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Crowdsourcing of Histological Image Labeling
and Object Delineation by Medical Students

Anne Grote, Nadine S. Schaadt , Germain Forestier , Cédric Wemmert, and Friedrich Feuerhake

Abstract— Crowdsourcing in pathology has been per-
formed on tasks that are assumed to be manageable by
nonexperts. Demand remains high for annotations of more
complex elements in digital microscopic images, such as
anatomical structures. Therefore, this paper investigates
conditions to enable crowdsourced annotations of high-
level image objects, a complex task considered to require
expert knowledge. Seventy six medical students without
specific domain knowledge who voluntarily participated in
three experiments solved two relevant annotation tasks on
histopathological images: 1) labeling of images showing
tissue regions and 2) delineation of morphologically defined
image objects. We focus on methods to ensure sufficient
annotation quality including several tests on the required
number of participants and on the correlation of partici-
pants’ performance between tasks. In a set up simulating
annotation of images with limited ground truth, we validated
the feasibility of a confidence score using full ground truth.
For this, we computed a majority vote using weighting
factors based on individual assessment of contributors
against scattered gold standard annotated by pathologists.
In conclusion, we provide guidance for task design and
quality control to enable a crowdsourcedapproach to obtain
accurate annotations required in the era of digital pathology.

Index Terms— Crowdsourcing, human decision making,
image classification, image delineation, digital pathology,
annotation, confidence score, majority vote.

I. INTRODUCTION

CROWDSOURCING has been used for annotation of
high-level objects in microscopic images, but mainly

focusing on less complex tasks referred to as microtasks [1].
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Successful examples include identification of cancer
cells [2], [3], detection of nuclei [4], [5], scoring based on
immunohistochemically stained images [2], [3], [6], and
detection of Plasmodium falciparum in red blood cells for
malaria diagnostics [7]. Other studies focus on the creation
of training sets for convolutional neural networks for finding
nuclei or mitoses in cancer [8], [9]. Crowdsourcing has also
been applied in labeling of retinal images [10], text annotation
in radiology reports [11], or for delineation of a single object
per image [12].

The original idea of crowdsourcing started 1906 with esti-
mating the weight of an ox by a crowd [13]. Since then,
it has been shown that crowds may outperform individual
experts [14], [15]. Currently, crowdsourcing is defined as
a collaborative problem-solving activity, performed online,
to work on a certain, well-defined, and simple task by an
undefined and large group of contributors who can be quite
heterogeneous regarding their knowledge about the problem
[16], [17]. To design applicable tasks, it is recommended to
implement simplicity, short duration, sufficient training phase,
feedback, and reliability tests [18]. Many factors negatively
influence the crowd’s performance including insufficient expe-
rience, knowledge, and expertise of the participants or task
difficulty [19]. Further sources for errors are handling of soft-
ware, misunderstanding of tasks, motivation, intention to fail,
and distraction. It has been also shown that volunteers are more
reliable regarding quality than paid participants; however, their
endurance to stay on the task is clearly lower [20]. In general,
contributors’ motivation is the most challenging aspect besides
task design and quality control [1], [21].

Crowdsourcing benefits from combining multiple contribu-
tors and depends on the level of information to be collected.
Evidence from other fields suggests that crowdsourcing can be
expanded to complex tasks. Crowdsourcing in geosciences has
been used to generate online maps, in general and for disaster
management [22] as well as land cover and land use data from
remotely sensed images [23], [24]. Another example for solv-
ing difficult tasks by crowdsourcing is sleep spindle detection
from electroencephalographic data [25]. Crowdsourcing has
also been included into gaming-like approaches for solving
difficult multiple sequence alignments [26] or for predicting
complex protein structures [27]. These promising examples
indicate general feasibility of successfully solving macrotasks
and should stimulate further research, given that approaches
of subdividing macrotasks into less challenging microtasks
are not always feasible [1]. This applies particularly for
context-dependent microscopic image evaluation. To iden-
tify relevant morphological structures, interpretation of image
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objects and their surroundings is to some extent inevitable,
as their spatial context can change their relevance depen-
dent on the context like in other fields of automated image
analysis [28].

The growing amount of whole slide images (WSIs) in the
last decade increased the importance of automated workflows
due to limited time and availability of pathologists. This
includes machine learning tools for region of interest (ROI)
detection that allow a reproducible, objective, and large-scale
analysis [29]. Relevant examples are pathological conditions
such as tumor regions or anatomical structures such as glands
in colon or breast tissue [30]–[33]. Such workflows strongly
rely on annotations; especially, deep learning needs huge sets
of training data [34].

