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Abstract— Vasculature is known to be of key biological
significance, especially in the study of tumors. As such,
considerable effort has been focused on the automated
segmentation of vasculature in medical and pre-clinical
images. The majority of vascular segmentation methods
focus on bloodpool labeling methods; however, particularly,
in the study of tumors, it is of particular interest to be able
to visualize both the perfused and the non-perfused vascu-
lature. Imaging vasculature by highlighting the endothelium
provides a way to separate the morphology of vascula-
ture from the potentially confounding factor of perfusion.
Here, we present a method for the segmentation of tumor
vasculature in 3D fluorescence microscopic images using
signals from the endothelialand surroundingcells. We show
that our method can provide complete and semantically
meaningful segmentations of complex vasculature using a
supervoxel-Markov random field approach. We show that
in terms of extracting meaningful segmentations of the
vasculature, our method outperforms both state-of-the-art
method, specific to these data, as well as more classical
vasculature segmentation methods.

Index Terms— Image segmentation, Markov random
fields, machine learning, microscopy.

I. INTRODUCTION

SEGMENTATION of vasculature continues to be an impor-
tant and challenging topic of research in biomedical image

analysis. An area where the investigation of vasculature is
of particular interest is in the study of tumor angiogenesis.
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Neovascularization is known to be one of the key mechanisms
in the growth and development of tumors [1]. While the
vasculature present in tumors can provide valuable information
for investigating the properties of a tumor, there are various
biological and technological issues surrounding the imaging
of this vasculature that any automated segmentation method
must address. Most methods for angiography use bloodpool
based contrast agents, which provide contrast against the
surrounding tissue for blood vessels imaged with modalities
such as Computed Tomography (CT), Magnetic Resonance
Imaging (MRI) or Ultrasound (US). Bloodpool based contrast
agents typically enhance vessels as bright, tubular objects and
many methods for vessel segmentation exploit this tubular
structure through analysis of the local Hessian eigensystem [2].
However, in tumors, we know that the vasculature system can
be poorly or irregularly perfused due to the inherent leakage
and chaotic organization [3]. By imaging vessels using only
bloodpool based contrast agents, we would implicitly limit our
analysis to only the perfused vasculature. Therefore, as we
wish to perform an analysis of the fractions of perfused vas-
culature, any such contrast enhancement-based segmentation
method will be insufficient.

Fluorescence microscopy provides an alternative way to
image vasculature, by imaging the vascular endothelium
directly. This can be done pre-clinically by genetically modi-
fying the endothelial cells in mice to express a fluorescent pro-
tein, which can then be directly imaged. However, particularly
in the case of tumor vasculature, the endothelium alone does
not provide the tubular geometry that most standard methods
of vascular segmentation rely upon, as only the outer wall is
visible. In the imaging paradigm of bloodpool based contrast
agents methods typically attempt to infer the presence of
vasculature from the perfusion. This is fundamentally flawed
in the case of leaky and poorly perfused vasculature and
therefore we propose a much more robust paradigm to infer the
perfused as well as non-perfused lumen of the vessel from the
visible vascular walls, which will always be present, without
imaging the lumen directly. For our proposed segmentation
algorithm we use signals from both the endothelium and tumor
cells fluorescence channels, avoiding any kind of bloodpool
labeling. A whole tumor view of these channels can be seen
in Figure 2 and single images tiles can be seen in Figure 1.
The images shown in Figure 2 are composed of approximately
225 tiles of equivalent size to those shown in Figure 1.
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Fig. 1. Fluorescence channels showing a single tile (512 × 512 pixels)
of endothelial cells (left) and the corresponding tumor cells (right).

Fig. 2. Whole tumor images (225 tiles) showing endothelial cells (cyan)
and the corresponding tumor cells (green).

In addition to these biological concerns, modern microscopy
imaging techniques are capable of producing extremely large
image volumes. While this allows us to image small structures
with high resolution, there are challenges in terms of process-
ing the entire volume in an efficient manner. Methods designed
to operate on large image volumes such as these must have
reasonable bounds on both computational time and memory
usage.

To address these difficulties, we propose a method of
segmentation in which we first perform a supervoxel segmen-
tation of the image volume. We then extract image features
from each supervoxel which are classified using a random
forest classifier to determine the most likely structure present
in the image. These likelihoods are then regularized by a
vessel-oriented Markov Random Field (MRF) graphical model
defined over the graph of supervoxels to generate our final
segmentation of the vasculature. Central to our application
is the ability to generate meaningful measurements of the
underlying vasculature, rather than merely achieving a high
volume overlap. We will show that not only does this method
produce accurate and complete segmentations of the image,
but that the semantic structure of the vasculature is maintained,

allowing a straight forward skeletonization process to recover
the full topology of the network.

