less than 20 principal
components, the randomized SVD is used to compute the
principal components, improving the efficiency in this retinal
mapping application for mobile platforms. The randomized
algorithm proceeds by forming a sketch Y of the input matrix

Y = XQ, 3)

where Q is a d x [ random test matrix, say with independent
and identically distributed random standard normal entries.
Thus, the [ columns of Y are formed as a randomly weighted
linear combination of the columns of the input matrix, provid-
ing a basis for the column space of X. Note, that / is chosen
to be slightly larger than the desired number of principal
components. Next, we form an orthonormal basis Q using the
QR decomposition Y = QR. Now, we use this basis matrix
to project the input data matrix to low-dimensional space

B=Q'X. 4)

This smaller matrix B of dimension / x d can then be used
to efficiently compute the low-rank SVD and subsequently
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the dominant principal components. Given the SVD of B =
UV, we obtain the approximate principal components as

Z = QUX = XV. (5)

Here, U and V are the left and right singular vectors and the
diagonal elements of X are the corresponding singular values.
The approximation accuracy can be controlled via additional
oversampling and power iterations, for details see [31].

It is important to note that PCA is sensitive to outliers,
occlusions, and corruption in the data. In ophthalmological
imaging applications, there are several potential sources of
corruption and outliers when imaging the full image, including
blur, uncorrected astigmatism, inhomogeneous illumination,
glare from crystalline lens opacity, internal reflections (e.g.,
from the vitreoretinal interface and lens), transient floaters in
the vitreous, and shot noise in the camera. Further, there is
always a trade-off between illumination and image quality,
and there is strong motivation to introduce as little light as
necessary for the patient comfort and health. The robust prin-
cipal component analysis (RPCA) [32], [33] was introduced
specifically to address this issue, decomposing a data matrix
into the sum of a matrix containing low-rank coherent structure
and a sparse matrix of outliers and corrupt entries. In general,
RPCA is more expensive than PCA, requiring an iterative
optimization to decompose the original matrix into sparse and
low-rank components. Each step of the iteration is as expensive
as regular PCA, and typically on the order of tens of iterations
are required; however, PCA may be viewed as an offline step
in our procedure, so that this additional computational cost is
manageable. RPCA has been applied with success in retinal
imaging applications to improve image quality [34], [35]. In
the examples presented in this work, the data appears to have
few enough outliers so that RPCA is not necessary, although it
is important to keep RPCA as an option for data with outliers
and corruption.

B. Mutual Information

In this section, we describe the maximization of MI for
multimodal image registration. We define images S and S as
the template and target images, respectively. A transform u is
defined to map pixel locations x € S to pixel locations in S.

The main idea of the registration is to find a deformation %
at each pixel location x that maximizes the MI between the
deformed template image S(u(x)) and the target image §(x).
Accordingly,

Uopr = argmin MI(S(u(x)),§(x)), (6)
where
~ o pli1,i2)
= log(———).
MI(S(u(x)),S(x)) %%p(zl,zz) s ey @

Here, i1 and i, are the image intensity values in S(u(x)) and
§(x), respectively, and p(i1) and p(ip) are their marginal prob-
ability distributions while p(i,i2) is their joint probability
distribution.

[1l. PROPOSED APPROACH

In this section, we describe RetinaMatch, which combines
dimensionality reduction and mutual information based image
registration. From Fig. 1 we can see MI performs better than
other similarity metrics even on the same modality images,
thus we focus on the MI criterion. Given a large FOV full
image and a small FOV template image, our method can be
used to localize the template on the full image accurately and
efficiently. The full image can be a wide-field fundus image or
a mosaicked one from D-eye images. The underlying concept
is to use PCA and block PCA first for coarse localization,
which can be a warm start to following accurate registration.
In accurate registration, the MI metric is optimized to find
the optimal transformation. Since the optimization domain has
been narrowed to a small range near the optimal position with
coarse localization, the accurate registration can achieve high
accuracy and efficiency. Fig. 2 provides an overview of the
general approach to RetinaMatch.

A. Coarse Localization With Dimension Reduction

We define the full image and the template as F and S
respectively. The full image F is split into target images
11,12,...,11\12

L = ¢, F). ®)

The function ¢ crops I; from F at b; and b; = [x;, y;, h, w],
where (x;, y;) denotes the center position and (k, w) denotes
the width and height of the source image. There is a certain
displacement f of neighboring target images in the x and y
axes. As shown in Fig. 2(a), each target image has a large
overlap with its neighbors. The overlap forms the redundancy
of the data which can indicate the location distribution between
each image and its neighbors. Applying dimension reduction
techniques on such data we can obtain the low-dimensional
distribution map of all target images.

