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A Higher-Order Polynomial Method for
SPECT Reconstruction

Ying Jiang, Si Li, and Yuesheng Xu

Abstract— Existing single-photon emission computed
tomography (SPECT) reconstruction methods are mostly
based on discrete models that may be viewed as piecewise
constant approximations of a continuous data acquisition
process. Due to low accuracy order of piecewise constant
approximations, a traditional discrete model introduces
irreducible model errors which are a bottleneck of the
quality improvement of reconstructed images in clinical
applications. To overcome this drawback, we develop a
higher-order polynomial method for SPECT reconstruction.
Specifically, we represent the data acquisition of SPECT
imaging by using an integral equation model, approxi-
mate the solution of the underlying integral equation by
higher-order piecewise polynomials leading to a new dis-
crete system and introduce two novel regularizers for
the system, by exploring the a priori knowledge of the
radiotracer distribution, suitable for the approximation. The
proposed higher-order polynomial method outperforms sig-
nificantly the cutting edge reconstruction method based
on a traditional discrete model in terms of model error
reduction, noise suppression, and artifact reduction. In par-
ticular, the coefficient of variation of images reconstructed
by the piecewise linear polynomial method is reduced by a
factor of 10 in comparison to that of a traditional discrete
model-based method.

Index Terms— Nuclear imaging, image reconstruction,
noise and artifact reduction.

I. INTRODUCTION

S INGLE-PHOTON emission computed tomography
(SPECT) provides diagnostic information via estimates

of radiotracer distribution through tomographic reconstruction
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of projection data. It has contributed enormous benefits
to human health over the past decades. However, SPECT
involves a fundamental trade-off between image quality
and radiation dose to the patient. Increased radiation
exposure carries a probability of health detriment to the
patients, especially the increased risk of getting cancer
later in life [1]. Hence, there is a real need to reduce the
radiation dose in SPECT studies. Lower radiation dosage
can be achieved by lowering the activity of administered
radiotracer. It will inevitably lead to fewer gamma photons
in the projection data and thus to increased noise in the
reconstructed images. Such noisy images might not be
clinically useful. Therefore, the challenge is to reduce the
radiation dose in SPECT examinations without compromising
the image quality. This can be accomplished by application
of better radiotracers, improved imaging hardware, and/or
superior reconstruction methods. In this work, we focus on
image quality improvement in the low-dose SPECT studies
by developing a higher-order polynomial reconstruction
method.

The proposed higher-order polynomial image reconstruction
method consists of four essential components. An integral
equation model accurately describing the data acquisition
process is the basis of the method. The ideal data acquisition
is modeled as Radon transform [2]. However, real imaging
is never ideal. An accurate model should take into account
the degradations that distort the projection data. The effects
of attenuation and spatial resolution are two major physical
sources of image degradation. For this reason, we formulate a
relatively comprehensive integral equation model for SPECT
imaging by incorporating these two effects into the Radon
transform using the Lambert-Beers law [3] and resolution
modeling approaches [4].

The second component is approximation of the integral
equation. Traditional reconstruction methods widely use dis-
crete models that are piecewise constant approximations of
the underlying integral equation model. They are consistent
with usual sampling methods and convenient to implement.
However, due to the low approximation accuracy order of
piecewise constant approximations, the traditional discrete
models impose bottleneck model errors that cannot be com-
pensated by a reconstruction method, since such model errors
do not have any prior knowledge of their distribution. The
model errors will lead to a loss of accuracy in the reconstructed
images. Moreover, the traditional discrete models may not
be suitable for reconstruction from very low dose projection
data. Very low radiation dosage leads to severe noise in the
projection data, and such badly-contaminated data would in
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turn lead to reconstructed images with very high noise and
very low lesion detectability if reconstructed by a discrete
model of low accuracy. We propose to adopt higher-order
piecewise polynomials [5]–[10] to approximate the integral
equation, to gain approximate solutions having a higher-order
accuracy. The reconstruction method based on this approx-
imation, referred to as the higher-order polynomial method
throughout this work, can better recover the fluctuation pattern
of the radioactivity distribution, and has great potential for
reconstruction from very low dose projection data.

The third component is regularization of the resulting dis-
crete system. Since the model is formulated as a Fredholm
integral equation of the first kind with a compact integral
operator, the system obtained from the approximation of the
integral equation is ill-posed. Therefore, a proper regulariza-
tion is required. In the context of piecewise constant approx-
imation, different types of regularization functions have been
proposed to address issues with various considerations, such
as suppression of image noise and artifacts, preservation of
image spatial resolution, and enhancement of lesion contrast.
The total variation (TV) regularizer, first proposed by Rudin
et al. [11] and introduced to the field of ECT reconstruction
by Jonsson et al. [12] and Panin et al. [13], is particularly
interesting because it preserves the high frequency compo-
nents of the reconstructed radiopharmaceutical distribution,
including large jumps and steep transitions. However, images
resulting from the application of TV in the presence of
noise often suffer from staircase artifacts (i.e., appear as a
collection of piecewise constant regions and are particularly
severe for smooth transitions of activity). This issue may limit
the clinical use of TV. By exploring the a priori knowledge of
the radiotracer distribution, we design two novel regularizers
suitable for piecewise polynomial solutions of the integral
equation, with an aim of suppressing their high frequency
oscillation and staircase artifacts. The two regularizers are
formulated in terms of the �1-norm to impose sparsity of the
approximate solution in an appropriate transform domain.

As the fourth component, a fast solver for the resulting
non-smooth convex optimization problem is much needed.
The optimization problem that results from the regularization
involves a non-differentiable �1-norm and it is of large size.
Standard numerical methods developed for solving smooth
optimization problems do not generally apply to this prob-
lem. Solving such an optimization problem requires great
care. We construct an efficient iteration scheme based on
the fixed-point characterization [14]–[18] of the solution of
this problem, with a preconditioning technique motivated by
the classical EM algorithm to accelerate convergence of the
proposed scheme.

We demonstrate that the higher-order polynomial method
described above can be efficiently used for accurate SPECT
reconstruction by providing numerical results. We perform
numerical experiments on two types of phantoms: piecewise
constant and smooth, because they contain the essential char-
acteristics of activity distributions frequently encountered in
SPECT imaging. We compare the proposed method with
a cutting edge discrete method (the total variation regular-
ization method based on a traditional discrete model) in

terms of model error reduction, noise suppression and artifact
reduction.

II. METHOD

A. Integral Equation Model

We first describe an integral equation model for SPECT
imaging. SPECT imaging involves discrete measurements that
correspond to certain integral transformation of a function of
continuous variables. The associated data acquisition process
can be naturally formulated as an integral equation. In par-
ticular, we denote by f the radioactivity distribution on the
square image domain � ⊂ R

2 and by g a continuous
distribution function on the projection domain U × � with
U ⊂ R being a closed interval on the detector face and
� := [0, 2π] being the rotational range. The measurements
acquired from a SPECT imaging system are discrete values of
g. The projection distribution function g relates to f through
the system point response function h (to be given later) via
the following integral equation:∫

�
f (x)h(u, θ, x)dx = g(u, θ), (u, θ) ∈ U ×�. (1)

We now discuss the formulation of the system point
response function h. We include the effects of photon atten-
uation and system spatial resolution in the integration kernel
h and in later computer simulation, for they are two major
physical sources of image degradation in SPECT imaging. For
x := (x, y) and θ ∈ �, we let

u′ := x cos θ + y sin θ and v := −x sin θ + y cos θ. (2)

The attenuation factor with μ being the linear attenuation
coefficient can be described by

R(u′, θ, x) := exp

{
−
∫

l(u′,θ,x)
μ(x′)ds(x′)

}
,

where l(u′, θ, x) denotes the attenuation path, and
the Gaussian-type system point spread function with
distance-dependent standard deviation σS can be represented
by

K (u, u′, v) := exp

{
− (u − u′)2

2σ 2
S (v)

}
.