In the current study, we address the demand for high
quality annotations that can be used to develop automated ROI
detection for example as training sets for machine learning.
Building on own work that indicated general feasibility [35],
we developed recommendations for application of crowdsourc-
ing for two independent tasks (1) labeling and (2) delineation
of complex anatomical structures in histopathological images
in a real-world scenario, including task setup (complexity,
number of classes) and use of scattered gold standard to mea-
sure the reliability of individuals and to provide a confidence
score. Our goal was to test the feasibility, and to develop
a workflow for quality assurance, for two complex tasks
that both involve contextual interpretation of image content
information. Being aware of this complexity, we decided to
involve voluntary, highly motivated contributors who have
some general domain knowledge (anatomy) but not yet the
required expert knowledge (microscopic pathology), enabling
them to interpret biologically relevant patterns beyond pure
image content information.

II. MATERIALS AND METHODS

We conducted three independent experiments with different
crowds and slightly different tasks each time.

A. Crowd Composition

The crowd consisted of third-year medical students from
Hannover Medical School, Germany without any experience
in annotating histological slides. It included 76 students
in total, of which 36 participated in the first experiment,
14 in the second experiment, and 26 in the third experiment.
Each experiment consisted of 1–3 sessions on different days.
An overview is shown in Table I. We used a username together
with a password for each student as login for the tools in
order to correlate their anonymous contributions on different
tasks.

B. Task Design and Images

Histological images were acquired as WSIs from sec-
tions either stained for hematoxylin and eosin stain
(H&E) or immunohistochemical markers. ROIs were not
specifically stained and in the case of immunohistochemistry
were to be detected based on faint blue hematoxylin counter-
stain.

TABLE I
OVERVIEW OVER THE CROWDS PARTICIPATING IN THREE

INDEPENDENT EXPERIMENTS

The use of tissue samples for digital pathology analyses
was approved by the institutional review board of Hannover
Medical School in accordance with the 1964 Helsinki decla-
ration and its later amendments or comparable ethical stan-
dards (approval numbers 2968–2015, 2063–2013, 1121–2011,
1831–2013).

We asked the crowd to solve two different types of tasks:

1) Labeling of ROIs (microtask, single choice [1])
Given a set of images, each showing a single candidate
ROI (representing anatomical structures or pathological
conditions), the participants should select one of several
proposed categories to classify each image. All ROIs
were highlighted by colored outlines. Only the area
inside this outline was relevant for labeling and only a
single object existed in the image. In real applications,
this can be used for quality control of ROIs detected by
some automated image analysis framework.

2) Delineation of ROIs (macrotask, single choice [1])
Given an image showing a tissue region, the crowd
should draw the outlines of all objects of some well-
defined classes and mark the class names. Annotations
like these can be used as training or test sets to develop
image analysis tools which detect ROIs by automated
segmentation.

Before the task started, the students were instructed by a
pathologist for about five minutes regarding the specific tasks.
This introduction represented an overview on the character-
istics of the images and an explanation about the precise
definitions of each class (terminology) used for the task, with
representative example images. We excluded images where the
classification would be ambiguous. ROI labeling was designed
such that it could be completed in about 15 minutes and ROI
delineation in about half an hour per image.

C. Setting and Tools

For the first experiment, the crowd had to be present in
a computer room. The participants were fully concentrated
and did no further activities in parallel. For this experiment,
we used a Java-based GUI called c17 implemented by our-
selves for ROI labeling and the commercial software Aperio
ImageScope (Leica Microsystems, Wetzlar, Germany) for ROI



1286 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 5, MAY 2019

Fig. 1. Overall F1 scores in relation to Fleiss’ κ for inter-annotator
agreement (ROI labeling). Shown are the average (blue) and majority
vote (red) in the different experiments (ex1, ex2, ex3) and sessions
(se1, se2, se3). The darker the color, the higher the level of complexity
indicated by the number of classes |C|. The ids 1–6 are only used to label
the dots.

delineation. Tool c17 displays the current image, a progress
line, a score comparing labels to the ground truth (GT), and
a radio button for each class (see Supp. Mat., Fig. 1). For
ImageScope, we prepared a template with class names to
ensure a common terminology for the crowd.

For application at large-scale and convenience for students,
we decided to switch to web applications such that the tasks
could be finished outside the classroom. For the second and
third experiment, we used a php-based tool called c13 devel-
oped by ourselves for ROI labelingand the open-source tool
Cytomine [36] running on an own server for ROI delineation.
The labeling tools were both designed using a similar layout
to allow comparability. c13 additionally splits the images into
a training phase in which the participants receive feedback
about the correct class directly after labeling, and a test
phase afterwards in which GT remains hidden. The delineation
tools had some differences in handling. ImageScope ensures
unique class labeling for each object, whereas Cytomine
allows multiple classes for a certain object, which was here
unfavorable. On the other hand, Cytomine avoids unclosed
polygons and prevents accidental terminology changes by the
users. We assume that handling of both tools is comparable.
The GT by a pathologist was always done with the same tool
as used by the crowd for the corresponding task.

