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Inference of Cerebrovascular Topology With
Geodesic Minimum Spanning Trees

Stefano Moriconi , Maria A. Zuluaga , H. Rolf Jäger, Parashkev Nachev,
Sébastien Ourselin, and M. Jorge Cardoso

Abstract— A vectorial representation of the vascular
network that embodies quantitative features—location,
direction, scale, and bifurcations—has many potential
cardio- and neuro-vascularapplications.We present VTrails,
an end-to-end approach to extract geodesic vascular mini-
mum spanning trees from angiographic data by solving a
connectivity-optimized anisotropic level-set over a voxel-
wise tensor field representing the orientation of the under-
lying vasculature. Evaluating real and synthetic vascular
images, we compare VTrails against the state-of-the-art
ridge detectors for tubular structures by assessing the con-
nectedness of the vesselness map and inspecting the syn-
thesized tensor field. The inferred geodesic trees are then
quantitatively evaluated within a topologically aware frame-
work, by comparing the proposed method against popular
vascular segmentation tool kits on clinical angiographies.
VTrails potentials are discussed towards integrating group-
wise vascular image analyses. The performance of VTrails
demonstrates its versatility and usefulness also for patient-
specific applications in interventional neuroradiology and
vascular surgery.

Index Terms— Blood vessels, brain, vascular tree,
connectivity.

I. INTRODUCTION

VASCULAR image analysis and vessels connectivity are
critical to the management of a range of conditions with
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vast population-level impact [44]. In ordinary clinical practice,
the assessment and interpretation of cerebrovascular imaging
is hindered on the one hand by the complexity of irreducibly
multi-modal 3D scans, and on the other by the pressure of time
in the context of rapidly evolving conditions, e.g. mechanical
thrombectomy for acute stroke. Moreover, whereas many
methods exist for quantifying parenchymal changes (i.e. local
vessel morphology, presence of atherosclerotic plaques, sur-
rounding brain lesions), employing raster representations of
tissue classes, no methods exist for quantifying vascular
change where the representations are necessarily vector: the
geometry of the underlying vascular network. Such vector
representations would compactly encode relative, spatial and
connectivity-related vascular features, by transcending a pre-
defined and quantized spatial grid, typical of a subject-specific
raster angiography [29]. A vectorial representation is not only
useful in guiding interventions in individual patients, e.g. guid-
ing intracranial electrode placement [65], catheter motion
planning, (un)safe occlusion points identification [15], [40],
or endovascular aneurysms repair and stent placement for
recanalization [41], [54], but essential for the group-level
studies on which both clinical prediction and therapeutic
inference ultimately depend. For without a satisfactory means
of registering vascular trees across a cohort of patients it is
impossible to draw general conclusions about any specific
vascular feature. A vectorial representation of the vascular net-
work would therefore allow two forms of group-level analysis:
i. intersubject comparison of geometrical features of the vas-
cular tree (e.g. junction points, branching numbers, tortuousity,
and overall haemodynamic properties), and ii. intersubject
comparisons of various non-vascular parenchymal features,
where the brain image-volume is rather registered by its
vascular topology [50].

A. Related Work

Early studies [7], [58], [61] with applications in 3D cere-
brovascular image segmentation were first largely concerned
with locating a vessel in relation to its neighboring structures,
for example to avoid it during neurosurgery or to measure its
dimensions at some specific point (e.g. diameter of carotid,
level of stenosis or grading of a cerebral aneurysm), where
a raster representation is perfectly adequate, and the problem
reduces to detecting and voxel-wise segmenting the volume
of an object of characteristically local linear morphology.
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In [35] and [40], a comprehensive collection of methods
and techniques for general vascular image segmentation is
reviewed, by categorizing different segmentation frameworks
by their characteristic strategies (e.g. appearance and geomet-
ric models, vascular image features, and extraction scheme).
Would these previous studies be motivated and inspired by
extracting a descriptive vascular network in the form of a
set of connected trees, these seemed to address the problem
of vascular connectivity in a rather independent and disjoint
manner. Briefly, Frangi et al. [25] and Law and Chung [39]
first proposed tubular enhancing methods in 3D with the aim
of better contrasting vessels over a background. A scale-
dependent scalar vesselness measure, representing the vascular
saliency map, is obtained either by adopting different flavors
of the Hessian matrix eigendecomposition, or by determining
the image gradient projected on a unit sphere boundary,
i.e. the oriented flux. Under the assumption of well-contrasted
and locally-linear continuous tubular structures, these meth-
ods represent the popular and traditional ridge detectors,
however highly tortuous, curvilinear and irregularly shaped
tubular structures, together with bifurcating and fragmented
vessels with low signal-to-noise ratio (SNR) are often poorly
captured [2]. To better detect junction points and trace
vascular branches [10], [19], [20] embedded higher-order
metrics in a tractography-like framework exploiting vessel
anisotropy, directionality and local asymmetry. Tensors were
derived either via least-square fitting on the image data
by enforcing positive-definiteness, or by combining a scale-
dependent metric with the locally optimal vascular orientation.
Annunziata et al. [1] first introduced a more smoothly con-
nected filtering approach to enhance tortuous tubular struc-
tures in 2D, by defining scalar and curvilinear bivariate
Gaussian kernels (SCIRD). An extension of the proposed
smooth curvilinear filter-bank was presented in [2], where deep
learning techniques were combined for boosted performances.
As second step, Bullitt et al. [15] and Kwitt et al. [38]
proposed a set of methods to recover a connected network,
given a vascular saliency map and a set of initial manually-
sampled seeds, or disconnected branches, or fragmented cen-
terlines. Cores were introduced to identify and track bifur-
cating branches, whereas vascular graphs are recovered using
minimum spanning tree algorithms on image-intensity descrip-
tors, or using graph kernels, by matching subtree patterns upon
a similarity metric. In [4], a different approach recovers the
vasculature a posteriori, by determining a set of centerlines as
medial axes from the three-dimensional surface model which
smoothly segments the lumen of the vessels.

B. Challenges of Cerebrovascular Topology Inference

To the best of our knowledge, the aforementioned studies
mainly addressed the problem of accurately locating and
characterizing vessel geometries in a raster-like fashion, rather
than focusing on the vectorial connecting topology. In [24],
[56], and [57], the topological reconstruction of connected
neighboring structures is traditionally addressed with the
extraction of centerlines from a given segmentation by means
of a skeletonisation process. Simplicial or cubical complex
frameworks [16], [21]–[23] may be required when topological

busy junctions are found in 2D or 3D finite raster grids. Alter-
natively, the skeletonisation is performed with topologically-
preserving morphological operators (e.g. erosion and opening).
These have been employed also for the design of specific
tubular-like ridge detectors [46], [47]. Other formulations
[34], [59] extract a l0 level-set consisting in minimal paths
(i.e. geodesics) to implicitly define connecting branches. In the
following, we refer to vectorial cerebrovascular topology as
the descriptive connectivity and branching pattern of a given
set of vascular structures in the brain by adopting a spatially-
and connectedness-aware embedding of a graph, which simul-
taneously encodes geodesics, and transcends a predefined
quantized raster grid [29]. In general, the quantitative vectorial
description and characterisation of a network become more
complex and challenging as the network increases in size and
allows for variable connectivity patterns. In our case, the cere-
brovascular anatomical intra- and inter-subject variability [31]
does not allow for a globally standardized vessel network
extraction yet. Malformations and pathologies can also dra-
matically increase the complexity of the vasculature topology,
where a compact representation is sometimes impractical.
Complex topologies are required for the characterisation of the
whole cerebrovascular system: anastomoses such as the Circle
of Willis and those of the capillary bed in the cortex [11], [29]
show cyclic connecting patterns at varying scales and
depth. In these cases, hierarchical tree-like structures can-
not adequately model the underlying anatomy, and a more
general and unconstrained graph formulation is required.
However, the topological inference of major deep-brain arte-
rial (or venous) vascular trees can be locally projected to
multiple-trees extraction strategies. Few topological references
and data-driven gold standards of vascular connectivity are
available. These, often fragmented or limited to a region of
interest, require the thorough annotation of experts at different
levels of vascular branching, where minor mis-classifications
may significantly affect the topology of the resulting vascular
graph [51]. The thorough segmentation of a whole-brain
vascular image dataset is considered intractable [12], and it
can take up to 8 weeks of manual labor per subject [52].
This constitutes a considerable limitation for any method’s
validation. Given the substantial complexity of the task, and
the lack of an extensive ground-truth for complete vascular
networks, the accurate and exhaustive extraction of the vessel
connectivity still remains an open problem.