The attenuation path l(u′, θ, x) is a line segment from the
point source x := (x, y) to the detector face, and it follows
the direction (− sin θ, cos θ). Thus, the integration kernel h
has the form

h(u, θ, x) = R(u′, θ, x)K
(
u, u′, v

)
. (3)

We remark that the rotating u′v-coordinate system relates to
the xy-coordinate system via the transform defined by (2).

B. Representation of Radioactivity Distribution

At the heart of SPECT reconstruction is a full discretization
of model (1) whose right hand side is sampled at discrete
points corresponding to measurements of a SPECT imaging
system, which comes down to an approximation of the radioac-
tivity distribution f .
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The measurements in SPECT imaging are essentially real-
izations of certain random variables, and their expectation
values are obtained by sampling the continuous function g.
Specifically, we assume that the imaging system consists of r
evenly spaced projection views in a p-dimensional detector
array. For i := i1 + (i2 − 1)p, with i1 = 1, 2, . . . , p,
i2 = 1, 2, . . . , r , the measurement gi denotes the number of
gamma photons recorded by detector bin Ui1 at projection
view θi2 . The corresponding expectation value is then given
by the sampling gi := ∫

Ui1
g(u, θi2)du.

In this work, we employ a higher-order piecewise polyno-
mial to approximate f . Let X denote a finite dimensional
piecewise polynomial subspace of L∞(�). Equation (1) is
solved approximately by seeking f̃ ∈ X such that∫

�
f̃ (x)hi (x)dx = gi , i = 1, 2, . . . ,m, (4)

where hi := ∫
Ui1

h(u, θi2 , ·)du is the radioactivity contribution
to the i th measurement and m := pr represents the number
of the discrete measurements. When a basis of X is chosen,
(4) becomes a fully discrete linear system. In particular,
if one predefines a rectangular mesh of the image domain
� and chooses a piecewise constant approximation for image
representation [15], [17]–[20], (4) reduces to a traditional dis-
crete model.

We next describe the bases for X. We assume the dimension
of the detector array is p and generate a uniform rectangular
mesh for�, which consists of p×p square grids of equal areas
(each of area h2). Starting from the lowest left one, we index
the matrix of grids columnwise. Indeed, the matrix of grids
can be organized as a one-dimensional array in such a way
that the ( j1, j2)-th grid, with j1, j2 = 1, 2, . . . , p, corresponds
to the j -th element of the array with j := j1 + ( j2 − 1)p.
Given a specific grid ω j , we choose the basis functions
supported in such a grid as the tensor product polynomials
ϕ j,k(x, y) := (x −x j )

k1(y − y j )
k2/hk1+k2 , (x, y) ∈ ω j , where

(x j , y j ) denotes the coordinates of the lower left vertex of
ω j , and k := k1 + 1 + k2n with k1, k2 = 0, 1, . . . , n − 1 and
n ∈ N. Outside ω j , ϕ j,k are all zero. In Fig. 1, we show the
graph of 4 piecewise linear basis functions ϕ j,1(x, y) = 1,
ϕ j,2(x, y) = x , ϕ j,3(x, y) = y, and ϕ j,4(x, y) = xy on the
support ω j := [0, 1] × [0, 1]. We choose X := span{ϕ j,k :
j = 1, 2, . . . , p2; k = 1, 2, . . . , n2} as the solution space, and
thus have d := dim(X) = n2 p2. Clearly, X is a piecewise
polynomial space.

We remark that the higher-order piecewise polynomial
basis can better represent the basic elements, e.g. a triangle
shape, as compared to the traditional piecewise constant basis
(Fig. 2). In Fig. 2 (a), we show a triangle with vertices
(−10,−5), (10,−5) and (2, 7). We represented this triangle
by the piecewise constant basis on a 80 × 80 mesh where the
size of each grid is 0.5×0.5 [Fig. 2 (b)], and by the piecewise
linear basis on the same 80 × 80 mesh [Fig. 2 (c)] and on a
40 × 40 coarse mesh where the size of each grid is 1 × 1
[Fig. 2 (d)]. Fig. 2 (b) shows that the piecewise constant basis
can only recover the edge AB which is parallel to the x-axis,
and the edges BC and AC are approximated by zigzag lines.
Fig. 2 (c) shows that the piecewise linear basis, defined on the

Fig. 1. Piecewise linear basis functions on the support ωj := [0, 1] ×
[0,1]: (a) ϕj,1(x, y) = 1, (b) ϕj,2(x, y) = x, (c) ϕj,3(x, y) = y, and
(d) ϕj,4(x, y) = xy.

same mesh, can recover the edge AB , and the approximations
of the edges BC and AC are better than the zigzag lines
in Fig. 2 (b). Indeed, the piecewise linear basis model can
better suppress the serration on the edges than the piecewise
constant basis model. Thus, visually, the edge AC in Fig. 2 (c)
is recovered more like a straight line, as compared to the
zigzag line in Fig. 2 (b). The number of sawteeth on the
edge BC is reduced by using the piecewise linear basis model.
Moreover, the edge AC in Fig. 2 (d), which is recovered by
using the piecewise linear basis on the coarser mesh, still
better approximates the straight line than the zigzag line in
Fig. 2 (b).

We prefer the piecewise polynomial space to other smooth
function spaces, e.g. the spaces spanned by the blob
bases [21]–[24], for two reasons. First, the system matrix
after full discretization is less sparse if blobs are employed,
because they are less localized than the piecewise polynomial
bases and therefore contribute to more detector bins [22].
It requires more computational effort to implement the pro-
jection and back-projection operations during the iterative
reconstruction using blobs. We remark that the rotational
symmetry of blobs may not simplify the calculation of pro-
jections and back-projections in the case of model (1), where
the depth-dependent attenuation and distance-dependent spa-
tial resolution are taken into account. Second, blobs cannot
represent a piecewise constant image accurately [23]. Indeed,
the blob approximation consists of oscillations about the
correct constant values, and these approximation errors have
an adverse influence on the detectability of small lesions.
Moreover, in order to suppress the approximation errors,
as well as to meet the demand of required reconstruction
characteristics, one needs to perform time-consuming pre-
reconstruction experiments to determine the optimum blob
parameters. Furthermore, piecewise polynomials are natural
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Fig. 2. (a) Benchmark triangle; (b) piecewise constant representation on the 80 × 80 mesh; (c) piecewise linear representation on the
80 × 80 mesh; (d) piecewise linear representation on the 40 × 40 mesh.

extensions of piecewise constants which lead to existing dis-
crete models. In future studies, we will conduct comprehensive
simulation comparison between the above competing basis
models.

Next, we introduce an m × d SPECT system matrix

A := [
A1 A2 · · · An2

]
, (5)

where Ak is the m×p2 submatrix [ai jk : i = 1, 2, . . . ,m; j =
1, 2, . . . , p2], with ai jk := ∫

ω j
hi (x)ϕ j,k(x)dx. Defin-

ing two column vectors g := [
g1, g2, . . . , gm

]� and

f :=
[
f�1 f�2 · · · f�

n2

]�
with fk := [

f1,k, f2,k, . . . , f p2,k

]�,
we write equation (4) as the linear system:

Af = g. (6)

Upon solving system (6) for vector f, we obtain the solution
f̃ of equation (4) by calculating the linear combination f̃ :=∑n2

k=1
∑p2

j=1 f j,kϕ j,k .