D. Answer Aggregation

Crowdsourcing allows to combine several annotations,
potentially increasing the overall accuracy under the assump-
tion that individuals produce different misclassifications. Here,
we consider two concepts to build a final crowdsourced anno-
tation by joining individual statements:

• Majority vote (MV):
A class is assigned to an image (ROI labeling) or a pixel
in an image (ROI delineation) when the relative majority
of individuals picked it. Images with equal votes remain
unclassified.

• Weighted vote (WV):
For each class, we sum up the training/reliability score
(see Section II-G.2) of all individuals who selected this
class. The class with the highest sum is assigned to the
corresponding image to be classified (ROI labeling) or to

the corresponding pixel in an image (ROI delineation).
Thus, high performers have stronger impact on the result.

E. Evaluation Scores

Based on full GT provided by experts, we used F1 score to
study crowd’s performance:

F1 = 2 · P PV · T P R

P PV + T P R
(1)

as well as precision (positive predictive value, P PV )

P PV =
∑

i∈C

T Pi
T Pi+F Pi

|C| (2)

and recall (sensitivity, true positive rate, T P R)

T P R =
∑

i∈C

T Pi
T Pi +F Ni

|C| (3)

where C is the set of classes, T P , T N , F P , and F N are the
numbers of true positives, true negatives, false positives, and
false negatives, respectively.

F. Correlations Between Different Images and Tasks

In experiments where the same participants completed both
ROI labeling and ROI delineation, took part in two sessions
for the same task, or annotated several images for ROI
delineation, Spearman’s rank correlation coefficient ρs of their
performance in both assignments was computed, in order to
test whether the quality of participants’ work is transferable
between tasks and sessions. For ROI labeling, the accuracy
was used as measure, for ROI delineation, the F1 score was
used. The correlation between two assignments was only
assessed if at least eight participants completed both tasks.

G. Simulation of an Application Case

For the application case, it is important to reduce the weights
of low quality annotations and to measure the quality of crowd
annotations in order to ensure their usefulness. In our setting,
classroom training and supervision mostly avoids problems
with tools and tasks as well as distraction. The fact that
all participants were intrinsically motivated reduces the risk
for fake answers to fulfill the task in a short time period.
To address error sources (insufficient background knowledge
and experience), we analyzed the use of a qualification set to
measure the reliability of individuals in an application setting.
For this, a scattered gold standard quality assurance is included
and compared to the full GT.

In the case of ROI labeling, images with known label includ-
ing at least one example for each class were scattered during
the test phase. In the case of ROI delineation, a pathologist
can annotate a couple of objects of each class representing a
small area in the images. Then, the performance quality was
measured using these subsets.
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1) Reliability Tests for Participants: In the following, we refer
to (1) images given at the beginning of the session (label-
ing) and/or objects (delineation) used to instruct partici-
pants (feedback intermediately provided) as “training phase”,
(2) images/objects scattered during session used for qual-
ity assurance as “qualification phase”, and (3) remaining
images/objects as “test phase”. We use answer aggregation
weighted by probabilities indicating individuals’ reliability,
which was expected to be related to their performance during
the training phase. We defined the reliability r j,i of a single
participant j and a class i for ROI labeling as

r j,i = a · ACCi,train + (1 − a) · ACCi,qualification, (4)

where a is the weight for training phase and ACCi the
accuracy for class i .

ACCi = T Pi + T Ni

T Pi + T Ni + F Pi + F Ni
(5)

As the distribution of the classes is unknown for an application
case, we decided to select the examples for qualification
phase randomly, where each class has to occur at least
once. We afterwards compared the reliability averaged over
all classes of each individual with their overall performance
to find a value for parameter a, such that the error E =
|ACCtest − r j | is minimal. We repeated the random selection
of the qualification set 50 times.

For ROI delineation, the random selection of objects used as
qualification phase from an image was here repeated 50 times,
as well. For one image, the number of selected objects varied
between |C| and |C| + 10 (|C|: number of classes of interest
in the current image) in order to examine the variation of
the reliability score depending on the sample size. Then,
the reliability r j of a participant j was calculated as the ratio
of correctly classified area to the total area in the selected
objects. To easily adopt the approach to real-world application
without full GT, the selected regions include only objects that
were part of the GT.

2) Confidence Score for Annotated Objects: For actual appli-
cation, we propose to combine the individual results using
a WV weighted by their reliabilities, i.e. for each class i ,
we added together the reliability r j,i of each contributor j
that voted for i and then chose the class with the highest sum.
Additionally, we measured a confidence score for each image
in ROI labeling as given in equation (6),

co = 1

n
·

n∑

j=1

(

r j,i · (vote( j) == i) − r j,i · (vote( j) �= i)

)

(6)

where n is the size of the crowd. The annotation of
images/objects o with small confidence score should be reeval-
uated by an expert, whereas we trust labelings with scores
close to 1. For ROI delineation, the confidence score (7)
for each pixel was computed as the normalized sum of all
reliability scores r j of all participants who voted for the class
i of the pixel o.

co = 1

n
·

n∑

j=1

r j · (vote( j) == i) (7)

TABLE II
DATA SETS AND TERMINOLOGY (T) USED FOR ROI LABELING

The confidence score was given as a heatmap image indicating
areas of high and low confidence.