Target images are resized to vectors and form the matrix X
€ R"™*4. We obtain the low-dimensional distribution represen-
tation of the target image distribution by implementing PCA
on X:

Z=XW, 9

where Z = [z21,22,23,...,28]T € R™, W e R/ and
| < d. The image space € is mapped to a low-dimensional
space €, with the mapping W. W and Z are saved in the
dictionary D.

Given a template S, the coarse position can be estimated by
recognizing its nearest target image. The nearest target image
in Q; should also be the nearest representation of S in €.
Accordingly, we obtain the low-dimension feature z; of the
template in Q:

s =5W, (10)

where § € RY is the reshaped vector of template S. Let
A(zs, z) be the Euclidean distance between z; and a feature z
in Z. z* is the nearest target feature of the source image S
in Qp:

(1D

z* = argmin A (zs, 2).
Z



GONG et al.: RETINAMATCH: EFFICIENT TEMPLATE MATCHING OF RETINA IMAGES

1997

(a) Collect target images from the full image

[ ] Fullimage

Target

:%‘ D images
! Mapped
el
2 D template
3
IS
o]
o)
@
o

(2) Locate the template onto the

full image.
(V]
(o)}
8
w
g f
£
=
(@)

(1) Image registration between
template and nearest target image.

(d) Accurate registration: MI-based registration
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Schematic of the proposed retinal template matching method shown in four panels from (a) to (d). In panel (a) the wide-FOV full image

is sampled with many overlapping target images. (b) Each target image is mapped into the low-dimensional space according to its positional
relationship. (c) An example template is also mapped into this space and its nearest target image is found. (d) The nearest target image is registered
with MI. The panels (a) and (b) in green can be pre-processed offline when the full image is obtained, while panels (c) and (d) are considered as the
online stage. The schematic describes the method without using the improvement of block PCA. Please see Sect. Il for more details of block PCA.

The corresponding target image location is used as the coarse
location of S. Ideally, the difference between the coarse
location and the ground truth in x and y axes should be less
than f/2 pixels.

In the first experiment in Sect. IV, PCA outperforms other
non-linear dimension reduction methods, while the error is
larger than f/2. The main reason is that the image degradation
creates spurious features that contribute to the final classi-
fication. To reduce the influence of local spurious features,
we implement block PCA to further improve the accuracy of
the coarse localization. By computing the PCA of different
local patches in the template, the effect of local features, which
leading to the template can not be located correctly, is reduced.

Here we introduce the detailed process of the block PCA.
Obtaining the nearest target image, we crop a larger image
at the same position from the full image as the new target
image I. In this way, the template can have more overlap
with the new target image when there is a large offset
between two images. We segment I and the template S into
small patches with the function ¢, where the patch size is
smaller than the source image with the axial displacement of
neighboring patches f’. Similarly, all image patches from I
are mapped into the low-dimension space Q3 with W', Let
Z/ denote the low-dimensional representation of the target

image distribution. Each template patch is then mapped to the
space with W’.! The nearest target patch for each template
patch is determined with the Euclidean distance as described
before. The coordinates of each target patch represent the
location of the mapped patch. We use the same weight for
each region of the template for localization, thus the average
of all template patches location can be taken as the template’s
location. Let b,, be the mean of the coordinates of selected
nearest target patches, which then represents the center of
the template on I. Accordingly, the template location on the
full image can be estimated and the region is cropped as
the image S. The accurate registration is then applied to the
template S and image S. In this way, the coarse localization
provides an estimate of a good initial point for the accurate
registration.

In the implementation of the proposed coarse localization,
the full image is assumed to exist so the dictionary D can be
built in advance. This is the pre-computed part as shown in
Fig. 2 (a-b). The process after the template being acquired is
called the online stage, involving the block PCA for coarse

1Fig. S1 in the supplementary material gives an example of the image patch
mapping.



1998

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 8, AUGUST 2019

localization followed by the accurate registration. The online
stage of the coarse localization is shown in Algorithm 1.

