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Fully Automatic Left Atrium Segmentation From
Late Gadolinium Enhanced Magnetic

Resonance Imaging Using a Dual Fully
Convolutional Neural Network
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Abstract— Atrial fibrillation (AF) is the most prevalent
form of cardiac arrhythmia. Current treatments for AF
remain suboptimal due to a lack of understanding of the
underlying atrial structures that directly sustain AF. Existing
approaches for analyzing atrial structures in 3-D, especially
from late gadolinium-enhanced (LGE) magnetic resonance
imaging, rely heavily on manual segmentation methods that
are extremely labor-intensive and prone to errors. As a
result, a robust and automated method for analyzing atrial
structures in 3-D is of high interest. We have, therefore,
developed AtriaNet, a 16-layer convolutional neural net-
work (CNN), on 154 3-D LGE-MRIs with a spatial resolution
of 0.625 mm × 0.625 mm × 1.25 mm from patients with
AF, to automatically segment the left atrial (LA) epicardium
and endocardium. AtriaNet consists of a multi-scaled, dual-
pathway architecture that captures both the local atrial
tissue geometry and the global positional information of
LA using 13 successive convolutions and three further con-
volutions for merging. By utilizing computationally efficient
batch prediction, AtriaNet was able to successfully process
each 3-D LGE-MRI within 1 min. Furthermore, benchmarking
experiments have shown that AtriaNet has outperformed
the state-of-the-art CNNs, with a DICE score of 0.940 and
0.942 for the LA epicardium and endocardium, respectively,
and an inter-patient variance of <0.001. The estimated LA
diameter and volume computed from the automatic segmen-
tations were accurate to within 1.59 mm and 4.01 cm3 of
the ground truths. Our proposed CNN was tested on the
largest known data set for LA segmentation, and to the
best of our knowledge, it is the most robust approach that
has ever been developed for segmenting LGE-MRIs. The
increased accuracy of atrial reconstruction and analysis
could potentially improve the understanding and treatment
of AF.
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I. INTRODUCTION

ATRIAL fibrillation (AF), leading to an irregular and rapid
heart rate, is the most common sustained heart rhythm

disturbance. AF is associated with substantial morbidity and
mortality, causing 1 out of 5 strokes in people aged over
60 years [1]. The current overall prevalence of AF is about 2%
in industrialized countries and is projected to more than double
in the following couple of decades. Current clinical treatments
for AF perform poorly due to a lack of basic understanding
of the underlying atrial anatomical structure, which directly
sustains AF in the human atria [2], [3].

AF, especially persistent AF, is driven by complex sub-
strates, which are widely distributed throughout both atrial
chambers [4]. Repeated episodes of AF also produce further
changes in the structural properties of the atria, i.e., atrial
structural remodeling (dilatation, myofiber changes and fibro-
sis) [5]–[7]. As a result, direct study of the atrial structure and
its changes in patients with AF is vital to the understanding
and treatment of AF.

Nowadays, gadolinium-based contrast agents are used in
a third of all MRI scans to improve the clarity of the
images of a patient’s internal structures including the heart,
by improving the visibility of often disease-associated struc-
tures, such as fibrosis/scarring, inflammation, tumors, and
blood vessels. Late gadolinium-enhanced magnetic resonance
imaging (LGE-MRI) is widely used to study the extent and
distribution of cardiac fibrosis/scarring [2], [8]. Clinical studies
in AF patients using LGE-MRI suggest that the extent and
distribution of atrial fibrosis (Utah stages I-IV) are reliable
predictors of catheter ablation success rate and can be used for
patient stratification for medical management [9], [10]. A large
ongoing clinical trial, LGE-MRI Guided Ablation vs. Conven-
tional Catheter Ablation of Atrial Fibrillation (DECAAF II),
evaluates conventional catheter ablation treatment vs. catheter
ablation guided by LGE-MRI which shows the area of fibrosis
in the heart. Furthermore, left atrial (LA) diameter and volume
computed from 3D LGE-MRIs provide reliable information
for clinical diagnosis and treatment stratification [11].
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Fig. 1. The architecture of the proposed dual fully convolutional neural network for atrial segmentation (AtriaNet). The size of the image at
every second layer is shown, further details are in Table. I. The parallel (global and local) pathways process each MRI slice at different resolutions,
which are combined at the end of the network. The final output has two feature maps, denoting the probability of a positive or negative pixel
classification for each 15×15 patch respectively.