C. Penalized Maximum Likelihood Estimation

In a SPECT system, both the gamma photon emission
rate and the subsequent photon detection follow the temporal
Poisson distribution. Therefore, the measurements g ∈ R

m

at m detector elements, which relate to the representation
coefficients f ∈ R

d through their expectations g and the linear
system (6), can be approximated by the Poisson model:

g = Poisson (g) = Poisson (Af) . (7)

In equation (7), Poisson(α) denotes a Poisson distributed
random vector with mean α, and A is the m × d SPECT
system matrix defined in (5).

Given a realization of g, the goal of SPECT reconstruction
is to estimate f so that the resulting approximation f̃ preserves
image features as much as possible, while suppressing Pois-
son noise. We formulate the reconstruction problem via the
penalized maximum likelihood (ML) criterion. The penalized
ML estimate is obtained by maximizing the sum of the
log-likelihood function of f and the negative penalty term.
Since the underlying likelihood function is assumed to be in
a Poisson form described above, the proposed optimization
model for SPECT reconstruction reads:

f� = arg min {〈Af, 1〉 − 〈ln(Af), g〉 + λR(f)} . (8)

The data fidelity term F := 〈A·, 1〉 − 〈ln(A·), g〉 is the
Kullback-Leibler (KL) divergence. The regularization term λR
is introduced to enforce desired properties of the estimate with
λ being a positive penalty-weight and R being a real-valued
regularizer defined on R

d .
1) The First-Order Discontinuity Penalization: We next moti-

vate the formulation of regularization by desired image fea-
tures and propose two types of the regularizer R. Since the
space X is spanned by piecewise-defined bases, the under-
lying solution f̃ is not necessarily smooth. This would
yield low approximation accuracy when approximating the
activity distributions in SPECT, for they are usually smooth
images. On this account, the underlying regularizer should
first penalize the first-order discontinuities, also referred to
as jumps, at all the grid boundaries. Based on this motivation
common to the both regularizers, we formulate the first one
in an intuitive manner, via penalizing differences between the
restrictions of the solution f̃ on two neighboring grids at their
common boundary. Indeed, the basic form of the regularizer
for tomographic reconstruction, when using square grids, reads

R(f) :=
p2∑

j=1

∑
l∈N j

Vjl(f). (9)

That is, the total energy R(f) is the sum, over the neighborhood
index set N j of each grid ω j for all j ∈ {1, 2, . . . , p2},
of the potential functions Vjl related to the grid ω j and grids
ωl within the neighborhood of ω j . To avoid duplication of
computation, we solely consider the jump penalty on the
upper and the right boundaries of each grid. Under these
circumstances, the neighborhood index set of ω j is given by
N j := { j + 1, j + p}, and we propose a formulation of the
potential function as

∑
l∈N j

Vjl(f) =
∫ x j+h

x j

∣∣ f̃ j (x, y j + h)− f̃ j+1(x, y j + h)
∣∣ dx

+
∫ y j +h

y j

∣∣ f̃ j (x j + h, y)− f̃ j+p(x j + h, y)
∣∣ dy,

(10)

where f̃ j is the restriction of the underlying solution f̃ on

ω j , and thus, we have that f̃ j = ∑n2

k=1 f j,kϕ j,k . The first
term at the right hand side of (10) calculates the integral of
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the difference between the restrictions on grids ω j and ω j+1 at
the common boundary {(x, y) : x j ≤ x ≤ x j +h, y = y j +h}.
The second term returns the integral of the difference between
grids ω j and ω j+p at the boundary {(x, y) : x = x j + h, y j ≤
y ≤ y j + h}. The reason we prefer the L1-norm for the
difference to quadratic or higher-order functions is that it
increases linearly as the difference increases. Thus, it has a
selective effect on smoothing small jumps in the difference
due to noise or the use of the piecewise-defined bases while
retaining large jumps in the difference which are often edges
(if any) of the image. The regularizer defined by (9) and (10)
(regularizer I) may allow preservation of flat surfaces and
edges in the estimated activity distribution. By making changes
of variables in the two integrals in (10) and rearranging the
integrands as polynomials of the new variable u, we may
rewrite regularizer I as

RI(f) = h
p2∑

j=1

∫ 1

0

⎡
⎣
∣∣∣∣∣∣

n−1∑
k1=0

s j,k1 uk1

∣∣∣∣∣∣+
∣∣∣∣∣∣

n−1∑
k2=0

t j,k2 uk2

∣∣∣∣∣∣

⎤
⎦ du, (11)

where variables s j,k1 := f j,k1,0− f j+1,k1,0+∑n−1
k2=1 f j,k1,k2 and

t j,k2 := f j,0,k2 − f j+p,0,k2 +∑n−1
k1=1 f j,k1,k2 are introduced for

notational simplicity, with f j,k1,k2 := f j,k1+1+k2n . The form of
regularizer RI makes the underlying optimization problem (8)
difficult to solve. We remark that if the regularization term can
be formulated as the composition of a convex function and a
linear operator, one may resort to the fixed-point proximity
algorithm, proposed originally in [14], to efficiently find the
solution. To this end, we propose a surrogate for RI, which
has the aforementioned composite structure.

By applying the triangle inequality to all the absolute value
terms in Eq. (11) and computing the integrals of the powers
of u, we develop the following surrogate regularizer for RI :

Rsurr(f) := h
p2∑

j=1

⎡
⎣ n−1∑

k1=0

1

k1 + 1

∣∣s j,k1

∣∣+
n−1∑
k2=0

1

k2 + 1

∣∣t j,k2

∣∣
⎤
⎦.
(12)

We show in Appendix IV that Rsurr is indeed equivalent to RI
in the sense that there exist positive numbers γ , η such that

γ RI(f) ≤ Rsurr(f) ≤ ηRI(f) for any f ∈ R
d . (13)

The above statement therefore justifies the proposed surrogate
regularizer. We may further readily verify that Rsurr is an upper
bound of RI, that is, γ = 1. In the remaining part of this paper,
we shall also refer to the surrogate regularizer as regularizer I.

Next, we show that the surrogate regularizer defined by (12)
can be formulated as a composition function � ◦ B with �
being the �1-norm and B being a linear operator. See [14] for
more details on the composition formulation of regularization
functions. Let Iα denote the α × α identity matrix, and
Dα denote the α × α backward difference matrix with the
Neumann boundary condition. That is, Dα is the α×α matrix
having the diagonal entries 0, 1, . . . , 1, sub-diagonal entries
all −1, and other entries all zero. In terms of the Kronecker
tensor product notion ⊗, by Bx we denote the np2 × np2

block diagonal matrix whose n diagonal blocks are Ip ⊗ Dp ,

1
2 Ip ⊗ Dp , . . . , 1

n Ip ⊗ Dp . Further, we denote by BI the np2 ×
np2 block diagonal matrix whose diagonal blocks are Ip2 ,
1
2 Ip2, . . . , 1

n Ip2 . For each κ ∈ {1, 2, . . . , n}, we introduce an
np2×np2 matrix Byκ . Indeed, if we view Byκ as a matrix with
n×n blocks (each block is a p2× p2 submatrix), its κ th row is
given by an array of n blocks

[ 1
κ Dp ⊗ Ip,

1
κ Ip2 , . . . , 1

κ Ip2
]
,

while the other blocks are all the p2 × p2 zero submatrix.
Using the above notation, we represent a 2np2 × n2 p2 linear
regularization operator B as

B :=
[

Bx BI · · · BI

By1 By2 · · · Byn

]
. (14)

We can easily verify that if � : R
2np2 → R is chosen as

�(z) := ‖z‖1, z ∈ R
2np2

, (15)

then Rsurr in (12) is equal to the composition � ◦ B .
We remark that when choosing the piecewise constant

approximation, i.e. n = 1, for image representation, Rsurr
reduces to the conventional anisotropic TV regularization
term [11], [14], [15].