III. RESULTS

The results of the three experiments (Table I) are presented
for ROI labeling and ROI delineation in different tissue types
and settings. Here, we focus on how to increase and measure
reliability in application settings.

A. ROI Labeling

1) Experiment Design and Crowd Performance: We studied
the performance of the crowd that was asked to label images
representing single objects based on a given terminology.
For this, we consider six different experimental setups. The
intention to change the settings was to study the influence
of terminology and data set composition on the quality of the
annotations. The variable components including the number of
images, number of classes, tissue type, and staining are listed
in Table II for each single experiment. The ROIs represent
either preexisting/healthy or pathological structures (exam-
ples in Supp. Mat., Fig. 2–4) and differ in their complexity
between the experiments. For example, experiment 1 focuses
on anatomically well-defined classes (breast tissue), experi-
ment 2 used an hierarchical order of the classes (breast tissue),
and experiment 3 includes a class that consists of subcategories
(renal tissue). The experiments comprise different sessions that
differ in the number of classes and images.

Fig. 1 depicts that agreement between crowd participants
increased with the quality of their annotations, but was not
obviously linked to task complexity. In addition, we assessed
the inter-annotator agreement between experts, confirming
that the GT was not perfect, but disagreement was limited
to an acceptable range (κ > 0.6) and clearly lower than
between crowd participants (see Supp. Mat., Fig. 5). The
experts differed almost exclusively for “pathological changed
glomerula”, a class with multiple characteristics (combination
of subclasses), in experiment 3. The crowds F1 score for this
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Fig. 2. Experiment 3, ROI labeling. F1 score of classified images (top)
in comparison to the number of unclassified images (bottom), where an
image is assigned to a class, if a certain minimum number of individuals
selected this class. To compute the score, only classified images were
considered. Red dots correspond to session 1 (in total 100 images,
a total crowd size of 23, and three classes; i.e., simple majority vote
requires eight counts), blue dots to session 2 (in total 140 images, a total
crowd size of 12, and four classes; i.e., simple majority vote requires four
counts).

class was with 0.326 for session 1 and 0.453 for session 2 on
average clearly lower than for other classes.

2) Minimal Requirements for MV: Assuming that the agree-
ment between the contributors increases with decreasing dif-
ficulty of the corresponding image, we built a MV, where a
decision for a certain class is accepted if at least a minimum
number of individuals l vote for this class. We calculated
the MV for each minimum number between the number of
votes required for a single majority and the crowd size n (i.e.,
∀ l ∈ {� n

|C | �, . . . , n−1, n} where |C| is the number of classes).
We then compared the number of unclassified images with
the accuracy of classified images depending on the minimum
number of identical answers required to accept a MV labeling.

This analysis gives insight into the use of crowd-
sourced image labeling in practice (e.g., large-scale qual-
ity control to exclude FPs of automatically detected ROIs).
Crowdsourcing could reduce the need for a detailed review of
images by pathologists.

In experiment 2, the requirement of at least three identical
labels resulted in a F1 score of 0.753 for classified images
(about 80% of all images). Accepting only labels where the
full crowd was in agreement resulted in a F1 score of 0.966 for
classified images (about 50% of all images). In experiment
3, the crowd size allowed to fully investigate the influence
of minimal requirements on the accuracy and the number of
remaining, unclassified images. Obviously, the accuracy and
the number of unclassified images increased with the required
number of equal votes (Fig. 2).

The first session included 23 participants and three classes,
such that a majority requires at least eight votes for a certain
class (equal to MV itself). Here, the number of unclassified
images was zero and the F1 score 0.746. In the second
session (including 12 individuals), at least four identical labels

Fig. 3. Confidence score (ROI labeling); experiment 3, compared to the
relative number of correctly labeled test images (correct/all, i.e., number
of correctly labeled test images divided by the number of all test images;
qualification images not included) based on majority vote weighted by
individual reliability scores. Displayed are distribution, interquartile range,
median, and standard deviation over 50 randomly selected qualification
sets.

represented the standard MV with a F1 score of 0.743 for
classified images (about 95% of all images).

For a real application, we envision an arrangement in which
only 25% of the images need to be evaluated by an expert.
This would sufficiently reduce the expert’s evaluation time to
justify the effort for crowdsourcing. In our current set-up, this
would require 17–18 (∼ 75% of crowd, session 1) and/or about
eight (∼ 67% of crowd, session 2) identical labels and would
result in a MV F1 score of classified images around 0.8.