Atrial segmentation is a crucial task for aiding medical
management for AF patients based on structural analysis
of the segmented 3D geometry and has led to many prior
studies investigating algorithms for fully automatic atrial
segmentation, especially for the LA. A benchmark study
published by Tobon-Gomez et al. [13] compared the per-
formance of nine different algorithms for LA segmentation
from non-gadolinium enhanced MRIs/CT and showed that
methodologies combining statistical models with regional
growing approaches were the most effective. Similar tech-
niques have also been proposed and further improved upon
for segmenting the LA from LGE-MRIs in studies by
Veni et al. [14], Zhu et al. [15], and Tao et al. [16]. Despite
these recent efforts, most of the existing structural analysis
studies, especially those that utilize clinical LGE-MRIs, are
still based on labor-intensive and error-prone manual seg-
mentation approaches [9], [10], [12]. This is mainly due to
the limitations of current automated methodologies requiring
supporting information which are often not available, such
as shape priors for initialization [15], [17] or additional
magnetic resonance angiography (MRA) sequences to aid the
segmentation process [16]. The nine algorithms mentioned in
the benchmarking study [13] were effective in segmenting
the LA from non-gadolinium enhanced MRIs. However, they
are also difficult to apply to the LGE-MRIs directly, as the
(normal) atrial anatomy is more attenuated by the contrast
agent and they are based on conventional approaches. There
is, therefore, an urgent need for an intelligent algorithm that
can perform fully automatic atrial segmentation directly from
LGE-MRIs, particularly for LA, for accurate reconstruction
and measurement of the atrial geometry for clinical usage.

Machine learning is a class of algorithms which learn from
a given set of data and labels by creating their understanding
in a process known as feature separation. Classification and

segmentation are two typical problems solved with machine
learning algorithms. In traditional machine learning classifica-
tion algorithms such as support vector machines [18], random
forests [19] and K-nearest neighbor [20], a set of features is
generated manually from the raw data, and fed into a classifier.
This requires domain expertise in the field of the task at hand,
as a rigorous feature selection procedure is required to find the
optimal feature combination for learning. Optimization is then
performed on the features to minimize an objective function,
which results in the linear separation of the data from different
classes. However, despite the effectiveness of these algorithms
over the years, the manual feature engineering and algorithm
selection processes are major bottlenecks for improving the
performance on classification tasks.

Neural networks [21] is a category of modern machine
learning algorithms, and have been applied in many different
fields including medicine and bioengineering. The effective-
ness of neural networks lies in their ability to automate
the feature extraction step. By eliminating the need for
domain expertise when applying neural networks, the per-
formance of these algorithms will only increase with the
increasing amount of data available. Convolutional neural
networks (CNNs) [22], which became popularized less than
a decade ago, specialize in image processing, such as
image classification [23]–[26], object detection [27] and
semantic segmentation [28], [29]. Thus, CNNs provide the
ideal foundation for tackling the challenging task of atrium
segmentation.

In this paper, we propose and evaluate a novel CNN for
fully automatic LA segmentation. Our method is developed
and validated on the largest 3D LGE-MRI dataset from
154 patients with AF from The University of Utah. This
exciting development is a very important step towards patient-
specific diagnostics and treatment.
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Fig. 2. The 3D reconstruction of the left atrial (LA) epicardium for pre (blue) and post (green) ablation for 10 test late gadolinium-enhanced
(LGE)-MRIs out of 22. The 1st and 3rd rows are the ground truths and the 2nd and 4th rows are the segmentation results from AtriaNet. Each column
contains LGE-MRI scans from the same patient.

TABLE I
THE CONFIGURATIONS OF ATRIANET

II. METHODS

Direct LA segmentation from raw LGE-MRIs is challenging
due to the massive imbalance between positive (thin wall LA)
and negative (background) pixels. To overcome this, we pro-
pose a novel dual fully convolutional neural network (FCNN),
with the alias AtriaNet (Fig. 1), that contains two parallel
pathways to process both local and global information. The
details of the configuration of AtriaNet are provided in Table. I.