Algorithm 1: Coarse Localization: Online Stage

1 Map template S into space Qo: z; = SW.

2 Determine closest target image I with corresponding
Z*: 7" = argmin, A(zy, 2). ¥ € Z. ;

3 Segment S into [SsL, Slz,, AU S;’,]: S;, :~¢(b,-, S);
Segment I into [111,, Il%, o, IZ]: I;, = ¢(b;, ).

4 Map target patches 7, into space Qs: 7/ =1,W', where
I, is formed with Vectorizgd 1 1!7

s For each template patch S,

6 ()Map S} into space Q3: Z;' = S, W'.

7 (ii)Determine its closest target patch [ ll,dx(i) with

index Idx(i).
n
8 by =— > biax(i)> where bygy(;) is the coordinate of
=1
selected target patch [/ ;dx(').

9 return localization region S = ¢ (b, F)).

B. Accurate Registration

In this section, images S and S are accurately registered
with maximization of mutual information. The location of
S on the full image F becomes the estimated displacement
of the template S. As the small FOV of template images,
the relationship between the template and the full image can be
modeled by linear transformations. In our work, the transform
u for alignment is given as an affine transformation:

ail aip Iy
u=|ay an t (12)
1 1 0

From the MI equation 7, we can see the MI function has
a discrete formulation which is not differentiable. Several
solutions therefore are proposed to smooth the MI function
to compute the MI derivatives and keep its accuracy. We use
the method described in [36], where the joint probability
distribution between the images S and S is estimated with
a Parzen window.

The optimizer used for the MI maximization is based on
Newton’s method. The MI function is a quasi-concave function
(Fig. 1(d)), and the parabolic hypothesis of the Newton’s
method is only valid near the convergence. When the initial
transformation is on the convex part of the cost function, it will
cause the optimization to diverge. In the example of Fig. 1(d),
the normalized MI measure has local extrema interference.
The proposed coarse localization provides a good initialization
of the displacement for subsequent optimization of the MI
alignment function. In the figure, the estimated alignment
position is (11,9). The estimation is close to the optimal
value and falls in the convex domain of the MI metric, which
provides more efficient optimization and avoid local extrema.

After registration between images S and S, the template S
can be matched on the full image F based on the position

by, of the selected region S. Fig. 3 shows a schematic of the
coarse localization process and intermediate results.

C. Image Stitching

As pointed out in Sect. I, the full retina image can be
stitched into a panorama by using many small templates. Users
must capture a series of images in naturally unconstrained eye
positions to explore different regions of the retina. It is prob-
lematic to determine adjacent images before the registration
when we apply area-based registration approaches, since they
do not have effective descriptors for matching.

Related to the dimension reduction in the proposed template
matching method, here we present Algorithm 2 to learn
the positional relationship of images to be stitched. In this
way, the adjacent images can be recognized and registered
efficiently. For a series of small images Xj, we form the
matrix X, as with the matrix T. PCA is applied to X and
returns the low-dimensional features for each image in €. The
distance between features in Q, indicates the distance between
images. The nearest neighbor X of image X; is the one with
largest overlap; the image pair is then registered with MI-based
approach. To improve the algorithm robustness, the 3-nearest
neighbors for each image are first selected to compute MI
with, and we keep the one with the largest metric value.

Algorithm 2: Image Stitching

1 Map images into space Q;:Z = XW.

2 For each image Xj:

3 (i).Find the nearest 3 neighbors Xj minimizing the
feature distance A(Z;, Z;).

4 (ii).Compute the Mutual Information between each X;
and Xj and take the adjacent image with highest MI.

5 Panorama R Mosaicking: Align all the adjacent images
with mutual information based registration method.

6 Panorama blending.

7 return panorama R.

IV. EXPERIMENTS

We present the performance of our template match-
ing method on three experiments using retina images. For
comparison, we use the global MI algorithm described in
Mattes et al. [37] and ASIFT (modified SIFT for affine
deformation) [38]. In the first experiment, each template is
extracted from the full fundus image in the STARE dataset
and matched back to it. The intermediate results of the coarse
localization are also evaluated. In the second experiment,
the template captured by the adapter-based optics is matched
to the full fundus image captured by the clinical fundus
camera. In the third experiment, a panorama is mosaicked from
small templates first, and subsequently individual templates are
matched to the panorama.