3) Correlations: The correlation between both sessions was
tested only in experiment 3 because the crowd size was not
sufficient in the other experiments. Average F1 scores of
individuals participating in both sessions (9 participants) were
measured, the corresponding correlation coefficient was 0.510.
Supp. Mat., Fig. 6 displays the F1 score of individuals.

4) Confidence Score in a Simulated Application Case: The
task included 20–25% gold standard images labeled by domain
experts to measure the performance of individuals in order
to weight the labeling. These images (qualification set) were
randomly selected and scattered in the test phase. The whole
process was repeated 50 times. The reliability of an individual
was closest to its test accuracy with an error E of 0.036 in
session 1 and 0.034 in session 2 on average for experiment
3 using a training weight of 35% and qualification weight
of 65%. Based on this partition, Fig. 3, which illustrates
the distribution of correctly classified images in the test
phase compared to different confidence levels, shows that the
accuracy increases with an increasing confidence score.

B. ROI Delineation

1) Experiment Design and Crowd Performance: In experi-
ments 1 and 3, participants delineated classes in renal tissue,
and classes in breast tumor tissue were delineated in experi-
ment 2. Table III gives an overview over all considered images
and the used classes. Iex3,se1,G1,2 refers to the second image
of session 1 of the third experiment, G denotes the number of
a participant group.

We considered different sizes of images (2,735x2,735–
26,986x21,487 pixels), number of classes (2–8), and object
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TABLE III
DATA SETS AND TERMINOLOGY (T) USED FOR ROI DELINEATION

Fig. 4. Overall F1 scores in relation to Fleiss’ κ for inter-annotator
agreement (ROI delineation). Shown are the average (blue) and major-
ity vote (red) for different images. Color intensities refer to different
experiments. The ids 1–8 are only used to label the dots.

characteristics (e.g., well-defined anatomical structures, fuzzy
tumors) to analyze the relation between task design and crowd
performance. The size of each image and the number of
included objects (Supp. Mat., Table 2–4) and the images with
reference annotations (Supp. Mat., Fig. 9–11) are provided in
Supp. Mat.

Overall results for MV and average F1 score (Fig. 4)
mostly increase with an increasing inter-annotator agreement
measured by Fleiss’ κ (Spearman’s rank correlation coefficient
between κ and MV: 0.393) and show the general feasibility of
the tasks, especially when considering the fact that annotations
provided by two experts also slightly varied at the border and
in identification of objects (Supp. Mat., Fig. 12). In contrast
to the crowd, the experts never disagreed in the class of
a delineated object. Images showing the difference between
MV and reference annotations are shown in Supp. Mat.,
Fig. 13.

2) Subcrowd Size and Robustness: In order to analyze
how the number of participants influences the result of the
MV image, we examined subgroups of participants.

Since the total number of possible combinations nc can
be very large even for moderately large crowd sizes n,
we restricted the number of combinations by randomly select-
ing a subset of all possible participant combinations. Thus,
for each subgroup size k from 1 (individual notations) up to
n−2, a randomly selected set of participant combinations was
examined. The number of selected participant combinations
was set to nc(k = 2), with an upper limit of 45. The case
n − 1 was not considered because it is very similar to the
whole crowd.

For each participant combination, a MV image is created
from the annotated images of the corresponding participants.
Since, particularly for small k, there can be large regions with-
out clear majority, a class was only assigned to a pixel if there
is a clear relative majority for this class. If two or more classes
at the top share the same number of votes, the corresponding
pixels were labeled “ambiguous”.

F1 scores were computed for all MV images and the
average F1 score for each subgroup size was determined.
The “ambiguous” class was not considered for F1 score
computation; instead, the average area of “ambiguous” regions
was reported for each subgroup size.

To study the number of required contributors to obtain
crowdsourcing results of acceptable quality for object delin-
eation, we considered the results for all images with annota-
tions from at least nine participants (seven images in total).

Fig. 5 shows average F1 scores of MVs for the analyzed
group sizes as well as the percentage of area labeled as
“ambiguous” for each image. The F1 score improved com-
pared to the average individual F1 score starting from a group
size of three and did not improve much further beyond a group
size of seven. In four images (Fig. 5A,D–F), the F1 score sta-
bilized early: The standard deviation as a measure of variations
between different subgroups decreased markedly with growing
number of contributors, down to a value below 0.02 at a group
size of about eight participants (three for Fig. 5A). In the other
three images (Fig. 5B, C, E), the standard deviation remained
higher, although it also showed a decreasing trend. In two of
these images, there were relatively large areas misclassified
by several participants. Iex3,se1,G2,2 (Fig. 5F) showed only
minor improvements of the F1 score with growing group size.
This indicated that there may be situations where only better
training but not increased crowd size could improve results.