AtriaNet performs 2D patch-wise classification at every 15 ×
15 region across each slice of a 3D LGE-MRI. The inputs
into the network are a local 41 × 41 patch, and a global
279 × 279 patch, both centered on the 15 × 15 prediction
region. The global pathway captures information about the
position and gross structure of LA. To reduce the number of
parameters used in the resultant AtriaNet, the large global
patch is pooled to a smaller size. The local pathway cap-
tures the exact geometry of LA for every pixel within its
small neighborhood. The two patches are separately convolved
through 13 convolutional layers (conv 1 to conv 13) and are
merged to combine the information by performing an element-
wise sum. To maintain dimensional consistency, the last layer
in the global path is unpooled to match the size of the local
pathway with nearest neighbor interpolation. The network is
then convolved two more times (conv 14 and conv 15) to
further process the combined information where the output is
produced in the final layer with 2 feature maps (conv 16).
The Rectified Linear activation function is used for all layers
apart from the last layer which uses a softmax activation
function. Dropout is applied to convolutional layers 14 and
15 to reduce overfitting with a dropout rate of 50%. During
testing, the network scans through each 15 × 15 region for
every slice of a 3D LGE-MRI without overlapping, and feeds
the corresponding 41 × 41 and 279 × 279 patches centered
around it as input.

III. EXPERIMENTAL SETUP

A. LGE-MRI Patient Data

154 3D LGE-MRIs from 60 patients with AF prior to
3 to 27 months post clinical ablation were provided from
the University of Utah [9]. Thein vivo patient images were
acquired at a spatial resolution of 0.625 mm × 0.625 mm ×
1.25 mm using either a 1.5 Tesla Avanto or 3.0 Tesla Verio
clinical whole-body scanner. Each 3D LGE-MRI scan contains
44 slices along the Z direction, each with an XY spatial size
of 640 × 640 pixels or 576 × 576 pixels. The LGE-MRIs are
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TABLE II
THE NUMBER OF 3D LATE GADOLINIUM-ENHANCED (LGE)-MRIS

USED FOR TRAINING, VALIDATION AND TESTING

in grayscale whereas the segmentation masks are in binary.
The LA segmentations include the pulmonary vein regions, the
mitral valve, and the left atrial appendage. Each 3D LGE-MRI
patient data (both pre and post ablation) include two manually
segmented masks of the LA epicardium and endocardium by
experts [10], which were used as the ground truths in our
study.

B. Pre-Processing
The 154 3D LGE-MRI dataset was randomly split into

training (N = 110), validation (N = 22) and testing (N = 22)
sets in our study (Table. II). Since each patient had multiple
3D LGE-MRIs for pre and post ablation, the data was split
so that all scans from each unique patient were only in one
of the training, validation or testing sets. Evaluation could,
therefore, be performed to compare whether pre or post abla-
tion impacts the segmentation accuracy. Training, validation,
and testing for LA epicardium and endocardium segmentation
were done separately. All individual raw 3D LGE-MRI data
was normalized by using its mean and standard deviations of
color intensity.

Direct training on the entire LGE-MRI data was ineffective
due to the small proportion of positive pixels per slice, which
led to the data being very sparse and unbalanced. To alleviate
this, smaller patches which contained a balanced number of
positive and negative pixels were extracted from the training
set. The same number of patches from the background were
also sampled to match that of patches containing positive
pixels used during training. Note that for every 15 × 15 label
sampled (for evaluation during training), there was a need to
generate a 41 × 41 local patch and a 279 × 279 global patch
from original raw LGE-MRIs as inputs. Since the input patches
of AtriaNet (41 × 41 and 279 × 279) were much larger than
the 15 × 15 output patch, there were substantial overlaps when
the input patches were sampled.

Data augmentation was also used to artificially increase the
amount of data. Elastic deformations, affine transformations
and warping were found to be effective in increasing the
performance in previous studies [36]. The proportion of the
training set to augment was tuned as to introduce a sufficient
amount of new data but not cause overfitting.

C. Training

The adaptive moment estimation (ADAM) optimizer [37],
a type of gradient descent algorithm, was used for optimiza-
tion. The learning rate was kept constant at 0.0001 without
adjustment and the exponential decay rates of the 1st and
2nd moment estimates were set to 0.9 and 0.999 respec-
tively. During training, the accuracy was evaluated on the
validation dataset after each iteration of all the training data

through the network. This was repeated until the validation
accuracy stopped increasing, and the best performing model
was selected for evaluation on the test set. The network was
developed in TensorFlow [38], an open-source deep learning
library for Python, and was trained on an NVIDIA Titan
X-Pascal GPU with 3840 CUDA cores and 12GB RAM. The
training phase took approximately four hours and predictions
on each 3D LGE-MRI took around one minute to compute.

D. Post Processing and Evaluation

Since atrial tissue is continuous and smooth, the raw
segmentation output from AtriaNet was passed through a
3D Gaussian filter to enhance the segmented tissue mask.
Isolated mask islands were removed automatically, keeping
only the largest connected tissue in 3D as the final LA segmen-
tation. Thresholding was applied to restrict the pixels to binary
values, ensuring the atrial geometry was smooth and sharp.