2) The Higher-Order Derivative Penalization: Besides cartoon
features, the radioactivity distribution also contains smooth
structures. The first-order discontinuity penalization tends to
reconstruct such structures as staircases. To ameliorate the
staircase artifacts, we propose, in addition to penalizing the
first-order discontinuity of the radioactivity distribution func-
tion, to include higher-order “derivative” penalties. To this end,
we construct an approximation of the higher-order “deriva-
tives” of f , and then apply the �1 regularization to this approx-
imation to promote sparsity of the higher-order derivatives
of f . The approximation of the higher-order “derivatives” of f
is expressed in terms of the inner products of f with certain
multiscale basis functions that annihilate polynomials of an
appropriate order. We now describe the construction of the
multiscale basis functions. We need two scales of grids for
the image domain. We first introduce a set of p2 overlapping
coarse grids. For each j ∈ {1, 2, . . . , p2}, we define the index
set Sj := { j, j + 1, j + p, j + p + 1} and consider the
subspace X j := span{ϕl,k : l ∈ Sj ; k = 1, 2, . . . , n2} of X.
We then construct a coarse scale subspace of X j . Specifically,
for each j ∈ {1, 2, . . . , p2}, we construct the j th coarse
grid by taking the union of four neighboring original fine
grids: � j := ⋃

l∈S j
ωl . On each � j , we introduce a coarse

scale space Y j := span{υ j,k : k = 1, 2, . . . , n2} with tensor
product basis υ j,k(x, y) := (x − x j )

k1(y − y j )
k2/(2h)k1+k2

with k = (k1 − 1)n + k2, if (x, y) ∈ � j and zero elsewhere.
In fact, υ j,k is a scale of ϕ j,k . We naturally see that Y j is a
subspace of X j and thus we can express X j as the direct sum
of Y j and its orthogonal complement in X j . Let W j be the
orthogonal complement of Y j in X j . That is, X j = Y j ⊕⊥

W j .
It is easy to verify that dim(Y j ) = n2 and hence dim(W j ) =
dim(X j ) − dim(Y j ) = 3n2. An orthonormal basis {ψ j,k :
k = 1, 2, . . . , 3n2} for W j can then be constructed from the
basis of X j by requiring every ψ j,k to be orthogonal to Y j .
A specific construction of {ψ j,k} is presented in Appendix IV.
For a function g sufficiently smooth on � j , the inner product
〈ψ j,k, g〉 returns an approximation of the nth order directional



1276 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 5, MAY 2019

derivative of g in � j . This can be verified by using the Taylor
expansion of g [5]–[7], [9].

We formulate the regularizer R (regularizer II) as the sum
of
∣∣〈ψ j,k, f̃

〉∣∣ for j = 1, 2, . . . , p2, k = 1, 2, . . . , 3n2 so as
to penalize the nth order derivatives of f̃ in respective coarse
grids. We remark that regularizer II can promote the sparsity
of the solution under the constructed system due to the use
of linearly increasing measure (that is, the absolute sum).
Specifically, the proposed regularizer reads

RII(f) =
3n2∑
k=1

p2∑
j=1

∣∣〈ψ j,k, f̃
〉∣∣ . (16)

For convenience of algorithmic development, we re-express
the regularizer (16) as a composition of a convex function and

a linear operator. Noting that f̃ = ∑p2

l=1

∑n2

κ=1 fl,κϕl,κ , RII(f)
can be rewritten as

RII(f) =
3n2∑
k=1

p2∑
j=1

∣∣∣∣∣∣
n2∑
κ=1

p2∑
l=1

〈
ψ j,k, ϕl,κ

〉
fl,κ

∣∣∣∣∣∣ .

This leads us to form a matrix B of size 3n2 p2 × n2 p2 as

B = [〈
ψ j,k, ϕl,κ

〉 : 1 ≤ l, j ≤ p2, 1 ≤ k ≤ 3n2, 1 ≤ κ ≤ n2
]
,

(17)

and choose the convex function � as the �1-norm on R
3n2 p2

.
Then the regularizer (16) is equal to the composition � ◦ B ,
i.e. RII(f) = ‖Bf‖1 . We remark that the entry at the [3n2(k −
1)+ j ]-th row and [n2(κ − 1)+ l]-th column in matrix B is〈
ψ j,k, ϕl,κ

〉
. Since � j ∩ωl = ∅ for l /∈ Sj ,

〈
ψ j,k, ϕl,κ

〉 = 0 for
l /∈ Sj . Thus, matrix B is a sparse matrix. More details on the
generation of B can be found in Appendix IV.

D. Optimization Algorithm

Solving model (8) with regularizer I or II requires effi-
cient iteration schemes for the corresponding non-smooth
optimization problem. Traditional gradient-type and expec-
tation maximization (EM)-type algorithms fail to solve the
problem efficiently. We describe below a fixed-point proximity
algorithm with preconditioning to solve the problem. By char-
acterizing the solution of the optimization problem (8) as a
fixed-point of a non-expansive map defined via the proximity
operator of the conjugate function �∗ of �, we can use
the fixed-point proximity algorithm [14]–[18] to solve the
underlying non-smooth optimization problem.

We employ the following iteration scheme proposed in [18]
with preconditioning to solve the optimization problem (8){

bk+1 = proxQ
�∗
(
bk + Q−1 Bfk) ,

fk+1 = fk − P−1
(∇F(fk)+ B� (2bk+1 − bk

))
,

(18)

where proxQ
�∗ denotes the proximity operator of �∗ with

respect to Q (see, [28] for its definition). Here, Q := μ−1 Iq

and P := β−1S−1 with μ, β being positive parameters and S
being a d×d diagonal positive-definite preconditioning matrix.

Efficient implementation of (18) requires the availability
of the closed form of proxQ

�∗ . Recalling the definition of

the extended proximity operator [18], we may generalize
Moreau’s decomposition [28, Th. 14.3 (ii)] to the following
form: I = proxQ

�∗ + Q−1 ◦ proxQ−1

� ◦ Q for any symmetric
positive-definite matrix Q. We omit the proof of the gen-
eralization here. Using this formula, it suffices to obtain a

closed form of proxQ−1

� . Indeed, the proposed regularizers (12)
and (16) both choose the convex function � as the �1-norm
on respective regularized transform domains. The proximity
operator of � can then be calculated componentwise as

proxQ−1

� (x) = [
proxμ−1|·|(x1), . . . , proxμ−1|·|(xq)

]�
,

for x ∈ R
q , where

proxμ−1|·|(xi ) = max
{
|xi | − μ−1, 0

}
sign(xi )

is the well-known soft thresholding operator with μ−1 being
the threshold. The closed form of proxQ

�∗ leads to a fast
algorithm since we avoid solving many inner optimization
problems by using the closed form formula above. We remark
that in scheme (18), bk ∈ R

q is the dual iterate defined in
the regularized transform domain. It is truncated by the soft
thresholding operator at each iteration to remove noise of the
image in the transform domain.