We present here VTrails, a novel method that aims at
the fully automatic inference of the vascular network topol-
ogy, by addressing simultaneously both vessel enhancement
and connectivity under a unified consistent mathematical
framework. Following the concepts first introduced in [49],
the major contributions are:

i definition of a compact Steerable Laplacian of Gaussian
Swirls (SLoGS) enhancing filter-bank, representative of
local vessel portions at different degrees of tortuosity;

ii description of a multi-resolution, curvilinear- and
rotation-invariant filtering framework to simultaneously
and consistently synthesize scalar- and tensorial-saliency
maps, whose combination yields a smoothly connected
Riemannian vesselness potential;
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iii design of an adaptive and exhaustive (non-greedy) search
of geodesic connecting paths over the Riemannian ves-
selness potential, determining an over-connected geodesic
vascular graph;

iv extraction of the acyclic vascular topology (i.e. the
vascular trees) as the minimum spanning trees of the
over-connected geodesic graph underlying anatomically
correct vascular trees.

VTrails is first described in detail in Section II. The vali-
dating experimental set-up, comprising both synthetic and real
clinical images, is presented in Section III. Results, reported
in Section IV, are evaluated with the available ground-truth;
observations and conclusions are drawn for the considered
experiments with regards to the geometry of the reconstructed
vascular trees and the topological connectivity in Section V.
Implementation details and performance benchmarking are
listed in the Appendix.

II. METHODS

Aiming at the connectivity enhancement of fragmented,
bifurcating and tortuous vessels, we present a multi-resolution
filterbank of Steerable Laplacian of Gaussian Swirls (SLoGS),
whose elongated and curvilinear Gaussian kernels recover a
smooth, connected and orientation aware Riemannian vessel-
ness map. Also, under the assumption that vessels connect
by minimal paths, the vascular over-connected geodesic graph
is then determined with an exhaustive connectivity paradigm
propagating over the synthesized vesselness map, and the
topology of the underlying anatomical vascular trees is lastly
inferred as the geodesic minimum spanning tree.

We introduce in Section II-A the SLoGS filterbank.
Then, a multiscale image filtering framework is described in
Section II-B using SLoGS. The scalar and tensorial vessel-
ness components are integrated over scales in Section II-C.
An anisotropic level-set combined with a non-greedy connec-
tivity paradigm is presented in Section II-D to determine the
vascular over-connected geodesic graph. Lastly, the extraction
and refinement of the vascular minimum spanning trees are
described in Section II-E.

A. SLoGS Curvilinear Filterbank

Considering an image V : R
3 → R, the respective filter

response is obtained as V filt � V ∗ K , for any prede-
fined filtering kernel K : R

3 → R. Following the concepts
first introduced in [1], [42], and [49] and without losing
generality, the SLoGS filtering kernel K is derived here
by computing the second-order directional derivative in the
gradient direction of a curvilinear Gaussian trivariate function
� : R

3 × R
3+ × R

3 → R. The gradient direction and its per-
pendicular constitute the first-order gauge coordinates system
(ω,υ), where ω = ∇�

‖∇�‖ , and υ = ω⊥, with the spatial
gradient ∇. The function � has the form

� (x, σ , c) ∝
3∏

d=1

1√
2πσ 2

d

e
− X2

d
2σ2

d ,with

{X1 = x1,

X2 = x2+c0x1+c1x2
1 ,

X3 = x3+c2x3
1 ,

(1)

where x = x1i + x2j + x3k, with {i, j, k} the Cartesian image
reference system, σ modulates the cross-sectional profiles
and the elongation of the Gaussian spatial distribution, and
the factor c accounts for both planar asymmetry and two
levels of curvilinear properties (e.g. bending and tilting),
by quadratic- and cubic-wise deforming the support. Given
σ and c, � (x, σ , c) represents the smooth impulse response of
the 3D Gaussian kernel. By operating a directional derivative
on � along ω, i.e. Dω, we define the SLoGS kernel K as
K = Dω [Dω�] = Dω

[
ωt∇�], thus being

K � ωt H (�)ω , where H (�) =
⎡

⎣
�ii �ij �ik

�ji �jj �jk

�ki �kj �kk

⎤

⎦ (2)

is the Hessian matrix of the Gaussian distribution �. Since � is
twice continuously differentiable, then H (�) is well defined.
Also, since H (�) is symmetric, an orthogonal matrix Q exists,
so that H (�) can be diagonalized as H (�) = Q�Q−1. The
eigenvectors q

l
form the columns of Q, whereas the eigenval-

ues λl , with l = 1, 2, 3, constitute the diagonal elements of �,
so that �ll = λl and |λ1| ≤ |λ2| ≤ |λ3|. For any point x, K (x)
can be rewritten as K (x) = ωt

(
Q�Q−1

)
ω. Geometrically,

the columns of Q represent a rotated orthonormal basis in R
3

relative to the image reference system so that q
l

are aligned
with the principal directions of � at any point x. The diagonal
matrix � characterizes the topology of the hypersurface in
the neighborhood of x (e.g. flat area, ridge, valley or saddle
point in 2D) and modulates the variation of slopes, since
the eigenvalues λl are the second-order derivatives along
the principal directions of �. Factorizing K (x), we have:
K (x) = (ωt Q)�(Q−1ω); the gradient direction ω is mapped
onto the principal directions of �. Solving (2), we demonstrate
K has the form of a 3D Laplacian of Gaussian (LoG), as

K (x) = G

[
�i
�j

�k

]t
H(�)︷ ︸︸ ︷[ q11 q21 q31

q12 q22 q32
q13 q23 q33

]

︸ ︷︷ ︸
Q

[
λ1 0 0
0 λ2 0
0 0 λ3

]

︸ ︷︷ ︸
�

[ q11 q12 q13
q21 q22 q23
q31 q32 q33

]

︸ ︷︷ ︸
Q−1=Qt

⎡

⎣
�i

�j

�k

⎤

⎦

=
3∑

l=1

γlλl = γ1
∂2

∂q1
2� + γ2

∂2

∂q2
2� + γ3

∂2

∂q3
2�

� γ LoG(�), (3)

where γl = G ·
(
�iql1 + �jql2 + �kql3

)2
modulate the respec-

tive components of the canonical LoG filter oriented along the
principal directions of �, and G = 1

�2
i +�2

j +�2
k

. Note that for

vanishing spatial gradients, e.g. at x = 0, we have γl = 1
3 .

Given any arbitrary orientation ω̃ as an orthonormal basis
similar to Q, the arbitrarily defined dictionary of filtering
kernels can steer by computing the rotation transform, which
maps the integral orientation basis of each Gaussian kernel
�� =

∫
(�(x)·Q(x))dx

‖ ∫ (�(x)·Q(x))dx‖ on ω̃.