The average area of the “ambiguous” regions always has a
peak at the subgroup size of two, because with two participants
there is a relatively high probability that they do not agree on
the classification. For the same reason, there is often a small
drop in the F1 score at even numbers of participants. The
amount of “ambiguous” area depended on the amount of tissue
which contains relevant objects, on the number of classes, and
on the characteristics of classes.

3) Correlations: The correlation of the performance of indi-
vidual participants on different images was analyzed for those
cases where at least eight participants took part in two ses-
sions or completed several images given in one session. The
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Fig. 5. Subgroup analysis for experiment 1, ROI delineation. Red:
average F1 scores with standard deviation, blue: percent of image area
classified as “ambiguous”. A: Iex1,se1,1. B: Iex1,se2,1. C: Iex2,se1,1. D:
Iex2,se1,2. E: Iex3,se1,1. F: Iex3,se1,G2,2. G: Iex3,se2,1.

F1 score was used in the comparisons. Fig. 6 illustrates the
F1 scores of the compared images and the corresponding cor-
relation coefficient. Supp. Mat., Table 5 shows the examined
image pairs with average, minimum and maximum absolute
differences, and the average signed differences.

The correlation coefficients for experiment 3 show moderate
correlations, the correlation for the examined image pair in
experiment 2 was weak. The average signed difference showed
a slight tendency for worse results in the second image, but
in comparison to the absolute difference it can be seen that
some participants had better results and some had worse results
in the second image. An exception was the first session of
experiment 3, where most participants had worse results on
the second image. In this case, the first image was simpler
to annotate than both second images. This analysis indicates
that the performance of individual participants is influenced
by image content.

4) Confidence Score in a Simulated Application Case: Accu-
racy scores were computed for randomly selected samples in
varying sample sizes for Iex3,se1,1 in experiment 3. Average
standard deviations and ranges of the reliability score for all
participants over 50 runs are shown in Supp. Mat., Table 6. The

Fig. 6. Scatterplot of individuals’ F1 scores for different images
(ROI delineation). Spearman’s rank correlation coefficient given as ρs.
Gx: result data combined from G1 and G2.

variability of the reliability score expectedly decreased with
increasing number of GT samples. As a compromise between
practical applicability and accuracy, we chose the number of
samples to be at least five and at least one from each class.
The number of five samples was in the range of 10–30% of
total sample count for most images used in this study. This
number of samples was used in the following experiments.

The GT sample selection and WV for 50 runs was per-
formed for each image. F1 scores were computed for the
WV images. Detailed results for all images, with a comparison
to the unweighted MV, are listed in Supp. Mat., Table 7. The
weighted average F1 score was better than the unweighted
F1 score for half of the examined images. This is due to the
fact that the reliability score is a measurement of recall (see
Section II-G.1) and the WV will therefore tend to produce
annotations with higher recall but potentially lower precision.
Recall for WV was in fact higher than for unweighted MV for
all images.

For experiment 3, with several comparable images per ses-
sion, we used the reliability scores from the first image of
the session for the WV from the second session. Table IV
shows the results for the second and third images of the
sessions. In four of the six images, the F1 score from the
transferred reliability scores was lower than the F1 score from
the reliability scores of the same image. This indicates that it
is desirable to have GT objects in each image, if possible.

Using the WV, a confidence image was produced that
facilitates checking for false annotations. Fig. 7 (top) shows an
example of a confidence image together with the comparison
to GT. Regions where the WV differed from the GT mostly
had lower confidence values, indicated as darker colors in
the confidence image. Fig. 7 (bottom) shows average confi-
dence scores for annotated objects from example WV images
(remaining images in Supp. Mat., Fig. 15, 16), for different
percentages of agreement with the reference image.

The confidence scores were averaged over all objects per
image. The confidence scores for objects that did not agree
with the reference were typically low, which means that these
objects can be found efficiently using this confidence score
image. Confidence scores for correct objects were typically
higher than those for incorrect objects, while the absolute value
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TABLE IV
TRANSFERABILITY OF WEIGHTS BETWEEN DIFFERENT IMAGES IN A SESSION (ROI DELINEATION)

Fig. 7. Confidence (ROI delineation). Top: Confidence image from
weighted vote for Iex3,se1,G1,2. Left: overlay of confidence image with
original image (bright colors: high confidence; dark colors: low con-
fidence). Right: difference of majority vote to ground truth (green:
agreement to ground truth, red: different from ground truth). Bottom:
Confidence scores for different percentages of agreement (correct/all)
for objects in the images. Scores were computed from weighted majority
vote images and averaged over all objects in an image. Shown are
interquartile range, median, and standard deviation for 50 runs.

depends on the nature of the task. This is illustrated by the fact
that in experiment 3, where the given classes were relatively
simple and few, the confidence scores were higher than in
experiment 2 with its higher class complexity and number

Fig. 8. Scatterplot of individuals’ F1 scores for ROI labeling and
ROI delineation in experiment 3, session 1 (left) and session 2 (right).
Spearman’s rank correlation coefficient given as ρs. Gx: result data
combined from G1 and G2.

of classes. Checking for false annotations should therefore
focus on relative confidence score values between regions in
an image.