Evaluation against the ground truths was done to evaluate
the accuracy of AtriaNet for each 3D LGE-MRI data. Sen-
sitivity, specificity, DICE and Hausdorff distance (HD) [39]
measurements were used, as well as clinical relevant measure-
ments (LA anterior-posterior diameter and 3D LA volume).
The DICE score is calculated as

DICE = 2Ntrue positive

2Ntrue positive + Nfalse positive + Nfalse negative
(1)

and was used during both validation and testing. The HD is
defined as the greatest value of the distances from any point in
one set to its corresponding closest point in another set. It is
written as

H D (G, P) = max
g∈G

{
min
p∈P

{√
g2 − p2

}}
(2)

for the two datasets of ground truth (G) and prediction (P).
The diameter and volume of the LA endocardium were

evaluated to compare the potential measurement errors from
the segmentation between the predictions and ground truths.
The LA diameter, measured in millimeters, was calculated
by finding the maximum distance from the anterior to the
posterior of the LA endocardium. The LA volume, measured
in cm3, was calculated by counting the total number of
voxels within the endocardium and then scaling the sum by
multiplying the original resolution of the LGE-MRI.

E. Hyper-Parameter Tuning

The proposed FCNN methodology consisted of multi-
ple parameters which were carefully selected and validated
through extensive experimentation. Various experiments were
designed to evaluate the effects of different parameter values
under controlled conditions on the validation and testing sets.
The parameter values presented in Section II of this study
were, therefore, the values which yielded the highest perfor-
mance during these hyper-parameter tuning experiments.

Since the local and global input dimensions directly
impacted the receptive field of AtriaNet, it was important
to ensure that optimal values were selected so that AtriaNet
was provided with sufficient information to efficiently capture
the local and global features of the LA endocardium and
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epicardium. The input dimensions of the local and global
path of AtriaNet were tuned by evaluating the network with a
range of different combinations of local and global resolutions.
These included local patch sizes ranging from 25 × 25 to 60
× 60 and global patches ranging from 252 × 252 to 306 ×
306. During experimentation, all other parameters not being
tuned were kept fixed to ensure fairness of comparison.

Single-step down-sampling was used in our network to
minimize the computational burden of large input images.
Comparisons were made between max-pooling and average
pooling for this step. The pooling factor in the global path-
way was also tuned to ensure that the network sufficiently
retained the relevant global information while maintaining
a low number of parameters. 5, 7, 9 and 11 sized filters
were tested for pooling the global patch while the local
patch remained fixed throughout the experiments. Since our
proposed network required the dimensions of the global and
local pathways to match during merging, the global input
resolution was adjusted accordingly when testing different
pooling factors. The unpooling layer was tested by comparing
nearest neighbor, bi-linear and bi-cubic interpolation.

The sequence of values for the number of feature maps used
for the convolutional layers throughout AtriaNet was tested
and compared to ensure that the selected values produced
the best segmentation performance without using excessive
computation. Specifically, experiments were done comparing
the proposed number of feature maps (Table I) with different
versions of AtriaNet containing 0.25×, 0.5× and 2× the
number of feature maps at each layer. This was expected to
draw out the effects on the accuracy of segmentation with
a network having significantly larger or smaller number of
parameters. 3 × 3 filters were used for all convolutional layers
due to their low computational costs and success in previously
proposed literature [24], [26], [28], [29], [35], [40], [41].

Overfitting was a potential issue in larger neural networks
due to the large number of parameters. To minimize this issue,
dropout rates of 0%, 25%, 50% and 75% in AtriaNet were
evaluated to find the most effective number of nodes to remove
while still keeping enough nodes for sufficient feature learning.

F. Comparing Existing FCNNs for LA Segmentation
The robustness and superiority of AtriaNet was demon-

strated by comparing its performance with current widely
used CNN architectures for the task of LA endocardium
segmentation using the same LGE-MRI dataset and same
prior/post processing procedures. The networks investigated
here included U-Net [35], Dilated U-Net [42], DeepOrgan [43]
and V-Net [44], which are popular for medical image seg-
mentation; and VGGNet [24], Inception [25] and ResNet [26]
which have obtained state-of-the-art performances in image
classification. Popular FCNNs for semantic segmentation such
as FCN-8 [28], deconvolutional neural network (Deconv-
Net) [29] and SegNet [45] were also investigated. Since
the three classification networks were traditional CNNs, they
were converted into FCNNs by replacing the fully connected
layers at the end of the network with convolutional lay-
ers for pixel-wise segmentation prediction. The intermediate
pooling layers were also removed to avoid significant losses

TABLE III
DICE ACCURACIES OF ATRIANET WITH THE SINGLE LOCAL

PATHWAY ONLY, WITH DIFFERENT RESOLUTIONS OF INPUT

PATCHES ON 22 TEST DATA

in dimensionality. It should be noted that VGGNet with its
fully connected layers removed, is the single-pathed version
of our proposed FCNN, hence, the effect of having a dual-
pathway was tested implicitly.