A. Fundus Images From STARE Dataset

In this experiment, we validate our method on simulated
fundus images. We use images from the STARE dataset [27],
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Fig. 3. Schematic of the coarse localization process: PCA and block PCA.

which consists of 400 raw fundus images of healthy and
diseased retinas. Matching image pairs are simulated from this
dataset. Each image pair includes a full fundus image selected
randomly from the dataset and an affine transformation is
applied to map it from a square into a parallelogram. The
area within the mapped square is then cropped and warped
(with the inverse affine transformation) to obtain the square
template. The FOV of the template images is around 12° with
a size of 200 x 200 pixels. The template dimension is 10% of
the full image.

The ground truth is available in this experiment, thus root-
mean-square (RMS) errors between corrected displacements
and ground truth positions are used as a metric to measure
the RetinaMatch accuracy. To evaluate the coarse localization,
we take the center point distance between the template and
the chosen target region.

1) Validation of the Coarse Localization: First the coarse
localization with and without the block PCA refinement are
tested. In the implementation, target images are generated with
a displacement of f = 10 pixels and f’ = 5 for the block
PCA. We use the top 20 and 10 PCA features in the first PCA
step and the block PCA respectively. The parameters are fixed
in remaining experiments. Additionally, we test the coarse
localization with two other non-linear dimension reduction
methods: kernel PCA [39] and Isomap [40]. We compare
the non-linear dimension reduction methods to see if the
non-planar retina surface and the affine transformation affect
the performance of the PCA-based linear method. In the
kernel PCA, we compared Gaussian kernel and polynomial
kernels with different degrees. The Gaussian kernel has better
performance and is thus selected for kernel PCA. There may
be other better kernels that better separate the data. However,
finding this embedding space is labor-intensive and may need
to be re-tuned for new image types, whereas PCA is more
generic. The experiment is performed over 100 matching

(b) Low-dimensional representations of
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TABLE |
COMPARISON OF COARSE LOCALIZATION WITH DIFFERENT
DIMENSION REDUCTION METHODS

Mean errors | Success rate | Runtime

Kernel PCA 57 83% 0.7035s
Isomap 27 94% 2.3634s
PCA 14 100% 0.0065s
Block PCA 8 100% 0.6143s

image pairs created from the STARE dataset. The pixel-level
errors (coarse localization error as described), success rates,
and average runtimes of these methods are shown in Table I.
The criterion of successful matches in the coarse localization
is a pixel-level error of less than 40 pixels. It is verified that the
PCA based coarse localization is more efficient, accurate and
interpretable. Block PCA further improves the accuracy while
the time spent is higher than PCA-only method. To further
improve the online efficiency, the target patches mapping can
be precomputed for each target images. The average time spent
in this case will decrease to 0.0975s.

Additional experiments were carried out to test the
proposed coarse localization under different image degrada-
tions. Five degradation types in five levels are considered
as follows (images are in double format € [0, 1]): affine
transform with the rotation/shear parameter of {5°/0.1,10°/
0.2,15°/0.2,15°/0.3,20°/0.3}; additive Gaussian noise with
standard deviation varied from 10% to 50% of the pixel
value; image blurring with Gaussian kernels with stan-
dard deviation of {0.5,1,1.5,2,2.5}; intensity changes of
{4%,8%,12%,16%,20%} of graylevels in the image, which
is the nonlinear brightness change; add artificial pathological
features of 1-5 levels with increasing amount and size, such
as the spot of exudate (bright spots), hemorrhage (dark spots)
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(b) (©)

(@)

Fig. 4. Examples of highest level degradations in each sequence. Please
note that (b) is the template generated with affine deformation thus the
image content is not the same. In the artificial features (f), the bright
and dark spots simulate the exudate and hemorrhage, respectively. The
width of vessels in the circled area is enlarged. (a) Normal. (b) Affine
deformation. (c) Gaussian noise. (d) Blur. (e) Brightness. (f) Artificial
features.

TABLE Il
SUCCESS RATES OF COARSE LOCALIZATION PER
DEGRADATION LEVEL

Distortion level 1 2 3 4 5
Affine deformation | 100% | 99% | 95% | 81% | 75%
Noise 100% | 100% | 100% | 100% | 100%
Blur 100% | 100% | 100% | 100% | 100%
Brightness change | 100% | 100% | 100% | 100% | 97%
Atrtificial features | 100% | 100% | 100% | 100% | 98%

and vessel width changes (enlarge/shrink vessel regions).
Fig. 4 provides examples of the highest level degradation
in each sequence. For each sequence and degradation level,
we create 100 matching image pairs as described above. All
degradations are applied to the template in each pair. Fig. S22
shows template examples of the highest degradation in each
sequence. The coarse localization achieves high success rates
across the dataset in different degradations, with the exception
of the highest level of linear deformation sequence. However,
the limitation to smaller eye rotation angle is physiologically
based. The human eye has a limited range of torsional rotation
with respect to the visual axis [41]. Checking a large set of
data, we find the real affine deformation in the adapter-based
optics imaging is less than level three (rotation/shear: 15°/0.2).