The choice of the preconditioning matrix S is crucial for
the speed of convergence of the iteration (18). Motivated
by the classical ML-EM algorithm [26], [27], we propose
to choose S as the diagonal matrix Sk := diag(fk/A�1)
at the kth iteration. In this way, S is updated once a new
primal iterate fk is available. The diagonal matrix Sk , which
determines the direction of the next iteration in the classical
ML-EM algorithm, helps us guide the iteration direction in
the second step of (18). By employing the preconditioning
technique, we accelerate significantly the convergence speed
of the iteration.

III. SIMULATIONS AND NUMERICAL RESULTS

We performed numerical simulations on piecewise constant
and smooth phantoms frequently appearing in SPECT imag-
ing. Such simple phantoms can facilitate direct comparative
studies. We employed the piecewise linear polynomial (PLP)
basis model for discretization of integral equation (1), and
compared it with a traditional discrete model DM (i.e.,
using the piecewise constant basis for discretization of (1))
in terms of projection accuracy, image noise performance,
lesion detectability, feasibility of dose reduction and artifact
visualization. In particular, we employed TV regularization in
the traditional DM-based image reconstruction, because TV
can preserve high frequency components of the reconstructed
image, including large jumps and steep transitions, and is
well suited for reconstruction of piecewise constant phantom.
Throughout the entire simulation section, we applied iteration
scheme (18) to solve all the regularized optimization problems.

A. Comparison of Projection Accuracy

The first validation verified model error reduction of the
PLP model by using a brain phantom [Fig. 3 (a)]. The
brain phantom was taken from a slice of a SPECT brain
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Fig. 3. Brain phantom (a) and the associated benchmark parallel-beam
SPECT data (b) generated by the traditional DM on a 256 × 256 mesh.
The red lines are used for line profile illustration.

scan and was subsequently denoised using the high-order
TV regularization [17]. A SIEMENS E.CAM gamma cam-
era with low energy high resolution (LEHR) parallel-beam
collimator was simulated. The detector orbit was circular
covering 360◦, and the radius of rotation was set to 15 cm.
The parallel-collimated SPECT projection data for this valida-
tion consisted of 120 projection views in a 128-dimensional
detector array and were generated using three competing
analytical system matrices. We set the detector bin size to
2.2 mm, then the active detector size is 28.16 cm. We also
simulated the effect of uniform attenuation in the analytical
projection process. In particular, we used the accurate system
matrix (discretized using the traditional DM defined on a
256 × 256 rectangular mesh) to obtain the benchmark SPECT
data [Fig. 3 (b)] for the brain phantom. We qualitatively and
quantitatively compared the benchmark data with two other
sets of analytic data, which were generated by the traditional
DM on the 128 × 128 mesh and by the PLP model on the
64 × 64 mesh.

The simulation results show that the PLP model on the
64 × 64 coarse mesh outperforms the traditional DM on the
128 × 128 fine mesh. In Fig. 4 the horizontal line profiles
(marked in Fig. 3 (b)) confirm that the PLP model pro-
duced a projection with better contrast and spatial resolution,
as compared to that produced by the traditional DM. Moreover,
we used the root mean square error (RMSE) to assess accuracy
of projections. The RMSE is a global quality metric defined
by

RMSE :=
{

1

N

N∑
i=1

(gi − gOi )
2

}1/2

, (19)

where gi and gOi are bin detections in the competing and
benchmark projection sets, respectively, and N is the total
number of detector bins in the projection space. Table I
shows that the RMSE value produced by the PLP model is
significantly smaller than that produced by the traditional DM.

B. Reconstruction Comparison of Piecewise Constant
Image and Feasibility of Dose Reduction

The second validation assessed performance of the PLP
model on reconstructing the piecewise constant phantom.

TABLE I
RMSE VALUES OF THE PLP MODEL AND THE TRADITIONAL DM

To this end, we created a digital circular emission phantom
with uniform mean background activity distribution and a
set of seven uniform hot spheres embedded in the circle.
The hot spheres simulate hyperperfused defects, which are
of interest in nuclear medicine. One of the main tasks of
SPECT is detection of such defects. The mean activity ratio
of hot:background areas is 4 : 1. The grid size used for
this digital phantom is 1.375 × 10−1 mm. The radius of the
circular phantom is 92.4 mm, and the radii of the spheres
in the phantom are 3.3, 4.4, 5.5, 6.6, 7.7, 9.9 and 15.4 mm.
The locations of the spheres in transaxial plane are shown
in Fig. 5 (a). A SIEMENS E.CAM gamma camera with
LEHR parallel-beam collimator was simulated. The detector
orbit was circular covering 360◦, and the radius of rotation
was set to 15 cm. The parallel-collimated SPECT projection
data in this validation consisted of 120 projection views
in a 256-dimensional detector array with detector bin size
1.1 mm and were generated using an analytical system matrix
that results from the piecewise constant discretization. The
generated data were multiplied by appropriate constants to
reach four count levels in 2D acquisition mode (a total of 2.8×
105, 1.12×105, 0.84×105 and 0.56×105 counts in 120 views)
for four different scenarios, respectively. We note that these
values roughly correspond to the ACR SPECT phantom QA
scans (32 million total counts in 3D acquisition mode) with
545, 218, 164 and 109 MBq of Tc-99m, respectively [29].
Based on these noise-free projection data, we used a Poisson
random number generator to create 100 different noise real-
izations for each count level (400 data sets in total). We then
employed three reconstruction methods: the traditional dis-
crete model with TV regularizer (DM-TV) (the reconstruction
method proposed in [15]) and the PLP model with regularizer
I (PLP-I) and with regularizer II (PLP-II) to reconstruct the
noisy projection data of the highest (2.8 × 105, denoted by
280k) and the lowest (0.56 × 105, denoted by 56k) count
levels. Remark that in each competing reconstruction method,
we simulated the effect of LEHR parallel-beam collimation
in the system matrix. Moreover, to verify the feasibility of
radiation-dose reduction by use of the proposed PLP model,
we applied the PLP-I method to the reconstruction of all
four count levels, and compared its lesion detectability with
DM-TV and the clinically used EM algorithm with Gaussian
post filter (DM-GPF-EM).

The competing reconstruction methods required estimation
of penalty-weight λ. The optimal value of λ was obtained by
performing a set of trial reconstructions with λ ranging from
10−4 to 1. Five observers qualitatively considered the depen-
dence of spatial resolution, contrast and image noise on λ.
Indeed, each observer independently and subjectively balanced
the tradeoff among the above three metrics, and selected the
best λ for each reconstruction method and each count level.
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Fig. 4. Horizontal line profiles of the three investigated projection data sets: subfigure (a) corresponds to the upper red line in Fig. 3, while subfigure
(b) corresponds to the bottom red line.

Fig. 5. Piecewise constant phantom containing seven uniform hot
spheres (a) and the images reconstructed by (b) PLP-I, (c) PLP-II and
(d) DM-TV from analytical noisy projection data at the 280k count level.
The red ellipse represents the selected background ROI.

The penalty-weights selected by five observers were averaged
and the average values were used as the optimal parameters.
For construction of the 280k count level, the resulting optimal
parameters for DM-TV, PLP-I and PLP-II are, respectively,
λ = 0.11, 0.10 and 0.20. As for reconstruction of the 56k
count level, we followed the same procedure and obtained the
optimal parameters λ = 0.28, 0.18 and 0.40 for DM-TV, PLP-I
and PLP-II, respectively.