Together with the SLoGS kernel K , we introduce the
second-moment matrix T associated to the smooth impulse
response � by adopting the ellipsoid model in the continuous
neighborhood of x. Thanks to the intrinsic log-concavity of �,



228 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 1, JANUARY 2019

Fig. 1. SLoGS filterbank: definition of a dictionary of filtering
kernels (DFK).

a symmetric tensor T (x) is derived from the eigendecompo-
sition of H (�̃), with �̃ = − log(�), as T (x) = Q 	 Q−1,
where 	 is the diagonal matrix of the canonical unit volume
ellipsoid

	 =
(

3∏

l=1

ψl

)− 1
3

·
[
ψ1 0 0
0 ψ2 0
0 0 ψ3

]
, being

⎧
⎪⎨

⎪⎩

ψ1 = λ̃1√
λ̃2 λ̃3

,

ψ2 = λ̃2
λ̃3
,

ψ3 = 1

(4)

the respective semiaxes’ lengths. The tensor field T is a
symmetric positive definite matrix for any x ∈ R

3, since �̃
is a convex quadratic form. The manifold of the obtained
tensors can be mapped into six independent components in the
Log-Euclidean space, which greatly simplifies the computation
of Riemannian metrics and statistics [6]. The continuous and
spatially smooth tensor field T inherits the steerable property.
Resembling diffusion tensor MRI, the SLoGS kernel shows
a preferred diffusivity pattern for a given energy potential
(e.g. � in Fig. 1). This allows to eventually determine an
arbitrary dictionary of filtering kernels (DFK) which embeds
anisotropy and high-order directional features to scalar curvi-
linear templates, these enhancing and locally resembling typ-
ical, smooth vessels. Aiming also at contrasting vascular
boundaries and the background component of the image,
we similarly introduce an extra pair of degenerate kernels.
The pseudo-impulsive δLoG is an isotropic derivative filter
given by the LoG of �δ(x, σ , c = 0), representing a Dirac
delta function for σ → 0. δLoG is intrinsically sensitive
to sharp intensity transitions, capturing therefore edges of
vascular structures in angiographic images. The uniformly
flat νLoG is the second degenerate Laplacian of Gaussian
kernel, which derives from �ν(x, σ , c = 0), assuming a
uniform, constant-value for σ → ∞. Analogously, νLoG is
sensitive to regions of homogeneous intensities, capturing thus
non-vascular parenchymal structures. Since δLoG and νLoG
have singularities and represent isotropic degenerate kernels,
we define only their scalar component.

B. Connected Vesselness Map and the Tensor Field

As recalled in Section II-A and similarly to [26] and [33],
the idea is to convolve finite SLoGS kernels with the discrete

Fig. 2. Connected vesselness map and tensor field synthesis at scale s.

vascular image in a multi-resolution, curvilinear- and rotation-
invariant framework, to obtain simultaneously the scalar con-
nected vesselness map and the associated tensor field. For
simplicity and compactness, the multi-resolution filtering will
be detailed for a generic scale s. Scale-invariance is achieved
by keeping the size of the compact-support SLoGS fixed, while
the size of the image V varies accordingly with the multi-scale
pyramid (Fig. 2). Also, different spatial band-pass frequencies
can be modulated with different σ of the SLoGS kernels. V
is down-sampled firtst at the scale s as in [17] to obtain Vdwn.
An early tubular saliency map Vtube is then determined as

Vtube =
∑

ω̃ico∈ico

V (ω̃ico)
tube , (5)

with V (ω̃ico)
tube = max

(
0, Vdwn ∗ K (ω̃ico)

tube

)
. Ktube is derived from

the discretized tubular kernel �tube(x, σ1 > σ2 = σ3, c = 0)
(Fig. 1), whereas ω̃ico ∈ ico are the orthonormal bases in R

3,
derived using an icosphere at subdivision level n = 2 for the
orientation sampling in 3D. Vtube is meant to provide an initial,
coarse, although highly-sensitive set of saliency features in
Vdwn: the vessel spatial locations and principal orientations
(Fig. 2). Identifying such features has two advantages; first
it restricts the problem of the rotation-invariant filtering to an
optimal complexity in 3D, avoiding unnecessary convolutions;
also, a localized subset of vessel samples can be obtained.
The vessel spatial locations are mapped as voxel binary seeds
S̃, and the associated set of principal orientations � forms a
group of orthonormal basis in R

3. S̃ are defined as

S̃ = div (∇Vtube) < 0 ∧ λ
Vtube
1,2,3 < 0 ∧ Vtube ≥ Q p(V

+
tube) ,

(6)

where div (∇Vtube) is the divergence of Vtube’s spatial gradient
field, λVtube

1,2,3 are the eigenvalue maps derived from the voxel-
wise eigendecomposition of H (Vtube), and Q p(V

+
tube) is the

percentile of the positive Vtube samples’ pool. Analytically, S̃
represents voxels that concurrently are sinks [58]; that are
regarded as stable attracting points of the intensity-based
hyper-surface [13]; and that show high-intensities in the tubu-
lar saliency map Vtube, (Fig. 3). With S̃, the orientations � are
automatically determined as the set of eigenvectors associated
to λVtube

1,2,3 (Fig. 2). The greater the intensity threshold Q p(V
+
tube),

the greater the image noise-floor rejection, the lower the
retrieved seeds and the fewer the details detected by Vtube.
Also, the cardinality of S̃ and � is a trade-off with the
convolutional complexity at each scale s.
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Fig. 3. Seeds S̃ detection as in (6). Representative slice in 2D.

The convolutional analysis/synthesis step can be embedded
in a fully parallel filtering framework, by considering the
down-sampled image Vdwn and the filtering kernels in DFK,
each steered along every principal orientation �. The integral
connected vesselness map CVMs , at any scale s, has the form

CVMs =
∑

K∈DFK

∑

θ∈�
V (K ,θ)
S , (7)

where V (K ,θ)
S = max

(
0 , Vdwn ∗ K (θ)

)
is the filter response

given the considered SLoGS kernel (Fig. 2). Similarly,
the boundaries and background scalar maps, i.e. BDMs and
BGMs respectively, are determined at each scale s

BDMs = max(−∞ , V dwn ∗ δLoG), (8)

BGMs = max( 0 , V dwn ∗ νLoG), (9)

where, in this case, V dwn is the image negative of Vdwn.
The anisotropic tensor field TFs is synthesized and normal-

ized in the Log-Euclidean space as the integral weighted-sum
of the steered tensor patch associated with the kernel with
maximal filter response over Vdwn, centered at the voxel v, and
has the form (10), as shown at the bottom of the next page,
where W is the integral normalizing weight-map accounting

for the steered curvilinear kernels; V (v,K ,θ)
S is the modulating

SLoGS filter response at v as in (7); �(θ)(K ) is the steered
Gaussian impulse response associated to the kernel K in DFK;
� is the Hann smoothing window in the neighborhood �v�
centered at v, and T (θ)K ,(LE) is one of the six independent
components of the discrete steered tensors patch T in the
Log-Euclidean domain. Note that all 6 tensorial components
are equally processed, and that the neighborhood �v� and the
SLoGS tensors patch T (θ)K ,(LE) have the same size.

C. Multi-Scale Maximal Integration

Each scale-dependent contribution is iteratively up-sampled
and cumulatively integrated with a weighted sum

CVM =
∑

s

C̃VMs, with (11)

C̃VMs = C̃VM
up
s−1 + max

(
αs(CVMs · εs), C̃VM

up
s−1

)
, and

εs = max ( 0 ,BDMs · (1 − BGMs)). Analogously, the tensor
field TF is integrated in the Log-Euclidean domain as

TF(LE) = 1

CVM

∑

s

C̃VMs · TFs,(LE). (12)

The vesselness contributions are weighted here so that the
resulting multi-resolution maximal filter response is balanced

and equalized across scales. The boundary and background
maps’ contributions in εs boost the spatial resolution of nearby
tubular structures. The intensities of CVM can be further
skewed towards high-, rather than low-, spatial frequency
bands by modulating the gain αs . We adopt αs = 1 in the
remainder of this paper. We also enforce the Euclidean TF to
have unit determinant at each image voxel; the tensors’ mag-
nitude, expressed by CVM, is decoupled from the anisotropic
and directional features throughout the whole multi-scale
process. In this way, the synthesized and integrated CVM
and TF maps constitute a consistent Riemannian vesselness
potential.