Since the mentioned architectures contained only one path-
way, the impact of patch size equivalent to the local/global
resolutions in AtriaNet was tested to evaluate its performance
during the benchmark study. To ensure for a fair comparison
of the different architectures, the same training, validation and
testing datasets were used for LA endocardium segmentation.
Due to the random initialization of the weight parameters,
biases can be introduced in different training sessions where
the accuracy can differ by a slight margin for the same network
trained on the same data. To avoid this, each architecture was
trained three times independently, and the results were aver-
aged. All architectures were implemented using TensorFlow
and trained from scratch to eliminate any source of bias from
existing implementations. The default hyper-parameters, ini-
tializations and training schemes recommended by the original
authors were used.

For further comparison, a previously proposed method for
fully automatic LA segmentation was also compared with Atri-
aNet by executing an existing implementation of the algorithm
on the testing data in our study and evaluating the generated
segmented masks [15]. This allowed for a direct comparison
of the effectiveness of our proposed method against a previous
method used for the same task in terms of both the accuracy
of segmentation and the computational efficiency.

IV. RESULTS

A. Optimal Hyper-Parameters

The results of the hyper-parameter tuning experiments are
presented in this sub-section to validate the parameter choices
used in our proposed AtriaNet. Table. III shows that in the
case of a single path network, 41 × 41 was the optimal value
for sufficiently capturing local information when used on its
own. This also shows the importance of selecting the correct
local patch as it significantly impacts the performance due to
it being high resolution as opposed to the global patch which
was pooled to a low-resolution input.

Table IV shows the performance of AtriaNet with dif-
ferent combinations of global and local input resolutions.
It is important to note that due to the design of AtriaNet,
only specific combinations of local and global resolutions are
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TABLE IV
THE DICE ACCURACY ON THE 22 TEST DATA USING ATRIANET

WITH DIFFERENT LOCAL AND GLOBAL PATCH SIZES

TABLE V
DICE SCORES FOR ATRIANET WITH DIFFERENT NUMBER OF

KERNELS AT EACH LAYER FROM CONV 1-13
FOR THE 22 TEST DATA

feasible such that they can merge together after conv 13. The
results show that the proposed local (41 × 41) and global
(279 × 279) resolutions produced the highest DICE score
as it captured the local and global features more effectively
than other values. These results demonstrate that using small
inputs did not provide the network with enough information to
sufficiently learn complex features, yet using large inputs was
also problematic as they were more susceptible to overfitting.

Experimentation with max-pooling and average-pooling for
the global pathway yielded no significant difference for the
performance of AtriaNet. Experiments using nearest neighbor,
bi-linear and bi-cubic interpolation also showed no significant
difference for the unpooling layer. Results from tuning the
pooling factors for the global pathway showed that 9 × 9
resulted in the best performance with a 0.942 DICE score.
Filters deviating from this size performed worse as it either did
not sufficiently capture enough global information, or impor-
tant features were lost due to over down-sampling. This was
reflected in the DICE scores from using 5 × 5, 7 × 7 and 11
× 11 pooling which were 0.913, 0.921 and 0.927 respectively.

Table V shows the performance of AtriaNet on the testing
set with different numbers of feature maps in each layer. The
DICE scores on the test data shows that the proposed values
(Table I) produced the best segmentation performance. The
models with a small number of feature maps did not contain a
sufficient number of parameters to learn the complex features
of the LA endocardium, while the models with a larger number
of feature maps was more prone to over-fitting. Furthermore,
increasing the number of feature maps significantly increased
the computational expense, meaning that a model with a
moderate number of feature maps was the most desirable.

Hyper-parameter tuning of the dropout rates at the last
layers of AtriaNet showed that 50% dropout provided the best
balance between alleviating overfitting while still maintaining
sufficient number of nodes in each layer for feature learning.