We show in Fig. 5 the hot spheres reconstructed using the
three competing methods with optimal penalty-weights for the
same noise realization of the 280k count level. We observe

TABLE II
COV IN THE SELECTED BACKGROUND ROI FOR THE 280k AND 56k

COUNT LEVELS RECONSTRUCTED BY THE THREE

COMPETING METHODS

much higher background noise in the images reconstructed by
DM-TV, as compared to those by PLP-I or PLP-II. This is
further confirmed by Table II, which presents the coefficients
of variation (CoV) in a selected background region-of-interest
(ROI) for the 280k and 56k count levels reconstructed by
the three competing methods. The definition of CoV may be
referred to [30]. We show in Fig. 5 (a) the location of the
background ROI (the red ellipse), which was placed away
from the edges of the hot spheres and the phantom. In the
case of the 280k count level, the CoV for PLP-I is reduced by
a factor of 10 in comparison to that for DM-TV. Even at the
very low 56k count level, the CoV for PLP-I is still reduced
by a factor of 3.7. These numerical results show that PLP-I is
more appropriate for the reconstruction of piecewise constant
phantom, in comparison with PLP-II. Moreover, in terms of
CoV, the images reconstructed by PLP-I and PLP-II even from
the very low 56k count level outperform significantly that by
DM-TV from the 280k count level.

In addition, we applied the channelized Hotelling observer
(CHO) [31] to quantify the detectabilities of PLP-I and
PLP-II on the uniform hot spheres. Following the approaches
described in [32] and [33], we find that in the case of
the 280k count level, PLP-I produced much higher CHO
detectability indices than PLP-II (Fig. 6). The DM-TV method
performed worst in this category. As shown in Fig. 7, the CHO
detectability indices obtained for the uniform hot spheres at
the 1.12 × 105 (112k) count level using the PLP-I method are
higher than or comparable to that obtained for the hot spheres



JIANG et al.: HIGHER-ORDER POLYNOMIAL METHOD FOR SPECT RECONSTRUCTION 1279

Fig. 6. CHO detectability indices of uniform hot spheres at the 280k count
level. The solid lines connecting calculated data points were provided as
visual aids.

Fig. 7. CHO detectability indices of hot spheres vs. number of counts
in the analytical SPECT data. The PLP-I method for 112k count level
data: λ = 0.14; the PLP-I method for 84k count level data: λ = 0.15;
the DM-TV method for 280k count level data: λ = 0.11; and the
DM-GPF-EM method for 280k count level data: the standard deviation of
the Gaussian filter is 4.53 mm. The reconstruction for DM-GPF-EM was
stopped at 50 iterations, while the other reconstructions were stopped at
300 iterations. The solid lines connecting the data points were provided
as visual aids only.

at the 280k count level using the DM-TV method. Moreover,
the PLP-I reconstructed hot spheres from the projection data
of the 0.84 × 105 (84k) count level exhibit even higher CHO
detectability indices than the hot spheres reconstructed by
the DM-GPF-EM method from the 280k count level data.
The above numerical results show that even with only 30%
of the number of counts used in the DM-GPF-EM recon-
struction, the CHO detectability indices of hot spheres in
PLP-I reconstructed images still surpassed that in DM-GPF-
EM reconstructed images, indicating that a 70% radiation dose
reduction might be possible. When compared with the DM-TV
method, PLP-I might still allow a 60% dose reduction.

C. Reconstruction Comparison With the Traditional DM
With Very High Grid Dimension

Using the hot spheres phantom, we further compare the
proposed PLP model to the traditional DM with very high
grid dimension. Specifically, we employed the traditional DM

Fig. 8. Zoom-in portions of the enlarged hot spheres images.
(a) Enlarged phantom; (b) enlarged reconstructed image by using the
traditional DM on 2048×2048 mesh; (c) enlarged reconstructed image by
using the traditional DM on 128 × 128 mesh; (d) enlarged reconstructed
image by using the PLP model on 128 × 128 mesh.

on the 2048×2048 mesh to discretize the integral equation (1).
The resulting system matrix is considered as an accurate
projector. We next show that the reconstruction method based
on such an accurate projector would generate accurate images.
To avoid a potential bias caused by random perturbation and
to better evaluate reconstruction accuracy, we focused on the
reconstruction of noise-free projection data of the uniform
spheres phantom. In this case, no regularization is needed and
we applied the EM algorithm to solve the underlying optimiza-
tion problems. We compared the above accurate results with
two other sets of images, which were reconstructed, respec-
tively, by the traditional DM and the PLP model on the 128×
128 mesh. As we can see in Fig. 8 (b), the accurate projector
can well recover the circular boundaries of the hot spheres
and preserve very high spatial resolution. Fig. 8 (c) shows
that the traditional DM approximates the circular boundaries
by zigzag lines and suffers from poor spatial resolution.
The PLP model on the same mesh [Fig. 8 (d)] significantly
outperforms the traditional DM in terms of both boundary
approximation and resolution preservation. We remark that
although the accurate projector-based reconstruction method
generates accurate images of high resolution, it is indeed
very time-consuming and requires huge storage space for
the system matrix involved. We show in Table III the CPU
time expended and the computer memory used by the three
competing models. We can see that both models on the
128 ×128 mesh need very little computer memory, and spend
comparable computational time to run 300 iterations, which is
much less than the time spent by the accurate projector.
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TABLE III
COMPARISON OF THE PERFORMANCE OF THREE COMPETING MODELS

FOR RECONSTRUCTION OF THE NOISE-FREE ANALYTICAL DATA OF

HOT SPHERES PHANTOM. THE CPU TIME DENOTES THE TIME

(UNITS: second) NEEDED TO RUN 300 ITERATIONS, AND MEM.
DENOTES THE COMPUTER MEMORY (UNITS: GigaByte)

REQUIRED TO STORE THE SYSTEM MATRIX

D. Reconstruction Comparison of Smooth Image

We conducted the third validation to assess the performance
of PLP-I and PLP-II on artifact reduction. A lumpy phan-
tom with Gaussian spheres was designed to accomplish the
required assessment. A cylinder with base radius 10.4 cm and
length 14.1 cm was used as the body of the phantom. The
cylindrical phantom has lumpy background, obtained by super-
imposing randomly distributed Gaussian blobs onto a uniform
background. Specifically, a lumpy distribution was modeled
by Lumpy = ∑K

k=1 Gauss(h, σ, pk), where Gauss(h, σ, pk)
represents a 3D Gaussian blob with standard deviation σ and
maximum activity h centered at the kth random point source
pk . We added the lumpy distribution to a uniform cylinder
to generate the lumpy background. We chose K = 200,
h = 1 MBq/cm3 (which is 2 times of the averaged background
activity), and σ = 30 mm. A transaxial layer of six 3D
Gaussian spheres (whose σ varied over the range 4 − 9 mm)
was placed within the lumpy background. The spheres, all with
the same starting maximum activity, were Gaussian-blurred.
The ratio of starting maximum activity to mean background
is 4 : 1 [Fig. 9 (a)].

We then used the Monte Carlo simulation software package
SIMIND [34] to obtain parallel-beam Tc-99m SPECT projec-
tion data for the lumpy phantom. A SIEMENS E.CAM gamma
camera with LEHR collimator was simulated. The simulation
consisted of 120 projection views in a 128 × 128-dimensional
detector matrix with detector bin size 2.22 mm2, and the
reconstruction space grid size is 2.23 mm3. During the data
acquisition, the radius of rotation for the circular detector orbit
was set to 15 cm. We used an 18% main energy window
centered at 141 keV. The gamma photons within this energy
window (128 − 154 keV) were considered as primary or
first-order scattered photons. Moreover, we set the scatter
energy window as 123 − 128 keV. We simulated a total of
2.18 × 1010 photon histories to suppress the photon-flux fluc-
tuation. The Monte Carlo simulated photopeak-window data
were multiplied by an appropriate constant to reach a total of
8.4×106 counts in 120 views. Based on the rescaled noise-free
simulation data, we used a Poisson random number generator
to create 100 noise realizations for the photopeak-window
data. Scatter compensation was implemented by adding the
estimated scatter counts in forward projection at each iteration
of the reconstruction. The scatter counts were estimated using
the scatter-window data [35].