D. Exhaustive Geodesic Connectivity Paradigm

Under the assumption that vessels join by mini-
mal paths, and following the concepts introduced by
Benmansour and Cohen [10], Kimmel and Sethian [34],
Konukoglu et al. [36], [37], and Sethian [59], we present
an anisotropic front propagation algorithm that, combined
with an extended and exhaustive connectivity paradigm, joins
multiple sources S̃ �→ S propagating on the Riemannian ves-
selness potential P . Since we want to extract generic geodesic
paths between points, we minimize an energy functional of
the form U(x) = minπ

∫
π P

(
π(x), π ′(x)

)
dx for any possible

path π between two generic points along its geodesic length,
so that ‖∇U(x)‖ = 1, and U(S) = 0. The solution of the
Eikonal equation is given here by the anisotropic fast marching
algorithm, where front waves propagate from S on P , with
P (π, π ′) = √

π ′t · M · π ′ describing the infinitesimal dis-
tance along the path π , relative to the anisotropic tensor M.
In our case, M = TF, and π ′ ∝ CVM. Note that this
anisotropic level-set is a generalized version of the isotropic
propagation medium, M ≡ I3. Together with the anisotropic
fast marching, a non-greedy connectivity paradigm is run until
convergence to extract the set of multiple minimal paths, which
determines the over-connected geodesic graph � (Fig. 4).

1) Initialization: the set of binary seeds S̃ is first aligned
towards the vessels’ mid-line with a constrained gradient
descent on CVM, so that the aligned individual seeds, together
with the endpoints and branch-points of possible connected
components, constitute the initial set of source points p ∈ S,
and initialize the anisotropic front propagation (Fig. 4).

2) Connectivity Paradigm: for any source point p, propagat-
ing on P , the geodesic energy map Up is iteratively computed
and updated until complete exploration of the potential’s
domain (or up to a pre-determined spatial neighborhood of p
for computational efficiency), similarly to a front wave arrival-
time map. We refer to [37] for further details of the individual
fast marching step and for the implementation of the whole
anisotropic front propagation algorithm. Each possible pair
of source points, i.e. (pA,pB), is then connected with the
geodesic minimal path πAB, by back-tracing the functional
FAB = (UpA + UpB

)+ |UpA −UpB | from the source points pA

and pB to the respective connecting geodesic point of minimal
energy mAB, identified as FAB (mAB) = min (FAB) (Fig. 4).
The connecting geodesic path πAB is therefore obtained by
the union of two geodesics, each of which is traced with



Fig. 4. Exhaustive geodesic connectivity paradigm: topological inference of the over-connected graph Π and of its geodesic minimum spanning
tree ζ. Vector topology of the over-connected graph Π (first iteration), of its minimum spanning tree ζ (first iteration), and resulting tree topology at
convergence.

a gradient descent on FAB. The associated integral geodesic
length F(πAB) = ∫ pB

pA
FABdπ is determined along the extracted

path πAB and the connectivity of the graph � is accordingly
updated. Here, � can be directly expressed as a canonical
undirected weighted graph � = (N, E) comprising a set of
nodes N , i.e. the set of points p, and a set of edges E , i.e. the
set of connecting paths π , respectively. By using a symmetric
adjacency matrix, the integral geodesic length F(πAB) is then
attributed to the edge’s weight, which connects the pair of
nodes (pA,pB). It is clear that, by terminating the minimal
paths’ extraction only with the initial set of source points S,
the topology of the resulting geodesic connecting graph �
would hinge on the initialisation, thus on the initial guess
of the nodes, and would also constrain the connecting paths
(i.e. the vascular branches) to connect (or bifurcate) only in
correspondence of the initial set of source points in S.

3) Adaptive Geodesic Graph: with this view, we introduce
an adaptive and self-organizing connectivity strategy for the
geodesic graph �, so that the topology of the graph itself will
be plastically refined and updated in a completely automatic
fashion. This is obtained by i. extracting the minimum span-
ning tree (MST) of �, i.e. ζ = MST (�); ii. increasing the
density of source points (nodes) at each connecting path (edge)
of ζ ; iii. running the connectivity paradigm as in Section II-D2
among the new set of nodes and the existing ones. Note that the
adaptive connectivity strategy employs an iterative process that
will converge to a pre-defined spatial nodes’ density. In detail,
the minimum spanning tree ζ is defined as the subset of the
connected edges that acyclically links all the nodes together
by minimizing the sum of total edge weights. Here, the edge
weights are the integral geodesic lengths F , therefore the
resulting ζ is the connected subset of geodesic minimal paths.
Given, now its generic connecting path π

ζ
AB, a new source

point pζC is generated between pζA and pζB so that pζC is the
respective midpoint of the geodesic path πζAB, and

‖pζA − pζC‖ ≥ μ, and ‖pζB − pζC‖ ≥ μ. (13)

μ is here the Euclidean spatial threshold for contiguous nodes
and constitutes the pre-defined maximal spatial node density.
The new set of source points pζ will be connected with
the existing ones following the connectivity paradigm as in
Section II-D2, updating therefore the adjacency matrix that
increases in size at each iteration. The process terminates when
the pre-defined spatial nodes’ density is reached. Note that
� is iteratively refined and the topology the associated MST
may subsequently change from its initial guess (as in Fig. 4,
first iteration vs. convergence). Also, the smaller μ, the more
dense the set of pζ , the finer the localisation of branch-points,
the greater the complexity of the over-connected graph �.

E. Vascular Minimum Spanning Tree

The resulting vascular tree ζ is finally determined as
the minimum spanning tree of the over-connected graph �,
as in Section II-D3, at convergence. Note that for more
complex vascular topologies, a set of minimum spanning trees
(i.e. a forest of geodesic MSTs) can be extracted for the under-
lying anatomical tree-like structures under a specific region of
interest (ROI), by means of a co-registered binary or multi-
class fuzzy mask. Here, the integral Euclidean length L(πζ )
and the aforementioned integral geodesic length F(πζ ) of
each connecting path πζ can be employed to modulate the
extension of the resulting vascular tree(s) ζ . Undesired leaves
and possible spurious branches detected by the exhaustive
connectivity paradigm can be pruned using L(πζ ) and F(πζ ),
respectively. Lastly, by identifying a root, the hierarchical
topology of the undirected vascular tree(s) is automatically
determined, and each node is assigned with an univocal parent-
child relation.

III. DATASETS AND EXPERIMENTS

A. Datasets

A collection of 10-images datasets of synthetic vascular
trees (128×128×128 voxels, isotropic 1 mm3) was generated

TFs,(LE) = 1

W

∑

K∈DFK

∑

θ∈�

⎛

⎜⎜⎝
∑

�v�
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S ·�(θ)(K )·�, (10)
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TABLE I
SYNTHETIC DATASETS OF VASCULAR TREES GENERATED WITH [28]

using VascuSynth [28] considering three levels of increasing
noise and increasing terminal branches (Table I).

Real clinical angiographies were also considered:
24 Rotational Angiographies of cerebral Aneurysms (RAA)
from the Aneurysk1 dataset [3]; 18 cerebral time of flight
MR Angiographies (MRA) from the Kitware2 dataset [14];
10 head-neck Phase Contrast (PC) MR venograms; and
10 cerebral Computed Tomography Angiographies (CTA).
Vascular network ground-truths (GT) or manual annotations
Gold Standard (GS) are given as spatial centerlines.

B. Experiments

1) Vesselness’ Connectedness: The vesselness responses of
the considered images are determined using VTrails (VT). The
connectedness of the synthesized scalar map is qualitatively
assessed in Section IV and the tensor field (TF) is inspected
for a representative subset of angiographies. For the synthetic
datasets, the scalar vesselness responses are also determined
using the classical Frangi filter (FFR)3 [25], the Optimally
Oriented Flux (OOF)4 [39], the current state-of-the-art method
by Ranking the Orientation Responses of Path Operators
(RORPO)5 [47], and the noise-reduction anisotropic Hybrid
Diffusion with Continuous Switch filter (HDCS)3 [45].