2) Validation of the Template Matching: We examine Reti-
naMatch’s final performance under the same sequences and
degradations described earlier, but with two additional tem-
plate matching approaches: feature-based ASIFT and global
MI registration. The success rate of different methods are
presented in Fig. 5, where the successful matches are that

2Fig. S2 is in the supplementary material.

the RMS error is less than 8 pixels. The accuracy of ASIFT
decreases significantly at higher degradation levels of noise,
blur, and artifacts, due to feature-point instability. The global
MI registration method cannot always converge to the correct
affine transformation parameters using such small templates,
thus it has a low success rate even without degradations.
The performance further declines in high-level degradations of
artifacts and affine. RetinaMatch has a success rate of 100% in
most sequences and degradation levels, except the high-level
affine deformation. As described above, the real-world affine
deformation would be less than level 3. The improvement of
RetinaMatch efficiency over global MI depends on the size
difference between two matched images. In this experiment,
the average runtime of RetinaMatch is around 50% less than
that of global M1, since it narrows the search domain of the MI
optimization significantly. The computation of feature points
in ASIFT is expensive and it takes four times longer than
RetinaMatch. ASIFT is selected for comparison because it can
generate more robust feature points than SIFT.

B. In Vivo D-eye Data and Full Fundus Image

D-eye is a typical adapter-based optical system which can
convert the digital camera on smartphones to a fundus camera
(https://www.d-eyecare.com/). Fig. 6 show several examples
of D-eye images. The relatively small FOV of D-eye can be
useful to monitor the retinal health over time with comparison
to a wide FOV baseline image taken at the ophthalmology
clinic. With our algorithmic approach, the captured D-eye
images can be matched onto the full image for automatic
comparison. The latest data with retina changes can also
replace the original area on the full image, maintaining a
record of longitudinal changes. In this way, it offers the
opportunity for a quick overall retina analysis outside the
clinic, with automatic diagnostic approaches such as described
in [42] and [43].

This experiment is a case study with a series of D-eye data
captured from one person with a healthy retina. We converted
the iphone 6 to a fundus camera with D-eye, then collected
the data in a dim room to provide a larger pupil and proper
image contrast. The eyeball was free to rotate which allowed
us to obtain images covering different regions of the retina.
The collected D-eye images have an average FOV of 4° and
a resolution of about 50 pixels/degree. The full fundus image
is taken with a Kowa Nonmyd alpha-D III retinal camera,
as shown in Fig. I(a). It has a 45° FOV with a resolution
of 75 pixels/degree. The D-eye images are around 0.7% of the
full image. Captured with different devices, the brightness and
contrast varies greatly between the image pair to be matched.

We first validate our method by matching 100 D-eye tem-
plate images onto the full image. The ASIFT and global MI
methods are also implemented. Additionally, we add patho-
logical artificial features on the 100 D-eye templates to test
the algorithm robustness to retina pathological changes. The
accuracy of the template matching is evaluated using target
registration error (TRE) [44]. For each template, four corre-
sponding landmarks are selected by an trained observer, two
trained observers then selected the corresponding landmarks
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Fig. 5.

Performance of template matching methods under different image degradations. In each, the x-axis stands for the increasing levels of

image degradation, ranging from 0 (no degradation) to 5 (highest). The y-axis stands for the percentage of successful matches with RMS error less
than 8 pixels. All degradations have 100% success rate in RetinaMatch except three high-level affine deformations. (a) ASIFT. (b) Global M. (c)

RetinaMatch.
TABLE Il
TARGET REGISTRATION ERROR (TRE) OF TEMPLATE MATCHING METHODS IN EXPERIMENT 2
ASIFT MI RetinaMatch Observer
Mean£SD | Success Rate | Mean+SD [ Success Rate | Mean£SD | Success Rate | Variability
Without artificial features NA 0 NA 0 3.88+1.72 94% 2.394+1.93
With artificial features NA 0 NA 0 3.97+1.64 94% 2.3941.93