II. RELATED WORK

There has been very little work focused on the segmentation
of vasculature labeled purely on the endothelium. Instead,
the vast majority of vascular segmentation techniques depend
on the use of bloodpool based contrast agents, providing
a tubular structure [4]–[7]. A thorough review of meth-
ods applied to enhanced vasculature has been produced by
Lesage et al. [8]. In fact, the lack of suitable segmentation
techniques for data of this type means that even state-of-the-art
imaging studies rely upon manual segmentations to acquire
measurements [9], [10]. In the case of many biological studies,
manual annotation becomes infeasible due to the scale of
images acquired. A full exploration of the spatio-temporal
behaviour of tumor vasculature requires that we analyze
many large image volumes, both longitudinally and for a
number of cases. Therefore, a suitable automated method
must be developed for data of this type. The method of
Narayanaswamy et al. [11] attempts to tackle a similar appli-
cation by generating a bounding mesh from the endothelial
cells. However, they focus on larger, non-pathological vas-
culature which does not suffer from the problems associated
with the chaotic tumor neovasculature. Work by Almasi et al.
on a similar domain avoids the general task of segmentation
by enhancing ‘key points’ and utilizing graph considerations
to extract the network connectivity [12], [13]. Deep Convolu-
tional Neural Networks have been applied to a related problem
also by Teikari et al. [14].

In the case of such large image volumes it becomes
impractical to deal with each pixel individually, and a suitable
reduced representation may be required. Often there exist large
amounts of local redundancy in an image so we can consider
a piecewise constant representation of the image in some
feature space. We refer to these regions as supervoxels, which
have been used to great effect in many imaging applications.
A number of supervoxel clustering algorithms have been
proposed. Felzenszwalb poses it as a graph partitioning prob-
lem [15], the Normalized Cut method of Shi and Malik solves
a generalized eigenvalue problem [16] and the classical water-
sheds algorithm has also been used. Achanta et al. proposed
the use of a localized k-means clustering for their supervoxel
algorithm, Simple Linear Iterative Clustering (SLIC) [17] and
a number of variants have been explored by transforming the
clustering domain. Irving et al. performed SLIC clustering on
the PCA modes of DCE-MRI signals [18] [19], Oda et al.
suggest the inclusion of Hessian based signals into a SLIC
algorithm [20] and Holzer et al. proposed a signal transform
using the monogenic phase to provide a more suitable clus-
tering domain for medical images [21].

The use of supervoxel-based features in graphical models
has been successfully applied to object recognition tasks
by Fulkerson et al. [22]. While Fulkerson et al. enforces
supervoxel label continuity as a hard constraint, the use
of supervoxels as a soft label constraint was explored
by Kohli et al. in their Robust Pn method [23]. In bio-
medical applications, supervoxel graphical models have
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been explored by Lucchi et al. [24] for the segmenta-
tion of mitochondria from SSEM volumes. In their work
both shape and textural features are extracted from each
supervoxel and are used to train an SVM classifier,
which is then used in a CRF framework. The work of
Zhu et al. [25], [26] has applied supervoxels to the segmenta-
tion of 3-dimensional vasculature. In this work they consider a
semi-supervised graph transduction approach using Gaussian
affinities. However, their use of bloodpool labeling meant that
simple intensity and orientation features were sufficient for
segmentation.

III. MATERIALS

A. Data

For the particular focus of this work we segment vasculature
from images acquired using high resolution fluorescent multi-
photon microscopy, achieving a theoretical lateral resolution
of 0.4μm and an axial resolution of 1.3μm. Voxels are sized
5μm in the z direction and 0.83μm in the x-y direction.
We used an abdominal window chamber model in mice,
which allowed for intravital imaging of the tumors [27].
The abdominal window chamber was surgically implanted
in transgenic mice on C57Bl/6 background that had expres-
sion of red fluorescent protein tdTomato only in endothelial
cells. The murine colon adenocarcinoma MC38 tumors with
expression of green fluorescent protein (GFP) in the cytoplasm
were induced by injecting 5μl of dense cell suspension in a
50/50 mixture of saline and matrigel (Corning, NY, USA).
Prior to imaging we intravenously injected 100μl of Qtracker
705 Vascular Labels (Thermo Fisher Scientific, MA, USA)
which is a blood-pool based labeling agent thus allowing us
to determine whether vessel are perfused or not. The images
of tumors were acquired 9–14 days after tumor induction with
Zeiss LSM 880 microscope (Carl Zeiss AG), connected to a
Mai-Tai tuneable laser (Newport Spectra Physics). We used
an excitation wavelength of 940 nm and the emitted light
was collected with Gallium Arsenide Phosphide (GaAsP)
detectors through a 524–546 nm bandpass filter for GFP and
a 562.5–587.5 nm bandpass filter for tdTomato and with a
multi-alkali PMT detector through a 670–760 bandpass filter
for Qtracker 705. A 20× water immersion objective with
NA of 1.0 was used to acquire a Zstacks-TileScan with
dimensions of 512 × 512 pixels in x and y, and approximately
70 planes in z, with a z step of 5μm. Each tumor is covered
by approximately 100–200 tiles, depending on the size. All
animal studies were performed in accordance with the Ani-
mals Scientific Procedures Act of 1986 (UK) and Committee
on the Ethics of Animal Experiments of the University of
Oxford. The advantage of using both a labeled blood-pool
based agent (Qtracker 705) and transgenic mouse model with
fluorescently labeled endothelium is that it allows us to assess
the functional behaviour of the tumor vasculature. Ground
truth segmentations were acquired by a manual segmentation
of each slice using the MITK software package [28]. Ground
truth skeletons were derived from these segmentations using
the automatic tracking and manual pruning tools available in
the NeuTube software package [29].