The histogram of the scalar vesselness maps is analyzed
at different noise levels foreground (fG) – i.e. the tubular
structures – and background (bG) components are initially
determined from components are initially determined from
the uncorrupted images. The associated histogram overlap
(fG∩bG) is quantified for the obtained scalar filter responses
from each method. Similarly, the foregroud-background sepa-
ration range (fG↔bG) is determined as the absolute difference
between the 90-percentile of the background intensities and
the 10-percentile of the foreground ones. The foreground
interquartile range (fGIQR) is determined as well as the index
of the intensity spread for the enhanced tubular structures.
Lastly, the correlation of the fG components with the uncor-
rupted images is evaluated with the Spearman correlation
coefficients fG�. Significant differences of the considered
methods against the proposed one are evaluated with a pair-
wise Wilcoxon signed rank test.

2) Semi-Automatic Connectivity–Synthetic Trees: The con-
nectivity paradigm described in Section II-D is used to
infer the connected topology of the synthetic trees given
the different scalar vesselness maps by FFR, OOF, RORPO

1http://ecm2.mathcs.emory.edu/aneuriskweb/index
2https://data.kitware.com/#collections
3Implementation: http://www.tubetk.org
4Implementation: https://www.mathworks.com/matlabcentral/fileexchange/

41612-optimally-oriented-flux–oof–for-3d-curvilinear-structure-detection
5Implementation: http://path-openings.github.io/RORPO

and HDCS each associated with an isotropic tensor field,
and the Riemannian vesselness potential P determined with
VTrails (VT). Here, only the complete set of endpoints of
the synthetic trees is given as user-defined initialisation seed.
The reconstructed acyclic topology is compared to the ground-
truth (GT). The robustness to image degradation is evaluated in
terms of geometrical accuracy (symmetric error εS and average
Hausdorff95% distance εH ) globally for the synthetic trees
and locally for the corresponding branchpoints. Branchpoints
detection is considered within a GT spatial neighborhood
of 5 mm. Trees’ topology is compared against the GT using
both the spatially-aware DIADEM6 metric [27], and the tree
edit distance (TED)7 [53], where differences are evaluated in
terms of branches and branchpoints spatial correspondence,
and graph adjustments, i.e. node insertion and deletion. While
the DIADEM metric is bounded by [0,1], 1 being the perfect
match, the TED score has no upper bound. Low TED scores
represent higher topological matching, however, to obtain
comparable indices of trees’ overlap, we adopt

TEDov =
(

1 − TED(ζ1, ζ2)

TED(ζ1, {})+ TED(ζ2, {})
)

· 100 %, (14)

where ζ1 and ζ2 are the trees to compare, and {} represents
a void graph. TEDov has the same bound [0,1], 1 being the
perfect match for isomorphic trees.

3) Fully Automatic Connectivity–SyntheticTrees: Similarly to
Section III-B2, the connected topology of the synthetic trees is
inferred with VTrails using a fully automatic pipeline (VTauto);
the Riemannian vesselness is considered as connectivity poten-
tial, the initial seeds for the exhaustive geodesic connectivity
paradigm are automatically determined as in Section II-B, and
the exploration of the Riemannian potential is limited to a pre-
defined spatial neighborhood of the initial seeds. Given the GT,
the evaluation of the geometrical and topological accuracy
follows the previous scheme.

4) Fully Automatic Connectivity–Clinical Data: Each clinical
angiography is processed using VTauto and the accuracy
of the inferred connected vascular topology is evaluated
by comparing the resulting minimum spanning tree(s) with
the available GT or GS annotations. As in Section III-B2,
the symmetric error εS and the average Hausdorff95% distance
εH are provided globally for the vascular trees, and locally
for the corresponding branchpoints. Branchpoints detection is
determined within the GT spatial neighborhood. The topolog-
ical correspondence is evaluated using the DIADEM metric.
RAA centerlines are obtained with the Vascular Modeling
Toolkit (VMTK) [5]; MRA ground-truth trees are determined
with TubeTK [8]; the gold standard for PC and CTA datasets
is given by the centerlines of the manual lumen segmentation,
obtained with a skeletonisation strategy [30]. Note that, for
whole-brain vascular datasets, only the intra-cranial volume
was considered for the topological inference, by means of
a co-registered brain mask, from the brainstem up to the
cortex. Also, possible cycles in the GS have been opportunely
cut or removed by adopting a ROI-based, conservative and

6http://diademchallenge.org/metric.html
7http://tree-edit-distance.dbresearch.uni-salzburg.at
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Fig. 5. Representative example of synthetic tree using [28]: synthe-
sized Riemannian vesselness and resulting minimum spanning tree
with VTauto.

Fig. 6. Histogram overlap for scalar vesselness with FFR, OOF, RORPO,
HDCS and VT.

intensity-maximizing, minimum spanning tree(s) extraction
of the complete GS connected graph. Accordingly with the
underlying anatomical tree-like vasculature, the quantitative
analysis has been performed for the deep brain arterial
trees [31] branching from the Circle of Willis in both MRA
and CTA datasets, whereas we focused on the connectivity
patterns of the posterior venous sinus in the PC datasets.
Note also that additional effort was required to harmonize the
provided centerlines in the form of a canonical acyclic graph
(tree, or forest of trees), where branchpoints corresponds to
nodes and vascular branches to edges respectively, since the
tree topology cannot be consistently evaluated otherwise. This
was performed with an in-house split-merge-connect strategy
similar to [32].

IV. RESULTS

A. Vessel Connectedness

Figures 5 and 7 show the scalar and tensorial vesselness
maps synthesized with VTrails (VT) for a representative
subset of images. In all cases, VT strongly enhances the ves-
sel connectivity, where low-resolution, noisy and fragmented
(e.g. N L I I

b and PC) vessels are recovered with a continuous
and spatially smooth scalar filter response (CVM). High values
and more defined local maxima are observed at structures’

TABLE II
HISTOGRAM OVERLAP (fG∩bG), FOREGROUND vS. BACKGROUND

SEPARATION RANGE (fG↔bG), FOREGROUND INTERQUARTILE RANGE

(fGIQR), AND FOREGROUND SPEARMAN CORRELATION (fG�) WITH THE

UNCORRUPTED IMAGE, FOR FFR, OOF, RORPO, HDCS AND

VT SCALAR VESSELNESS (MEAN±SD). † : SIGNIFICANTLY WORSE

(p < �.��) AND ∗ : SIGNIFICANTLY BETTER (p < �.��) THAN

VT IN PAIRED WILCOXON SIGNED-RANK TEST

mid-line, in correspondence of both regular and irregular tubu-
lar cross-sections, even in images with particularly degraded
SNR, with improved noise rejection in the background. The
connectedness of the vasculature is emphasized regardless the
complexity of its shape, by spatially resolving nearby, tortuous
and highly curvilinear vessels. In all synthetic and real clinical
images, the synthesized tensor field (TF) shows consistent
features with the scalar map and the intrinsic structure of
the vasculature. Tensor orientation smoothly captures vessel
directionality and higher anisotropy is found for the enhanced
and connected vessels, whereas a predominant isotropic com-
ponent is associated to the background. For the synthetic
datasets, the scalar vesselness maps are also obtained with
the Frangi Filter (FFR), the Optimally Oriented Flux (OOF),
the state-of-the-art by Ranking the Orientation Responses of
Path Operators (RORPO), and the noise-reduction anisotropic
Hybrid Diffusion with Continuous Switch (HSCD) filter. The
respective histograms are reported in Fig. 6, for the considered
levels of increasing noise. After filtering, the discrimination
of both foreground (fG), i.e. vessels, and background (bG)
shows different trends for the considered enhancing methods
(Table II). The area of histogram overlap (fG∩bG), i.e. the
confusion between fG and bG components, is lower in VT and
FFR, compared to all other methods in all cases. For increasing
noise, higher confusion between fG and bG is observed,
with significantly higher (p < 0.05) histogram overlap values.
Similarly, the separation of both fG- and bG-distribution tails
(fG↔bG) shows comparable values for FFR and VT with
mild corrupting noise, whereas reduced values of fG↔bG are
observed for all FFR, OOF, RORPO and HDCS, with sig-
nificantly worse separation (p < 0.05) at moderate-to-severe
degradation levels. The intersection value of both fG and
bG distributions is consistent in VT at different levels of
corrupting noise, and lays in the vicinity of the ideal thresh-
old (Fig. 6, black dashed-line). The foreground interquar-
tile range (fGIQR) quantifies the smooth connectedness of
the scalar filter response for the tubular structures, where a
more compact and limited range suggests homogeneity and
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Fig. 7. Representative set of clinical angiographies: synthesized Riemannian vesselness maps, geodesic graphs and resulting minimum spanning
trees (VTauto).