The total volume of the simulated phantom is approximately
4791 cm3, whereas the volume of human brain usually does
not exceed 1500 cm3. Therefore, we expect that the above
count level would correspond to 2.6×106 counts in 120 views
for a brain with similar mean activity. This is approximately
half of a typical administered dose, since the recommended
total number of counts for brain perfusion SPECT is 5.0 ×
106 or more [36]. Moreover, we repeated the aforementioned
parameter determination procedure by multiple observers, and
determined the optimal penalty-weights to be 0.5, 1.3 and
2.1 for DM-TV, PLP-I and PLP-II, respectively.

In the image quality assessment of this validation,
we focused on the peak signal-to-noise ratio (PSNR) and
background ensemble variance. The PSNR is a global image
quality metric, which calculates the ratio between the maxi-
mum possible power of an image and the power of corrupting
noise that affects the fidelity of its approximation:

PSNR := 20 log10

(
MAX fO

‖ f − fO‖2

)
. (20)

In equation (20), f and fO denote the reconstructed image and
phantom, respectively, and MAX fO is the maximum possible
pixel value of the phantom.

The ensemble variance provides a useful measure of image
noise across multiple noise realizations. For the kth region-
of-interest ROIk (k = 1, 2, . . . , K and K is the total number
of ROIs), the metric is defined as the variance of ROI mean
activities mr,k over multiple independent noise realizations
r = 1, 2, . . . , R [37]:

σ 2
ensemble,k := 1

R − 1

R∑
r=1

(mr,k − mk)
2, (21)

where mk := 1
R

∑R
r=1 mr,k is the average of mean activities

in ROIk over R realizations. We then averaged this metric
over the K background ROIs and obtained the final back-
ground ensemble variance σ 2

ensemble := 1
K

∑K
k=1 σ

2
ensemble,k .

In this validation, we used 100 noise realizations and a total
of 60 circular ROIs centered at slices 21 to 25, where slice
23 is the central cross-section of Gaussian spheres. The radii
of the ROIs were set to 10 grids.

Fig. 9 shows examples of Gaussian spheres recon-
structed using the three competing methods with optimal
penalty-weights for the same noise realization of the Monte
Carlo simulated data. Radial line profiles passing through the
centers of the 11 o’clock and 5 o’clock Gaussian spheres
are shown in Fig. 10. We observe that staircase artifacts are
evident in the reconstruction of DM-TV. PLP-I and PLP-II,
though, greatly reduced such artifacts and preserved the image
fluctuation patterns. Moreover, the PLP model based methods
produced higher PSNR values and much lower background
ensemble variances than the DM-TV did (Table IV).

We further show in Table V the number of complete
iterations used and the CPU time (units: second) consumed
by the three competing methods. The relative error we used
in calculation is defined as

tol := ‖fk − fk+1‖2/‖fk+1‖2. (22)
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Fig. 9. (a) Lumpy phantom containing Gaussian hot spheres; and images
reconstructed by (b) PLP-I, (c) PLP-II and (d) DM-TV from simulated
noisy projection data. The red line is used for line profile illustration.

Fig. 10. Radial line profiles passing through the centers of the 11 o’clock
and � o’clock Gaussian spheres in Fig. 9.

TABLE IV
PSNR VALUES AND BACKGROUND ENSEMBLE VARIANCES FOR LUMPY

PHANTOM RECONSTRUCTED BY THE THREE COMPETING METHODS

From Table V we conclude that, under the same stopping
criteria, PLP-II performed better than DM-TV in terms of
both convergence speed and computational time. When the
required accuracy is higher than 10−2, PLP-I also began
outperforming DM-TV. The relative error tol vs. iteration
number is shown in Fig. 11, which further confirms the
above conclusions. This also validates numerically the con-
vergence of iteration scheme (18). The rigourous theoretical
convergence analysis for the iteration scheme may be referred
to [18].

TABLE V
COMPARISON OF THE PERFORMANCE OF DM-TV, PLP-I AND PLP-II
FOR RECONSTRUCTION OF THE MONTE CARLO SIMULATED DATA OF

LUMPY PHANTOM. THE PAIR (·, ·) REPRESENTS THE NUMBER OF

COMPLETE ITERATIONS AND THE CPU TIME (UNITS: SECOND)
NEEDED TO ACHIEVE VARIOUS RELATIVE ERROR LEVELS

Fig. 11. Relative error vs. iteration number for the three competing
reconstruction methods.

IV. CONCLUSION

We have established a novel approach for SPECT recon-
struction based on the piecewise polynomial approximation
discretizing the integral equation model of data acquisition
and the regularization penalizing undesired discontinuity of
the reconstructed image. The numerical experiments which we
have conducted demonstrate that the proposed reconstruction
methods outperform significantly the existing method based
on a traditional discrete model in model error reduction, noise
suppression, dose reduction and artifact reduction.

APPENDIX A
EQUIVALENCE BETWEEN REGULARIZER I

AND ITS SURROGATE

We provide in this appendix a proof for the equiva-
lence between the surrogate regularizer defined by (12) and
regularizer I defined by (11). It suffices to show that the
integral G(x) := ∫ 1

0

∣∣∣∑n−1
l=0 xlul

∣∣∣ du is equivalent to the

summation Gsurr(x) := ∑n−1
l=0

1
l+1 |xl | for any vector x :=

[x0, x1, . . . , xn−1]� ∈ R
n . We accomplish this task by proving

that both G and Gsurr are norms on R
n . The argument (13)

then follows immediately from the fact that all norms on a
finite-dimensional vector space are equivalent.

We first show that G is a norm. We can readily see that G is
non-negative over R

n , and that G is definite in the sense that
if G(x) = 0, then the integrand vanishes and thus x = 0 is the
zero vector. Moreover, for any c ∈ R and x ∈ R

n , we have
that

G(cx) =
∫ 1

0

∣∣∣∣∣
n−1∑
l=0

cxlu
l

∣∣∣∣∣ du = |c|G(x).
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This ensures that G is absolutely homogeneous. Next, for any
y := [y0, y1, . . . , yn−1]� ∈ R

n , we can check that

G(x + y) =
∫ 1

0

∣∣∣∣∣
n−1∑
l=0

(xl + yl)u
l

∣∣∣∣∣ du

≤
∫ 1

0

(∣∣∣∣∣
n−1∑
l=0

xlu
l

∣∣∣∣∣+
∣∣∣∣∣
n−1∑
l=0

ylu
l

∣∣∣∣∣
)

du

= G(x)+ G(y).

In other words, G satisfies the triangle inequality. In summary,
the function G is a norm on the vector space R

n .
Following a similar proof, we can verify that Gsurr is also

a norm on R
n . This completes the current appendix.