TABLE VI
EVALUATION METRICS FOR LEFT ATRIAL (LA) EPICARDIUM (EPI) AND

ENDOCARDIUM (ENDO) SEGMENTATION FOR THE 22 TEST 3D LATE

GADOLINIUM-ENHANCED (LGE)-MRIS

Fig. 3. The DICE score for segmentation of the left atrial (LA) epicardium
and endocardium for each of the 22 test 3D late gadolinium-enhanced
(LGE)-MRIs.

This resulted in the 0.942 DICE score. Experiments showed
that having no dropout produced the lowest DICE score
of 0.927 and having 75% dropout resulted in a DICE score
of 0.937 due to the excessive removal of parameters.

B. 3D Segmentation Results

Fig. 2 illustrates the segmentation and reconstruction results
for the 3D LA epicardium for comparing the ground truth
(1st and 3rd row) and the prediction segmentation by AtriaNet
(2nd and 4th row) for 10 of 22 tested 3D LGE-MRIs (5 each for
pre and post ablation). Overall, LA geometry was accurately
reconstructed as the prediction captured both the general shape
and the detailed curvature of the LA wall for each

test 3D LGE-MRI scan (N = 22). The pulmonary veins were
successfully captured as well, though the pulmonary veins
segmented by AtriaNet was often smaller in diameter and did
not extend out of the LA chamber as much as the ground
truths. This was possibly due to the veins being relatively small
and thin compared to LA, making it more difficult to predict.

The performance of AtriaNet was enhanced with data
augmentation and post-processing. While elastic deformations
and affine transformations did not prove to be particularly
effective, warping 50% of the original data improved the
model’s performance by 0.005. As a result, the training set
was increased to 1.5 times its original size as the additional
50% consisted of randomly sampled augmented data. Post-
processing improved the DICE score for both LA epicardium
and endocardium segmentation by ∼0.015. Table. VI shows
the final evaluation metrics for both of the segmentation tasks
grouped by pre and post ablation LGE-MRIs. The DICE
segmentation accuracy was approximately equal for both
the epicardium and endocardium (0.940 vs 0.942), however,
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Fig. 4. The left atrial (LA) epicardium (orange) and endocardium (green) segmentation results from the proposed AtriaNet compared to the ground
truth for representative slices on the same 3D late gadolinium-enhanced (LGE)-MRI for test patient #5 (pre-ablation). The 1st row is the raw LGE-MRI
scan, the 2nd row is the ground truth and the 3rd row is the segmentation produced by AtriaNet. Each column displays the same LGE-MRI slice.
The depth of the MRI for each slice is shown in mm. AO, aorta; LV, left ventricle; RA, right atrium; RV, right ventricle; RPV, right pulmonary vein.

TABLE VII
THE LEFT ATRIAL (LA) DIAMETER AND VOLUME

MEASUREMENTS AND ERRORS FOR THE 22 TEST

3D LATE GADOLINIUM-ENHANCED (LGE)-MRIS

the endocardium segmentation had a slightly higher sensitivity
of 0.918, which implies that a slightly greater proportion of
the positive pixels were successfully detected compared to
that of the epicardium segmentation. The 0.999 specificity
suggests that AtriaNet was extremely effective in detecting
background pixels, and the >0.9 sensitivity shows AtriaNet
was also very effective in detecting the positive pixels for
accurate segmentation.

The DICE score for each test patient data is shown in
Fig. 3. The results show that AtriaNet was very consis-
tent in reconstructing both the LA epicardium and endo-
cardium as seen from the small variation of the DICE scores
across different patients. The standard deviation of the DICE
scores for both epicardium and endocardium segmentation
was 0.014. Table. VII shows the predicted and ground truth
measurements for the LA diameter and volume, as well as

their absolute and relative errors. The predicted masks were
accurate within 1.59 mm and 4.01 cm3 of the ground truths
on average for the diameter and volume measurements respec-
tively. Overall, the segmentations for the pre-ablation patients
were more accurate as seen from the higher DICE scores and
lower relative errors of the estimated LA dimensions.

C. Error Analysis of Segmentation
A detailed post analysis of the segmentation errors was

performed for each test patient data to compare the predictions
to the ground truths for each image slice throughout each 3D
LGE-MRI. Fig. 4 illustrates the segmentation results for the
LA epicardium and endocardium by AtriaNet compared with
the ground truth for selected slices at the same depth for a
test 3D LGE-MRI. The results shown are representative of
the errors seen in other test LGE-MRIs. The relative depth of
each slice from the bottom of the LGE-MRI scan is provided
in millimeters.