regularity of the scalar intensities in the neighborhood of
enhanced structures. VT and OOF show comparable fGIQR in
terms of smooth filter-response connectedness, whereas signif-
icantly higher (p < 0.05) intensity ranges are found for FFR,
RORPO and HDCS, suggesting increased variability or more
distributed intensities for the filtered structures. High corre-
lation coefficients (fG�) are found for HDCS, FFR and VT,
where the intensities of the enhanced tubular-like structures
monotonically correlate with the respective uncorrupted ones.
In this case, HDCS has better performances ( p < 0.05) for all

noise levels, being the associated fG distribution rather skewed
towards saturated hyper-intensities, in line with the intrinsic
noise-reduction filter design.

B. Supervised Connectivity–Synthetic Trees

The accuracy of the reconstructed synthetic trees using dif-
ferent vesselness potentials is given in Table III for the whole
trees’ geometry, for the detected branchpoints location and
for the entire topologies. The symmetric errors (εζS) resulted
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TABLE III
SYNTHETIC TREES – SYMMETRIC ERROR εS [mm] AND DISTANCE εH [mm] FOR THE MINIMUM SPANNING TREES (ζ) TREES (ζ) [a.],

AND FOR THE BRANCHPOINS (bp) LOCATION [b.] (MEAN±SD). TOPOLOGICAL ACCURACY [�]: TEDov AND DIADEM [c.]

overall comparable among the considered vesselness maps
(FFR, OOF, RORPO, HDCS and VT), where a better per-
formance (italic text) has been observed for VT (Table III.a).
Slightly lower error distances are found on both εζS and the
distances (εζH ) in all cases, being the former ones limited
always within the voxel size. limited always within the voxel
size. Above 80% of branchpoints were successfully detected
in all cases, even with high level of corrupting noise. The
considered enhancing methods yielded comparable values
for the accuracy of the branchpoints’ location (Table III.b),
however VT showed overall lower symmetric errors lower
Hausdorff95% distances (εbp

H ), especially at high level of (εbp
H ),

especially at high level of degrading noise. This first suggests
that the smooth Riemannian vesselness improves the accuracy
of branchpoint spatial location, secondly, that the topological
inference via the presented connectivity paradigm is consid-
erably more stable even with different vesselness potentials.
This is supported by the TEDov indices (Table III.c), where
considerable topological overlap is found for all the recon-
structed trees. Better performances are observed for VT in the
great majority of cases, especially for highly noisy images.
DIADEM values show however that VT is outperforming
all the other methods with the spatially-aware topological
reconstruction of the synthetic trees, where the accuracy of

the branchpoint spatial location and of the branches geometry
is considered jointly with the hierarchical parent-child relation.

C. Fully Automatic Connectivity–Synthetic Trees

The reconstruction of the synthetic trees is performed in
a completely automatic fashion, using VTrails with a fixed
seeds quantile threshold (Q p=75%) and without performing
further pruning. The same aforementioned accuracy indices
are reported in Table III (VTauto). As few terminal branches
were missing at higher levels of degrading noise, the global εζS
slightly increases compared to the semi-automatic VT pipeline,
however errors are overall comparable to the voxel size in all
cases. Smaller average symmetric errors and εbp

H values are
found for the detected branchpoints location, suggesting that
the Riemannian vesselness potential, combined with the fully
automatic seeds initialisation, accurately recovers the junction
points of the network. Such configuration outperforms the
semi-automatic approach even with severely degraded images.
Similarly to the semi-automatic approaches, the isomorphic
topological overlap (TEDov) shows comparable values; no
significant differences were found in the pairwise comparison,
whereas the spatially-aware DIADEM metric reported higher
matching in the majority of cases with sporadic significantly
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TABLE IV
CLINICAL ANGIOGRAPHIES – SYMMETRIC ERROR εS [mm] AND

HAUSDORFF DISTANCE εH [mm] OF TREE (ζ) AND BRANCHPOINTS (bp)
(MEAN±SD) – TOPOLOGICAL TREE ACCURACY DIADEM[�]

better values ( p < 0.05) for VTauto vs. (i.e. N L I I
a , N L I I I

a and
N L I I

c in Table III).

D. Fully Automatic Connectivity–Clinical Data

The fully automatic VTrails is employed to recover the
vascular trees from real angiographies. The quantitative assess-
ment of the clinical datasets focused on vascular branches
originally defined and provided in the available GT and
gold standard. Co-registered ROI-based masks were used to
separate intra/extra-cranial vessels and anterior/posterior or
left/right-lobe vascular territories, coherently with assumption
of deep-brain vascular trees as described in Section III-B4.
Similarly to Section IV-C, the seeds quantile threshold is fixed
to Q p=75%, and further automatic pruning is performed to the
vascular trees on leaves (i.e. vascular terminal branches) up to
5 mm length. Both geometrical and topological accuracies are
reported for each clinical dataset in Table IV, where only the
DIADEM metric is considered for the evaluation of the tree
topology. In this case, TEDov is not used, since the evaluation
of the isomorphic tree overlap is uninformative and possibly
misleading in an experimental setup other than simulated and
synthetic images. The average symmetric errors εζS were com-
parable to the voxel size, with the average distances (εζH ) that
did not exceed 5 mm. Analogously the detected branchpoints
reported detected branchpoints reported a mean error εbp

S of
approximately 2 mm, with maximal distances up to 4-5 mm in
all clinical datasets. DIADEM metrics showed a considerably
high correspondence between the available ground-truth and
the automatically reconstructed tree topology, with overall
consistent and comparable values among different imaging
modalities. The spatial and topological correspondence can
be also qualitatively assessed in Fig. 7, where representative
examples are shown with associated ground-truths (GT), geo-
desic graphs (�) and resulting geodesic minimum spanning
trees (ζ ). A forest of geodesic MSTs has been extracted
for whole brain images, where nodes spatially correspond to
vessel junctions and connecting edges to vascular branches,
respectively. This suggests that VTrails can automatically
and accurately infer the cerebrovascular topology at different
scales with a vectorial representation.