APPENDIX B
CONSTRUCTION OF AN ORTHONORMAL BASIS FOR Wj

In this appendix, we present a construction of an orthonor-
mal basis {ψ j,k : k = 1, 2, . . . , 3n2} of W j , the orthogonal
complement of Y j in X j . The orthogonality of W j and Y j

requires that 〈ψ j,k, υ j ,̃k〉 = 0 for k̃ = 1, 2, . . . , n2. Since
ψ j,k can be represented by the basis of X j , i.e., ψ j,k =∑

l∈S j

∑n2

κ=1 w
( j,k)
l,κ ϕl,κ , the underlying construction amounts

to solving the following underdetermined system of linear
equations

〈∑
l∈S j

n2∑
κ=1

w
( j,k)
l,κ ϕl,κ , υ j ,̃k

〉
= 0, k̃ = 1, 2, . . . , n2, (23)

where w( j,k)
l,κ are unknown. The definition of υ j ,̃k shows that it

can be re-expressed as a translation of υ1,̃k , i.e., υ j ,̃k(x, y) =
υ1,̃k(x − x j + x1, y − y j + y1). Thus, when ψ j,k(x, y) =
ψ1,k(x − x j + x1, y − y j + y1) and 〈ψ1,k , υ1,̃k〉 = 0, there
holds that 〈ψ j,k, υ j ,̃k〉 = 0. This implies that ψ j,k can be
constructed by solving (23) with j = 1. More specifically,
ψ j,k = ∑

l∈S j

∑n2

κ=1 w
(1,k)
l− j+1,κϕl,κ . In sum, a set of 3n2 lin-

early independent special solutions of (23) with j = 1 yields
a basis for W j , j ∈ {1, 2, . . . , p2}. We may further follow the
Gram-Schmidt process to orthonormalize the resulting basis
functions, thereby obtaining the orthonormal basis {ψ j,k}.

APPENDIX C
GENERATION OF MATRIX B FOR THE COMPOSITION

MODEL OF REGULARIZER II

We provide details for the generation of matrix B and
present the composition form of regularizer RII. In fact,
the constructed multiscale basis

{
ψ j,k : k = 1, 2, . . . , n2

}
sup-

ported in each square coarse grid � j is a repetition of one
another and has the tensor product structure. Therefore, each
multiscale basis function is independent of index j and can
be factorized into the product of two univariate functions:
ψ j,k(x, y) = φk1(x)φk2(y) with φl , l ∈ {1, 2, . . . , 2n}, being a
univariate basis function supported in a 1D coarse grid. Below,
we give the relation of k with k1 and k2. Note that the tensor
product of two 1D coarse grids gives a square coarse grid.
Specifically, we introduce the index sets I1 := {(k1, k2) : k1 =
1, 2, . . . , n; k2 = n + 1, n + 2, . . . , 2n}, I2 := {(k1, k2) : k1 =
n + 1, n + 2, . . . , 2n; k2 = 1, 2, . . . , n}, and I3 := {(k1, k2) :
k1 = n + 1, n + 2, . . . , 2n; k2 = n + 1, n + 2, . . . , 2n}, so that
{φk1(•)φk2(�) : (k1, k2) ∈ I1 ∪I2 ∪I3} forms the desired tensor

product orthonormal basis for W j . Moreover, the subscript k
relates to the index pair (k1, k2) via the following piecewise
expression

k =
⎧⎨
⎩

k1 + (k2 − n − 1)n, if (k1, k2) ∈ I1,

k1 − n + (k2 − 1)n + n2, if (k1, k2) ∈ I2,

k1 − n + (k2 − n − 1)n + 2n2, if (k1, k2) ∈ I3.

We readily see that k runs from 1 to 3n2. We introduce
two commands to anchor a matrix to its vectorization: the
command Vec unwraps the matrix into a vector by column
stacking, as described in Section II-B, whereas the command
Fold operates in the opposite way. In this way, we may rewrite
the regularizer (16) as

∑
(k1,k2)∈I1∪I2∪I3

∥∥∥∥∥∥
n−1∑

k̃1 ,̃k2=0

Vec
(
(τk1 ,̃k1

⊗ τ�
k2 ,̃k2

) ∗ Fold(f̃k)
)∥∥∥∥∥∥

1

with τl ,̃l , l ∈ {1, 2, . . . , 2n}, l̃ ∈ {0, 1, . . . , n − 1}, being
1D filters associated with polynomials of degree l̃ in the
univariate basis function φl and k̃ = k̃1 + 1 + k̃2 n. For the
purpose of algorithmic development, we express the above
two-dimensional convolutions in matrix forms. Specifically,
under the symmetric boundary condition, we let Hl ,̃l denote
a p × p circulant matrix specified by the filter τl ,̃l . Then we
have that

Vec
(
(τk1 ,̃k1

⊗ τ�
k2 ,̃k2

) ∗ Fold(f̃k)
)

= (Hk1 ,̃k1
⊗ Hk2 ,̃k2

)f̃k .

We further let Dk1,k2 ,̃k := Hk1,̃k1
⊗Hk2 ,̃k2

∈ R
p2×p2

and Wk :=[
Dk1,k2,1 Dk1,k2,2 · · · Dk1,k2,n2

] ∈ R
p2×d . With this notation,

we have that

B = [
W�

1 W�
2 · · · W�

3n2

]�
, (24)

and choose � as the �1-norm on R
3n2 p2

. Then we can readily
verify that composition � ◦ B is equal to the regularizer (16).

Finally, we describe the 1D filters associated with the
univariate multiscale piecewise linear basis functions used in
the numerical simulation presented in Section III. The tensor
products of these 1D filters may form a two-dimensional
orthogonal piecewise linear filter bank. In particular, we set
the highest coordinate order n to be 2 and thus have a tensor
product multiscale piecewise linear basis for each space W j .
Clearly, we see that dim(W j ) = 12. Each tensor product
piecewise linear basis function can be factorized into the
product of two univariate piecewise linear basis functions.
Recalling the notation in Section II-C, we denote by {φl : l =
1, 2, 3, 4} the set of univariate basis functions. These univariate
functions are all piecewise linear polynomials supported in the
1D coarse grid. With the above preparation, the 1D filters
associated with polynomials of degree 0 in the univariate
multiscale piecewise linear basis functions are given by

τ1,0 = [1, 1], τ2,0 =[−1, 1], τ3,0 = [−1, 1], τ4,0 = [1,−1].
The 1D filters associated with polynomials of degree 1 in the
above univariate basis functions are

τ1,1 =
[

1

2
,

1

2

]
, τ2,1 =

[
−1

3
,

2

3

]
, τ3,1 =

[
−3

2
,

1

2

]
,

τ4,1 =
[

1

3
,

2

3

]
.
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Under the symmetric boundary condition, the p × p circulant
matrix representations of the above series of 1D filters are
given by

H1,0 =
⎡
⎢⎣

2
1 1

. . .
. . .
1 1

⎤
⎥⎦, H2,0 =

⎡
⎢⎣

0−1 1
. . .

. . .
−1 1

⎤
⎥⎦,

and H3,0 = −H4,0 = H2,0,

H1,1

=

⎡
⎢⎢⎢⎢⎣

1
1

2

1

2
. . .

. . .
1

2

1

2

⎤
⎥⎥⎥⎥⎦, H2,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

3
−1

3

2

3
. . .

. . .

−1

3

2

3

⎤
⎥⎥⎥⎥⎥⎥⎦
,

H3,1

=

⎡
⎢⎢⎢⎢⎢⎣

−1

−3

2

1

2
. . .

. . .

−3

2

1

2

⎤
⎥⎥⎥⎥⎥⎦
, H4,1 =

⎡
⎢⎢⎢⎢⎢⎣

1
1

3

2

3
. . .

. . .
1

3

2

3

⎤
⎥⎥⎥⎥⎥⎦
.
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