As seen from Fig. 4, at the depth of 27.5 mm to 40 mm
(middle sections of the 3D atria), AtriaNet produced more
accurate reconstructions of the LA geometry. AtriaNet was
able to successfully capture the curvature of the LA tissue in
detail, while also showing a clear gap between the epicardium
and endocardium denoting the LA wall tissue. The pulmonary
vein regions were the main sources of error within these slices,
as the segmentation was less accurate as seen from the bottom
left part of LA at 33.75 mm and the bottom right part of the
LA at 40.00 mm, where the segmentation was non-smooth and
the thickness of the vein was underestimated.
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TABLE VIII
THE EVALUATION METRICS BETWEEN DIFFERENT

NETWORK ARCHITECTURES USING THE SAME LATE

GADOLINIUM-ENHANCED (LGE)-MRI DATA

FOR TRAINING, VALIDATION AND TESTING

D. Comparative Evaluation With Other FCNNs

Table. VIII compares the performance of different network
architectures with AtriaNet after data augmentation and post-
processing for LA endocardium segmentation on the same
22 3D LGE-MRI test dataset. The metrics of all single
pathway networks when using the local resolution as input are
shown. Benchmarking experiments on the architectures using
the global resolution (not shown) resulted in substantially
lower performances for all single-path approaches (∼0.1 lower
DICE score) compared with using the local resolution. The
superiority of the local resolution as input for single pathway
networks was due to the ability to achieve sharp segmentations
given the high resolution of the local patches, while the global
resolution alone is inferior as the image is low in resolution
due to pooling.

The popular medical image segmentation architec-
tures [35], [44] and the recent state-of-the-art image
classification architectures [24]–[26] adapted for segmentation
were all outperformed by AtriaNet in both DICE and HD
evaluation. The single path version of AtriaNet, VGGNet,
was the second-best performing architecture, and showed
the use of an additional pathway in AtriaNet improved the
performance by a DICE score of 0.078. The evaluation
metrics indicated that the use of a dual pathway in AtriaNet
resulted in a significantly more effective architecture for
performing accurate LA segmentation compared to other
existing neural networks.

Comparisons between AtriaNet and the previously proposed
LA segmentation algorithm by Zhu et al. also showed
significant improvements in the accuracy of the endo-
cardium reconstruction [15]. Not only did our approach
outperform the previous study by over 10% in DICE
score, runtime experiments on the same computing hardware
revealed that AtriaNet was significantly faster, 1 minute vs.
22 minutes, at segmenting each 3D LGE-MRI in the test
dataset.

V. DISCUSSION

Direct segmentation of atrial chambers from 3D LGE-MRIs
is a challenging task. This is due to a lack of distinguishing
features on the LGE-MRIs that enable the separation of
atrial tissue from non-atrial regions, in addition to the
poor image quality of LGE-MRIs due to motion arti-
facts, noise interference and significant variations in image
intensities.

Currently, our study is among the few that have
attempted at direct automatic segmentation of the LA from
LGE-MRIs [14], [46], [47]. Out of all existing attempts,
most of the LGE-MRI studies, either in-vivo or ex-vivo, have
relied heavily on manual segmentation [9], [48]–[50]. There
are few studies that have attempted to automate the direct
segmentation process. The study by Veni et al. [14] proposed
was a shape-driven approach in which the posterior probability
of the LA surface was expressed via Bayesian equations.
Zhu et al. [15] also proposed a shape model for segmenting
the LA and was enhanced by variational regional growth.
However, the methodologies of both of these studies required
a shape prior for initialization which was generated either
manually or based on strong assumptions from observing the
data to segment. This is undesirable as it would be more time
consuming than a fully automated approach and is also more
susceptible to large variations in the data. Tao et al. [16], on the
other hand, proposed an approach which used global multi-
atlas segmentation followed by a local refinement algorithm.
In contrast to the three previous studies, our methods do not
require any manual initialization or the use of any additional
information apart from LGE-MRIs. Furthermore, benchmark-
ing results of AtriaNet showed significant improvements in
the accuracy of the LA endocardium reconstruction, as well
as significant computational advantages.