C. Correlations Between Both Tasks

Experiment 3, where the crowd size was large enough,
was used to measure the correlation between the F1 scores
for ROI labeling and ROI delineation of the individuals.
In session 1, 22 participants performed both tasks. In session
2, 11 participants performed both tasks. For both sessions,
the results for second or third images were combined due to
grouping participants in ROI delineation. The correlation coef-
ficients given in Fig. 8 indicate that the correlation between
labeling and delineation quality was relatively weak, especially
in session 2 (values close to zero). The F1 scores of ROI
delineation vary more than those of ROI labeling.

These results suggest that the individual performance can-
not be projected from one task to another, indicating that
participants’ contributions should be weighted for each task
separately. However, it is possible to transfer quality estimates
of contributors between sessions of the same task.

IV. DISCUSSION

This study analyzed the potential of a relatively small
“educated” crowd, as opposed to the common practice of large
crowds of contributors. Students with comparable motivation
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and knowledge at the same stage of the medical school cur-
riculum can be regarded as “semi-experts”. We asked whether
this setting would be suitable for labeling and delineation of
histopathological images, a task of considerable complexity
that is usually assigned to experts. Our tests cover a variety of
image objects that are for example relevant for cancer or trans-
plantation research that includes ROI detection. We therefore
discuss strengths and limitations of this approach for machine
learning applications.

A. Crowd Performance and Limitations

Although it is recommended that crowdsourcing tasks
should be kept as simple as possible, our findings are in
line with the notion that handling of more complex tasks
is feasible in more controlled settings of collective problem
solving [18]. A previous study showed that Crowdsourcing of
image annotation tasks was generally feasible with variations
corresponding with task complexity, even the concept of an
hierarchically ordered terminology (ROI labeling) resulted in
reliable annotations. Nevertheless, attention should be paid to
object characteristics and number of classes. Multiple shape-
or texture-related features and semi-quantitative characteristics
like size or cell density, may mark limits of feasibility for
crowdsourced image labeling [35].

For ROI delineation, the experiments covered a broad range
of class complexity and image size. Classes with relatively
constant size and appearance (such as “glomerulum”) were
more suitable than more variable classes with overlapping
characteristics. A comparison between the three experiments
shows a relation between performance and number of classes
(quality from experiment 2, which featured a number of
diverse classes, was relatively low compared to the setups
with fewer classes). Additionally, our results suggest a higher
recall for smaller images (experiment 1). In particular, good
performance can be achieved by limiting the task to a low
number of classes for annotations on images of limited size.
In accordance with [37], the error rate increases with increas-
ing complexity.

We paid particular attention to the problem of image
objects with poorly defined levels of feature variability, such
as “invasive tumor”. Experiment 2 confirmed that outlining
the invasive edge of tumors was in fact more difficult than
anatomically defined structures (e.g., differentiated epithelial
cells or basal membranes). However, GT in digital pathology
is made by individual manual drawing and represents an
approximation instead of the entire truth. In line with this,
the class “invasive tumor” almost inevitably showed some
difference to GT in the border region. Interestingly, the outline
based on MV sometimes seemed even more exact than the
GT on visual inspection. We conclude that the interpretation
of quality measures of classes with irregular borders like “inva-
sive tumor” should take into account that lower quality values
do not necessarily mean low crowd performance. In contrary,
the observation that MV-based outlines sometimes seemed to
be a little closer to the tumor edge than the GT seems to
confirm [13], claiming that crowds can outperform experts
in particular settings. However, it is difficult to quantify this

effect and it remains to be investigated whether this trend holds
true in larger series. This would be a promising field where
crowdsourcing could substantially contribute to more reliable
annotations.

Another aspect that may influence the level of difficulty
in our setting was the individual staining of the images.
The annotation of ROIs will often be based on faint blue
counterstain or normal H&E, and not on specific staining of
tissue components of interest. An exception in our setting was
a marker for blood vessels (experiment 1). In our case where
only large blood vessels should be delineated, it was probably
this staining that lead to a number of false positives. Similarly,
a staining for ER, which can be positive or negative in tumors
and variable in normal epithelium can have an effect on ROI
detection. In two images of experiment 2, ER prominently
marked the tumor area, which could, in these images, have
guided the delineation. We found that both ER-stained images
had precision and recall values of over 0.9 for the tumor class,
whereas in the other two images either precision or recall was
lower than 0.9. We conclude that use of immunohistochemical
stainings did not seem to have a negative influence.