-1 Dim. 2

Fig. 6. Features of images to be stitched in the top three dimensional
space. Each small black dot indicates one mapped image. The colored
dots in red circles show two selected samples (red) with their near-
est three neighbors (blue). Note the distance is measured in the top
20 dimensional space.

from the full image independently. To obtain TRE for each
image pair, we compute the root mean square of the distance
between the transformed landmark points and the landmarks
selected by two trained observers. The TRE results of Reti-
naMatch (coarse localization and final results), ASIFT and
global MI are shown in Table III. Table III lists the success
rate, the mean and standard deviation of TRE of successful
matches and inter-observer variability. The success rate is the
percentage of successful matching pairs with TRE less than
6 pixels. RetinaMatch can reach an accuracy of less than
4-pixel TRE with the observer variability, while the ASIFT
and global MI cannot match the D-eye image successfully.

C. In Vivo D-eye Data and Mosaicked Full Image

In this experiment we match the D-eye templates onto the
full image mosaicked with D-eye images. Using the stitched

panoramic image allows the use of this device at home without
going to the clinic for the full fundus image as the baseline.
Inhabitants of remote areas without local eye clinics having
professional fundus camera facilities can benefit greatly from
this technique.

1) Full Image Mosaicking : The full image in this experiment
is mosaicked with 20 D-eye images using the proposed image
stitching method. Based on no training for the D-eye user
and other limitations of the procedure, we collected images
covering the region around the optic disc. In the implemen-
tation, we used the first 20 dimensions of the features when
computing the image distances in the low-dimensional space.
Fig. 6 illustrates the distribution of the first three dimensions
of the features. From the two examples in the figure, we can
see the nearest three neighbors of the selected sample in
the low dimensional space also have a large overlap in the
image space. In the image patch registration, the MI-based
registration method is applied. The last row of Fig. 7 shows
the mosaicking result with the proposed method. The MI of
the top three candidate neighbors are validated to be effective
to selecting the correct neighbor. The stitched full image has
a 10° FOV with the same resolution as the D-eye templates.
The image blending is not our focus in this paper and the
mosaicked image is not perfectly seamless.

2) Template Matching: Similar to experiment 2, we validate
our method by matching 100 D-eye templates with and
without pathological artificial features onto the mosaicked
image. The images used for the mosaicking are not contained
in the 100 template test set. The TRE results are shown
in Table IV. The TRE of successful matches is less than
8 pixels. RetinaMatch can match 96% of image pairs without
artifacts and 94% of image pairs with artifacts. The TRE
results of success matches were not much different from the
observer variability. On the other hand, ASIFT cannot find
the alignment position since the detected feature points are
not sufficient for matching. The MI approach has a low rate
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TABLE IV
TARGET REGISTRATION ERROR (TRE) OF TEMPLATE MATCHING METHODS IN EXPERIMENT 3. THE SUCCESS RATE OF ASIFT IS 0 BECAUSE
THE TEMPLATE CONTAIN AN INADEQUATE NUMBER OF FEATURES. THE SUCCESS RATE OF MI Is ALSO Low BECAUSE THE OPTIMIZATION
GETS STUCK IN LOCAL MINIMA. IN CONTRAST, RETINAMATCH HAS A CONSISTENTLY HIGH SUCCESS RATE

ASIFT MI RetinaMatch Observer

Mean=£SD | Success Rate | Mean£SD | Success Rate | Mean+SD | Success Rate | Variability

Without artificial features NA 0 2.77+1.54 15% 3.06+1.65 96% 2.80+1.02
With artificial features NA 0 3.34+1.52 8% 3.24+1.75 94% 2.80£1.02

Fig. 7. Examples of RetinaMatch results with and without artifacts. The first two rows are results of experiment 2 and the third row is experiment 3.
The mapped template on the full image covers the original area and is boxed with magenta lines.

of success as well, which has a high probability to cause
mis-detection of emerging changes. Fig. 7 shows examples
of RetinaMatch matching results with and without artifacts in
the second and third experiments.