V. DISCUSSION AND CONCLUSIONS

In this work, we presented VTrails, an automatic
connectivity-oriented method for 3D cerebrovascular imag-
ing, able to infer the brain vessels topology in the form of
over-connected geodesic graphs, whose minimum spanning

trees underlie anatomical deep-brain vascular trees. By using
SLoGS within a coherent mathematical framework, the simul-
taneous synthesis of both scalar and tensorial vesselness maps
consistently embeds smoothly connected tubular responses
together with the underlying vascular anisotropy and direc-
tionality. Contrary to [19] and [20], where tensors are derived
from fitting the image data, our method has the advantage of
generating high-order vascular maps with few curvilinear tem-
plates. The vesselness maps recovered with SLoGS resulted
less sensitive to noise and artifacts, and did not require any
further regularization or positive-definiteness constraint, since
anisotropic tensors are well defined for the described smooth
and compact Gaussian kernels. Results in Section IV-A and
Section IV-B demonstrate the robustness of our method to
different levels of corrupting noise. This mainly stands as a
sanity test with regards to traditional and popular tubular ridge
detectors and enhancement techniques [25], [39], [45], [47] in
case of images with severely impaired SNR. Regarding the
enhancement and reconstruction of tortuous and convoluted
tubular structures, the multi-resolution scale factor and the
seed points cardinality, as observed in [9], also play a critical
role in our case. On the one hand, they allow for a fully auto-
matic processing pipeline; on the other hand, they modulate the
computational complexity of the filtering step and of the sub-
sequent topological inference. The proposed fully automatic
processing pipeline is meant to avoid time-consuming, non-
reproducible and user-dependent initialisations that could bias
the objective inference of the over-connected vascular graph.
A full-scale-range analysis/synthesis of the multi-resolution
image pyramid should account for vascular structures of
different size. Also, a reasonable choice for the seed points
cardinality, here expressed with a fixed seeds quantile thresh-
old (Q p=75%) as in Section IV-C and Section IV-D, should
trade-off between the computational complexity and the infor-
mative content of the filter-response. From our experiments,
we observed that a low quantile (i.e. high seeds cardinality)
can severely increase the complexity of the filtering step,
without introducing information to the resulting scalar and
tensorial (CVM and TF) maps; whereas, a high-value quantile
can reduce dramatically the complexity (and the computational
time), in detriment of vascular details. In the Appendix, we fur-
ther provide the empirical computational time for the presented
experiments and the performance benchmarking associated to
a convoluted hand-crafted phantom.

The advantage of the proposed anisotropic level-set com-
bined with the connectivity paradigm in Section II-D con-
sists in optimally exploring and locally refining the geodesic
domain of connecting paths, which yields topologically self-
organizing vascular graphs and the associated minimum span-
ning trees. In [10], a similar level-set formulation focused on
the extraction of shortest paths joining individual (or multiple)
pairs of endpoints, without, however, determining the con-
nected topology among the same set of points. In Section IV-B,
the reconstruction of the synthetic trees showed overall good
and comparable results even by adopting different vesselness
maps. We assume an anisotropic level-set as proposed in [10]
would have similar accuracies to VTrails, by employing our
self-organizing connectivity paradigm. To the best of our
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knowledge, this is the first work where the accuracy of an
automatically reconstructed set of vascular trees from clin-
ical multi-modal brain angiographies is evaluated within a
spatially- and topologically-aware validation framework. In all
clinical datasets, both geometrical errors of the geodesic paths
and the associated topological similarity evaluated on the
centerlines ground-truth demonstrate that VTrails is able to
accurately recover the cerebrovascular network at different
scales with a vectorial representation. The sub-voxel average
accuracy reached by VTrails in the clinical datasets suggests
that the proposed approach can support intra-operative ses-
sions with a patient-specific model up to a pre-defined level
of detail, where surgical guidance is required and/or mini-
invasive vascular repair is feasible. In general, the assumption
of a vascular tree provides a natural and anatomically valid
model for 3D cerebrovascular images, with few exceptions,
e.g. the complete Circle of Willis and rare macroscopic anasto-
moses observed in the posterior cerebral circulation [11], [31],
[63], [64]. For this reason, we first focused on the quantitative
analysis of major deep-brain arterial (or venous) vascular
trees, e.g. the anterior/posterior and left/right arterial branches
from the Circle of Willis in MRA and CTA, as reported in
Section IV-D; we then regard Fig. 7 for a qualitative inspection
of the remaining smaller portions. The image resolution of
the clinical angiographies does not allow for the inference of
capillaries in the cortex (where the anatomy is more prone
to show cyclic structures [29]), also the lack of established
quantitative metrics to assess and compare cyclic and fully-
connected topologies impede to focus particularly on the
evaluation of anastomoses, at this stage. With the develop-
ment of standardized metrics for fully-connected networks
comparison, along the lines of [18], [43], and [55], future
works would account a more specific validation focusing on
cyclic structures at different scales, since VTrails can fully
capture and embed in the over-connected vascular graph all the
possible anatomical and geodesic connecting redundancy in
the form of multiple local cycles. Note that these may underlie
even actual anatomical anastomoses (Fig. 7). It is impor-
tant to note that VTrails’ minimum spanning tree extraction
formulation does not enforce any cerebrovascular anatomical
prior per se, however, extra vascular-related constraints and
associated anatomical connected topologies can be included
with a user-defined initialisation to correct for specific loca-
tions where the vascular network is not acyclic. In our
case, we employed co-registered ROI-based territorial masks
to coherently extract a forest of geodesic MSTs in whole-
brain clinical angiographies, as described in Section II-E. The
proposed framework is completely modular, therefore further
priors can be introduced and injected at different levels. Recent
studies of the venous vasculature in the brain [12], [48], [62]
show the potential of combining multi-modal imaging to deter-
mine a multi-parametric venous atlas and composite segmenta-
tion from Susceptibility-Weighted Imaging (SWI) venography
and Quantitative Susceptibility Maps (QSM). Although in
the present contribution we did not employ any combined
multi-modal angiography, the introduction of an anatomical
prior derived by the aforementioned methods and imaging
modalities could improve, in first instance, the separation of

the arterial from the venous side in whole-brain images, up to
a pre-defined detail. Then, it could constitute a valid ground to
infer a vectorial representation of the complementary cerebral
venous vasculature. Further analysis, in future works, would
consider a more complete and multi-spectral vascular dataset,
since here we first focused on the performance and accuracy of
the proposed method in a range of clinical scenarios, where
individual, sometimes noisy angiographies are available. In
the considered clinical datasets, major deviations from the
centerlines ground-truth were observed for small and terminal
vessels, where the effect of the limited spatial resolution and
image quality degradation is predominant. This suggests that
the detection of capillaries and those tiny vessels not well
spatially resolved in the image may require a more supervised
processing pipeline. Also, different connectivity patterns are
found with VTrails for smaller vessels at high depths of the
arterial (or venous) vascular trees. As side note, the considered
centerlines gold standard do not constitute an exhaustive and
flawless topological reference, since mis-connections, miss-
ing branches and manual discontinuous annotations may be
present in the datasets. As shown in Fig. 7, our manual anno-
tations can be noisy, sometimes fragmented and rather prone to
misclassification among a pool of experts, especially in case of
low contrast-to-noise and low image resolution (PC). We also
observed that bad gold standard annotations may penalize the
accuracy metrics presented in Section IV-D. For this reason,
we put particular effort with selecting and evaluating the
manually annotated GS for both CTA and PC datasets. To the
best of our possibilities, we performed the skeletonisation of
the manually lumen segmentation, as well as the extraction
of the territorial GS minimum spanning trees, by means of a
conservative and intensity-maximizing tree-extraction strategy
of the complete GS connected graph, minimizing at the same
time, the irremediable number of cycles cuts at smaller scales.
It can be observed that possible minor mis-classifications in
the available ground-truths and gold standards, as well as
those from VTrails, may considerably affect the topological
similarity metric of vascular trees of different size. Despite the
optimal formulation of the Riemannian vesselness potential in
conjunction with the proposed connectivity paradigm, narrow
and spatially close vessels may eventually produce a geodesic
short-cut with VTrails.