Fig. 3. 2D view of synthetic endothelium (left), 3D rendering of
synthetic image volume (center), 3D rendering of synthetic ground truth
segmentation (right).

B. Synthetic Data

We also tested on a synthetic dataset that aimed to replicate
a number of the difficulties present in our real data. The
data is sampled anisotropically to the same aspect ratio as
the real data, and models a number of vessels of varying
diameter. Gaussian and Poisson noise are added to simulate
the conditions of the original images, with noise levels tuned
to match those present. An example of this data, along with
the ground truth segmentation, is shown in Figure 3.

IV. METHODS

Here we will give an overview of the proposed pipeline,
followed by a detailed description of each stage. We begin
by performing a transformation of our input image into our
proposed hesSLIC domain. This domain is then used for SLIC
local clustering, to produce a superpixel over-segmentation.
Features are then extracted from the entirety of the original
image and assigned to their respective superpixel. Aggrega-
tions and averages of the features are taken for each superpixel.
These are then passed to a Random Forest decision tree ensem-
ble, which defines a unary potential for our MRF graphical
model. The pairwise terms are also defined between each pair
of neighboring superpixels according to various constraints.
This system is then solved to find the most likely labeling of
our image and to produce the desired segmentation.

A. Supervoxels

The size of the images that may nowadays be routinely
acquired with microscopy methods provides a challenge for
image processing, and for graphical models in particular.
To address this, we first perform a pre-processing step by
which we subdivide the image into a set of congruent regions
known as supervoxels [17] (superpixels in 2D). These super-
voxels provide a, piecewise constant, reduced representation
of the image in some feature space. Defining a graph of the
adjacency of these supervoxel regions is a much less demand-
ing task and opens up the possibility of efficiently using
probabilistic graphical models on our large image volumes.

In this work we consider the Simple Linear Iterative Clus-
tering (SLIC) supervoxel method of Achanta et al. [17].
SLIC supervoxels are both computationally fast and memory
efficient to calculate. They are known to provide regularly
sized, uniform, supervoxels. The number and compactness of
these supervoxels is controlled by the user. The SLIC method
is an extension of k-means clustering from a feature space to
a combined spatial+feature space. We begin by initializing a
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regular grid of cluster centers with step size S. Then we assign
each pixel to its closest center according to some weighted
Euclidean metric:

Dist =
√

Dist2
F +

(
Dist S

S

)2

m2 (1)

where Dist S is the Euclidean distance between the center and
the pixel, and Dist F is the Euclidean distance in feature space.
The SLIC algorithm can be considered to exist on a sliding
scale between k-means clustering and a regular grid. The
position on this sliding scale is determined by the compactness
parameter m. By tuning m, a balance can be found between
edge localization and regularity.

However, we find that the concept of simply clustering pixel
intensities is not well suited to images such as those in our
primary application, where there is not a clear distinctive edge
between many of the different structures, and edges which do
exist may be soft. This has also been observed by Holzer
et al. , inspiring their monoSLIC method [21], which utilizes
the monogenic phase of the image.