In contrast to direct segmentation, indirect segmentation of
LA from LGE-MRIs is a more popular approach that can be
achieved by utilizing paired 3D MRA with the LGE-MRIs
from the same patient. The 3D MRA images consists of
image features that are more distinguishable than those in
the LGE-MRIs, which enable the distinction between atrial
tissue and background. As a result, the 3D MRA images are
relatively easy to segment, for which comparably more stud-
ies have been conducted to develop automatic segmentation
approaches [13], [15], [51], [52]. Although some alternative
conventional approaches outlined in a segmentation bench-
marking study [13], [52] and the multi-view CNN approach
conducted by Mortazi et al. [51] have achieved good LA
segmentation performances, a mapping/fusion approach was
needed in addition to their indirect segmentation approach
to map the segmented masks of MRA images to the LGE-
MRIs. This could introduce additional errors which limit the
accuracy of such approaches [52]. In addition, the use of
MRA images in indirect segmentation of LGE-MRI means
that an extra 3D MRA scan is needed for each patient, which
is time consuming and rather costly. In comparison, direct
segmentation of LGE-MRIs using our proposed CNN is much
more straight forward, efficient and accurate.

Nowadays, CNNs are widely used for image classifica-
tion and segmentation tasks. U-Net [35], dilated U-Net [42]
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and V-Net [44] have been successful in many medical
segmentation tasks whereas VGGNet [24], Inception [25]
and ResNet [26] have achieved state-of-the-art performances
in image classification. However, due to the single scaled
inputs/information utilized in these aforementioned architec-
tures except Inception, all lack the ability to directly process
multi-scaled information – an aspect AtriaNet excels at. The
difficult task of LA segmentation from LGE-MRIs requires
more input information to capture its complex geometry.
In this aspect, AtriaNet can essentially process twice the
amount of information due to its dual-pathway, resulting in
its superior performance. Inception was the only architecture
that contained multi-scale processing. However, it is done
internally within only one image patch. This suggests that
CNNs such as Inception [53], which uses internal multi-
scale processing, learns substantially less information than
explicit multi-scale processing, such as those used in AtriaNet.
Furthermore, our experiments using various CNNs suggest
that AtriaNet can generalize to many unseen patient data and
produce robust segmentations, lessening the chance of over-
fitting, compared with other CNN approaches.

Multi-scale processing has been explored in previous stud-
ies for enhancing the performance of neural networks in
other research fields [54]–[56]. The CNNs proposed by
Dou et al. [57] for performing lung nodule classification and
by Kamnitsas et al. [58] for brain lesion segmentation both
contained multiple pathways for different input resolutions.
Despite the similarities of their designs and our proposed
approach, AtriaNet contains a significantly greater number
of layers and feature maps in each layer, allowing greater
feature learning for segmenting more complex geometries such
as the LA epicardium and endocardium. Furthermore, our
experimental results showed that AtriaNet was able to perform
high quality slice-by-slice 2D segmentation to achieve accurate
3D reconstruction of the atrial geometry, meaning it is effective
for both 2D and 3D tasks.

The accuracy of AtriaNet could possibly be further
improved by applying shape constraints which would be
imposed on the either the intermediate layers or the output
to control the generated 3D geometry. This would especially
improve the segmentation at the mitral valve which connects
the LA with the left ventricle as currently, this region is arbi-
trarily cut by a straight line in the ground truth masks. AtriaNet
attempts to segment the mitral valve region with a smooth
rounded shape, leads to a poor performance value when eval-
uated. This issue could potentially be alleviated by manually
re-labeling the ground truths masks to improve the definition
of the mitral valve, which in turn, will improve the quality
of the samples provided to AtriaNet during training. The
accuracy of the LA 3D reconstruction could also be improved
by considering the 3D geometry and continuity between slices.
A simple method to achieve this is to incorporate multiple
slices as additional channels at the input of AtriaNet, however,
our preliminary experiments showed that AtriaNet with three
channeled or five channeled inputs performed worse and had
substantially greater computational and memory costs. Further
attempts at considering the continuity of the LA geometry
in 3D warrant future investigation. In the future, we would

like to apply AtriaNet for segmenting both atrial chambers and
fibrosis since AF is a bi-chamber disease [4], [7], [59], [60].
We are currently progressing towards creating a dataset that
contains manual segmentations of both atrial chamber masks,
which could potentially be used to train AtriaNet.

VI. CONCLUSION

In this study, we have developed and evaluated a dual
fully convolutional neural network for robust automatic LA
segmentation from LGE-MRIs. Our algorithm enables the
reconstruction of LA in 3D with a DICE accuracy of 94%
as well as accurate estimates of key clinical measurements.
The extensive evaluation of our pipeline demonstrates that it is
superior to previously proposed state-of-the-art CNNs, setting
a new benchmark for future studies. Our study may lead to
the development of a more accurate and efficient atrial recon-
struction and analysis approach, which can potentially be used
for much improved clinical diagnosis, patient stratification and
clinical guidance during ablation treatment for patients with
AF.
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