V. CONCLUSION AND DISCUSSION

We present a new template matching method, RetinaMatch,
which can be used in remote retina health monitoring with
affordable imaging devices. A PCA-based coarse localization
method is proposed to provide a good initialization for the
MlI-based registration in the template matching. In this way,
RetinaMatch can obtain an accurate affine transformation
between the image pair with poor quality and large size
difference. As demonstrated in the simulation experiment,
RetinaMatch does not handle templates with large affine
deformations, with the success rate decreasing at level 4 and
5 in Fig. 5. Importantly, the template image captured by
adapter-based optics with general operation will not have a

linear deformation exceeding the RetinaMatch limit, therefore
we can ignore the poor performance over the third-level
affine degradation. To our knowledge, this is the first report
addressing template matching in retina images whose template
contains unconstrained small retinal areas rather than a specific
object. Further algorithm testing is needed on the smartphone
or other low cost fundus imaging platforms as all current
testing has been limited to a PC workstation.

To validate RetinaMatch, experiments using both human
datasets with simulation and in vivo retina images from
a case study were performed. Experiments with simulated
datasets allowed evaluation of the accuracy and robustness of
RetinaMatch to different levels and sequences of degradations.
The in vivo case study ensures that our method can be applied
using a consumer product. It was observed that RetinaMatch
provided superior performance under different image condi-
tions over standard ASIFT and MI algorithms. The parameters,
such as the offset f = 10, f/ = 5 and the dimension d = 20,
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are independent of various datasets in the implementation of
RetinaMatch, which makes it easier to translate our method to
other similar imaging device besides D-eye.

The evaluation of the RetinaMatch accuracy is difficult in
experiment 2 and 3 without ground truth. Since the goal of
template matching is providing accurate alignment for down-
stream analysis, we use TRE as the metric. Compared with
entropy based measures or the similarity measure itself, TRE
measures the result intuitively in pixels and is independent of
different regularization methods.

The remote monitoring of retina health with template
matching is the first medical application to be proposed with
RetinaMatch. Tele-ophthalmology is a promising application
since many diseases are manifested at an early stage that are
detectable with optical imaging of the retina. Because early
stage retinal diseases do not present with symptoms, routine
screening is important for early detection, which requires both
high sensitivity and even higher specificity. The adapter-based
optics and the digital cameras from smart phones provide an
efficient and economic approach to capture retina images reg-
ularly at home. The images of the current state can be mapped
with RetinaMatch and then compared with the previous state.
With regular screening, the process of lesion formation and
therapeutic treatment can be monitored over time. In the
experiment, D-eye is chosen just as one low-cost example
among many others with small FOV on undilated pupils [5].
Similar fundus imaging techniques can also be implemented
in emerging commercial VR, AR, and mixed reality headsets
that will be widespread in the future.

There are different kinds of retina lesions that can be
screened with portable fundus cameras. In the medical exam-
ple of monitoring hypertension, the larger arteries constrict
and the venous vessels enlarge in diameter [4]. For exam-
ple, the larger blood vessel cross-sectional diameter is about
20 pixels in the case study, and a change with hypertension will
be in the range of 10-60%, so we are looking for over 2-pixel
changes from baseline over time. In Tables III and IV, the TRE
is shown to be extremely low and most errors are below
2 pixels (1.8 arcmins) excluding observer variability. With
advanced trend analytics [45], we can expect template match-
ing errors to be well below a threshold of clinical significance.
For more precise vessel width measurement, RetinaMatch
can be combined with vessel segmentation, as described in
our previous publication [46]. The vessels of interest can be
located on the current templates and the corresponding vessel
width is then obtained by segmentation around the mapped
location. Note the vessel segmentation here is applied on
very small retina patches (20 x 20 pixels), which is more
robust and accurate than segmentation of wide FOV retina
images. The segmentation error in [46] is less than 1 pixel,
which has been presented using D-eye images. Xu et al. [47]
proposed the vessel width segmentation and measurement on
retina imaging acquired from the low quality fundus camera
as well. They also report similar 1-pixel accuracy. However,
the imaging device they used produced higher quality retinal
images, having five times larger FOV than the D-eye. The
biomarkers of abusive head trauma (AHT) is another example.
The most common retinal manifestation of AHT is multiple

retinal hemorrhages in multiple layers of the retina [48].
Matching the captured images onto the full retina image,
The hemorrhagic spots can be easily segmented after the
subtraction of the current retina regions and previous status.
The AHT then can be recognized automatically when such
spots are detected with portable fundus cameras.

RetinaMatch may be used in other medical image applica-
tions for template matching. For example, in the case of endo-
scopic guidance of therapy by a surgical robot [49], the current
limited-sized FOV can be matched onto the panorama for
endoscope localization. Thus, this image template matching
technique can be used to create a more reliable closed-loop
control for the robot arm and surgical tool guidance.
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