We recorded cases where the MV overruled single better
contributions. In general, this occurs in crowds with clearly
detectable differences between low and high performing con-
tributors, as observed in our experiments. A higher weight for
better performers may reduce this risk (therefore, weighted
MVs are often considered [38], [39]). As this assumes that
the quality of individual contributors remains constant during
larger time spans, we analyzed the correlations of contributors
between sessions. Our analysis confirmed that a transfer of
individual estimates for the same task is feasible. This allows
the application of a confidence score for weighting the contri-
butions according to capability, which strengthened the input
of high-performing contributors and ensured reliability of the
results.

B. Recommendations for Application

1) Task design and teaching
Our experience showed that the layout of the tasks
(terminology, ROI complexity) has a strong impact on
the crowd performance, consistent with [12]. If object
characteristics are complex, it may be advisable to keep
the number of classes low. The terminology should
be well-defined, categorical, and easy to explain. Our
observations confirmed the importance of a teaching
session with direct interaction between the crowd and
the instructors to explain terminology, give technical
support, and to avoid misunderstanding. This is in
agreement with published data reporting that face-to-
face or video-based teaching improved the result com-
pared to written illustrated descriptions [40].

2) Crowd composition
In contrast to the usual large and heterogeneous crowds
[16], [17], our crowd was relatively small but with
homogeneous background knowledge. The general pos-
sibility of working with small crowds is supported by
published data [4], [9], [11]. Our subset analysis of ROI
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delineation suggests that results often do not improve
much further when the crowd exceeds 7–8 participants.
Most objects were clearly delineated by a MV from
this crowd size, and objects that were very difficult to
identify remained unstable anyway. Further studies are
required to investigate whether those “difficult” images
may still benefit from a larger crowd.

3) Tool design
Difficulties in tool handling were manageable, and more
common in the technically more complex ROI delin-
eation. In our experience, Cytomine [36] seemed to
be more suitable for crowdsourcing than ImageScope
because of automatic saving, and the possibility to
restrict user actions. However, users have to actively
avoid double assignment of a class to a single ROI in
Cytomine. In our case, this occurred very rarely. In con-
trast, some participants did not follow the instructions
to produce closed lines leading to incomplete objects in
ImageScope.

4) Adjustments to individual applications
Our approach provides several variable elements that can
be adjusted to the requirements of future applications.
For a set-up like ROI labeling, we suggest to give the
contributors the option to label images “not classifiable”,
e.g. for images which contain two or more objects inside
the outlines.
To avoid the disadvantage of MV losing information
about certainty (relative frequency of the majority class)
[41], the minimal requirement for agreement for MV can
be adjusted, resulting in a trade-off between accuracy
and the number of unclassified images. This reduces the
pathologist’s time for review of unclassified images at
acceptable reliability of the crowdsourced labeling.

5) Quality control
In order to provide a way to control quality with limited
GT, we tested reliability measures that were based
on scattered gold standard. The introduced confidence
score clearly stated the quality of an annotation for
both tasks. Since the reliability measure in the case of
ROI delineation effectively measures recall, WV images
tended to have higher recall than unweighted ones,
sometimes at the cost of precision. For a scenario where
crowdsourced annotation data is intended to reduce
the workload for subsequent quality control, this is
advantageous as it is often easier to reject FPs than
to identify FNs. The confidence score image provided
useful guidance to quickly find potentially wrong labels.
Therefore, we strongly recommend to provide a confi-
dence score based on the generally suggested reliability
tests [18]. We used a percentage of about 10–35%
control instances, compared to published examples with
0.1% (however, in a huge data set) [23], [24] or 20%
[1], [7] of the data set.

C. Perspective: Application for Complex Annotations

Published results suggest that crowds are able to classify
nuclei [2], [5], [6], including a study where 28 participants

achieved high correlation with GT in the detection of pos-
itively stained cells [4]. Our study expands the scope of
crowdsourcing in pathology, using more complex terminolo-
gies in two demanding tasks that address a high current
need for WSI annotations. The presented concept of human
decision making differs from classical crowdsourcing projects
in the composition of the crowd (education, size) and use of
classroom teaching. We hypothesize that the performance of
the crowd may be related to this specific setting, and that a
substantial component of success is the medical background
knowledge of the participants. To test this hypothesis, it is
necessary to evaluate the quality of a heterogeneous crowd.
We anticipate a notably higher need for crowd teaching and
training and we expect further need for adjustments of task
design. Complex tasks in a civil engineering context have been
evaluated with heterogeneous crowds [42], where it was found
that with increasing task complexity more communication with
participants was needed.

For application in development of automated ROI detection,
the labeling approach produces a high accuracy for classified
images and a reduced remaining data set for which expert
annotations are still required. For delineation, the heatmap of
the confidence score provides guidance for the pathologist who
can review slides focusing on areas with low confidence score,
which is more efficient compared to full expert annotations.
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