As shown in Fig. 8 for a randomly selected RAA
image processed without restricting the topological inference,
the extraction of the minimum spanning tree underlying
the anatomical vascular tree can result in a missing branch
(red arrow) due to a geodesic short-cut from kissing-vessels.
Conversely, the over-connected geodesic graph encodes and
preserves all the redundant connectivity. Although the kissing-
vessel artifact may represent a potential limitation to the direct
extraction of the minimum spanning trees, further improve-
ments are being investigated to minimize its disruptive effect
on the vascular network. In [50], we argue that minimum
spanning tree(s) should optimally and robustly be extracted
after the injection of population anatomical priors, propagated
through pairwise or groupwise geodesic vascular graph align-
ment. With this view, such anatomical prior would compensate
for biologically incompatible mis-connections and anatomi-
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Fig. 8. RAA topological inference with VTauto. Geodesic Graph Π (left)
and Minimum Spanning Tree ζ (right) of the underlying anatomical
vascular tree. Missing branch in ζ, due to a geodesic short-cut from
kissing-vessels. Vectorial representation in the form of a connected
hierarchical graph (below).

cally implausible geodesic short-cuts. Also, labeling priors
would guide the extraction of the vascular trees towards their
most anatomically meaningful realizations. Should the group-
wise analysis of the vasculature determine a valid anatomical
prior for extracting more accurate and refined subject-specific
vascular graphs, at the same time, the novel vectorial approach
could potentially impact on traditional vascular image analy-
ses. Similarly to [60], by means of longitudinal and cross-
sectional vascular graph-matching, registration and alignment,
an over-complete graph of the cerebrovascular system could
be determined with both arterial and venous components, and
would ideally constitute a comprehensive, quantitative and
data-driven vascular atlas of the human brain. This would
support, in future works, a better understanding of the morpho-
logical and functional normality of the neurovascular system,
also of the associated variability and pathology. The analy-
sis and inference of clinically relevant biomarkers, such as
vascular morphometric parameters (e.g. cross-sectional lumen
boundaries, level of stenosis, aneurysm characterisation), func-
tional markers (e.g. territorial supply, ischaemic events, local
(de-)oxygenation, tracers wash-in/out), hemodynamic descrip-
tors (e.g. blood flow, pressure, wall tension) and surrogate
vascular indices (e.g. familial and environmental risk factors),
could also be performed on a discrete, non-uniform and highly
non-linear vectorial domain, which might be representative
of a heterogeneous population. Given the encouraging results
presented in this work, VTrails’ stands as first step towards
multiple complimentary cerebrovascular applications, from
supporting patient-specific interventional neuroradiology and
vascular surgery, to population-wise studies of comparative
neurology, neurovascular phylogenetics, and cerebrovascular
disease progression on a larger scale.

TABLE V
SLOGS PARAMETERS OF THE ADOPTED DFK

APPENDIX

DISCRETE DFK AND CURVILINEAR PARAMETERS

Finite SLoGS kernels are derived by opportunely sam-
pling the 3D continuous impulse-response � and the associ-
ated second-order derivative filtering kernel K . Analogously,
the discrete ellipsoidal tensorial matrix T is sampled in the
Log-Euclidean space. In the present work we adopted tem-
plates of 5×5×5 voxels for all the aforementioned instances.
The adopted dictionary of filtering kernels (DFK) was gen-
erated as one-time configuration step prior to all filtering,
and accounted for a total number of 12 different SLoGS
(i.e. DFK = DFK12) of varying shape and curvilinear bend-
ing/tilting of the support. A complete list of parameters is
detailed in Table V for each SLoGS in the DFK, along with
the discrete degenerate scalar kernels δLoG and νLoG.

The discrete impulse-response (�) and derivative (K )
degenerate kernels δLoG and νLoG are defined for a finite
3×3×3 cubic template as

�δLoG =
{

1 for v = [2, 2, 2] ,
0 otherwise , KδLoG =

{− 26
27 for v = [2, 2, 2] ,
1

27 otherwise ,
,

�νLoG = 1
27 ∀ v , KνLoG = 1

27 ∀ v ,

with v the indexed voxel position within the cubic template.

Orientation Sampling in 3D

As described in Section II-B, the early tubular salinecy map
Vtube is determined by means of an icosphere of subdivision
level n from which we initially sample orientations in 3D.
n is fixed and set equal to 2 for all the scales. This pro-
duces an initial number of 1080 different orthonormal bases,
i.e. ωall

ico ∈ R
3, which further reduces to 81 different orthonor-

mal bases (ωall
ico > ωreduced

ico = ωico ∈ ico) when the fully
symmetric Ktube kernel is employed as in (5).

The subsequent image filtering formulated in (7) and (10)
employs the whole SLoGS DFK and focuses on data-driven
orientations θ ∈ � identified by the seeds S̃ (see Section II-B).
The seeds-related orientations θ may change in number with
respect to ωico ∈ ico. In our implementation, the seeds-
related orientations θ ∈ � can differ from each other by a
maximum in-plane angle of π

12 , evaluated on both azimuth-
and elevation-angle planes for all the orthonormal bases
components.

ROBUSTNESS OF SLOGS PARAMETERS

The analysis of the robustness of SLoGS parameters is
perfomed here by considering the original DFK = DFK12, and
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Fig. 9. Parameters robustness and performance analysis on 3 DFKs and
using a convoluted phantom of size 1.0×, 1.5× and 2.0× [50×50×100]
voxels.

other 2 similar dictionaries of different cardinality, i.e. DFK6
and DFK18. The evaluation of the filter response of the
considered dictionaries accounts for the voxel-wise Pearson
correlation between the original image and the resulting scalar
filter response (CVM), i.e. �(V ,CVM), and the voxel-wise
Pearson correlation of the tensor field (TF) directionality and
anisotropy with the tensor gold standard in the Log-Euclidean
space, i.e. �(TFfit,TF). Performance benchmarking was also
performed in terms of DFKs physical memory load and empir-
ical computational time. For the evaluation, a convoluted hand-
crafted phantom presented in [49] was employed at different
size and resolution (Fig. 9).

The correlation values of the synthesized maps with the
respective ground-truths are shown in Fig. 9. Since no publicly
available ground-truth for direction and anisotropy exists,
we necessarily derived the gold standard TFfit by fitting the
tensor field over the original phantom V . Similarly to (4),
we enforced positive definiteness of the ellipsoidal matrix,
by considering the absolute value of the image-based Hessian
eigenvalues. Overall, similar and comparable correlations were
observed for the considered DFKs, by processing the phantom
at different image size. This suggested reproducible results
and overall good robustness of the DFKs by adopting sim-
ilar varying parameters. Clusters of values ranged between
0.82 ∼ 0.90 and 0.62 ∼ 0.69 for �(V ,CVM) and �(TFfit,TF),
respectively. A slight decrease of the linear correlations was
found for DFK6. Following this trend, we assume a further
reduction of the dictionary cardinality may result in poor
tensorial vesselness maps.

COMPUTATIONAL COST AND IMPLEMENTATION

As observed in Section II-B and in Section V, the com-
plexity of the framework hinges on the density (or sparsity)
of different tubular structures in the image and on the desired
level of vascular detail. A performance analysis is shown in
Fig. 9 for the aforementioned set of DFKs combined with
a phantom at multiple image size. Both filtering time and
physical memory load of the DFKs reported an underlying
power-law trend (dashed lines in Fig. 9) in the adopted
implementation. The estimated range of memory load was
30 ∼ 200 MB, and a maximum filtering time of approximately
1 hour was observed for the complete DFK18 combined with
the most dense and detailed phantom. Heuristically, for a
representative experiment on clinical angiography – whole-
brain isotropic 1 mm3 (approximately 200×200×150 voxels),
we observed an average processing time of 2 ∼ 5 hours with

the adopted DFK = DFK12. This includes the full-scale-range
analysis/synthesis of both scalar and tensorial maps, together
with the exhaustive connectivity paradigm, accounting for an
exploration neighborhood of 10 ∼ 25 mm diameter.

We justify the choice of DFK as trade-off between the
correlation indices previously observed, and the overall com-
putational performance. In future works, the use of a DFK
with no less than 6 SLoGS may produce similarly accurate
results, minimizing the computational load. Although we used
a high performance computing cluster to process all images in
our experiments, the whole framework was implemented and
tested in Matlab, single 3.1 GHz Intel Core i7. The code is
available at https://vtrails.github.io/VTrailsToolkit/ as an open-
source tool-kit.
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