In this implementation we introduce a modified version of
the SLIC algorithm, which we title hesSLIC. SLIC relies on
strong image gradients to create image boundaries; however
in the case of medical images, specifically of vasculature,
strong boundaries are not present and instead, soft gradients
show us the edge of objects, and curvature cues tell us about
possible vascular structures. When attempting to cluster on
the smoothed signal, there is no clear boundary between
the regions of high and low signal, this can result in a
‘banding’ of supervoxels along this transitional region. In the
transformed hesSLIC signal on the bottom, the boundaries are
made clear and cluster boundaries will align with the signal
transition boundaries. We observe that a step function, con-
volved with a smoothing kernel, creates a smooth, sigmoidal
function. However, the original stepping point is recoverable
by examining the sign of the second derivative. We perform
a transformation of the pixel domain by first computing the
eigenvalues λ = {λ1, λ2, λ3} of the Hessian matrix H at each
pixel in the image I , at scale σ . For these experiments we
take σ = 2.

We define,

m = arg max
i

(|λi |) (2)

and

φ(λm) = sgn(λm)(1 − exp(−|λm∇ I |)) (3)

such that this switching behavior is emphasized in the low-
curvature transitional areas, rather than noisy regions in which
the sign of the second derivative may oscillate wildly. While
the monoSLIC method [21] analyses the sign of the monogenic
signal, our method considers the local curvature.

As the Hessian matrix is symmetric, our set of eigenvectors
will form an orthonormal basis and the infinity norm of the
eigenvalues gives the magnitude and direction of the principal
curvature. If we consider the eigenvalues to vary smoothly
over the image domain, then in order for the largest magnitude
eigenvalue to change sign we must transition through a region

Fig. 4. Over-segmentation of vascular structure by two different
supervoxel algorithms. Top: original SLIC algorithm, banding occurs
along edges. Bottom: hesSLIC signal transform has significantly reduced
banding.

of zero curvature. This means we should be transitioning from
‘convex’ to ‘concave’ regions. Thus, by examining only the
dominant eigenvalue we can partition the space into regions
of consistent curvature, concave or convex. Here we create
a strong boundary at points at which the dominant curvature
changes direction. This means that the enforced supervoxel
boundaries will exist along a subset of the so-called ‘parabolic
lines’ of the surface, the set of points at which at least one of
the principal curvatures is equal to zero. In the case of vascu-
lature, we are sure that the principal direction, corresponding
to the greatest curvature, is perpendicular to the direction of
the vessel and we therefore create strong boundaries along
the length of the vessel, as desired. In addition to this we
normalize according to the local image gradient and mean
curvature, which helps to prevent rapid oscillations of the
signal in low signal regions. The transformed signal, φ in
Equation 3, is to be used in the original SLIC algorithm with
the DistF term from Equation 1 being calculated on this signal
rather than the image pixel values directly.

The results of this method may be observed in Figure 4
where the SLIC algorithm (top) suffers from the ‘banding’
issues described earlier, whereas the hesSLIC (bottom) man-
ages to deal with this boundary appropriately. We find that on
our data the hesSLIC method provides an excellent semantic
deconstruction of the image into structures such as lumen,
endothelium, tumor and background.

An algorithmic overview of this method can be seen in
Algorithm 1, and is further illustrated in Figure 5.

B. Markov Random Fields

Markov Random Fields (MRFs) provide a principled
framework in which we are able to combine probabilistic
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Algorithm 1 Overview of hesSLIC Algorithm
Require: Image I
1: Initialize output image φ
2: for pixel p in image I do
3: Compute local Hessian matrix at pixel p in image I
4: Compute magnitude of local image gradient at pixel p

in image I
5: Compute eigenvalues λ of Hessian matrix
6: m = arg maxi |λ|
7: φ(p) = sgn(λm)(1 − exp(−|λm∇ I |))
8: end for
9: Perform SLIC [17] on new image φ.

Fig. 5. Transformation from endothelium channel (left) to φ domain
(center) to superpixel segmentation (right).

information provided by the image with a set of spatial
prior beliefs. We consider this a semantic segmentation task
where we attempt to assign a label to every part of the
image, denoting what kind of structure is present at that
particular location. In these images we identify 4 labels: tumor,
endothelial cells, vessel lumen and background. This is how
we motivate a 4-label pairwise Markov Random Field model.

In full generality, an MRF describes a joint probability
structure over an un-directed graph. If we combine this with
the positivity condition, P(x) > 0,∀x. It may be shown,
by the Hammersley-Clifford theorem, that this is equivalent
to a Gibbs random field and as such can be factorized into
conditional probabilities over the cliques c.

P(x) = 1

Z
exp (−E(x)) = 1

Z
exp (−

∑
c

Ec(xc)) (4)

For tractability we consider only pairwise cliques,

E(x) =
∑
i∈N

Ui (xi ) +
∑

(i, j )∈C

Vi j (xi , x j ) (5)

where E represents a potential induced by a given labeling
x and Z is a partition function required for a correctly
normalized distribution.

We can interpret this formulation as the function Ui defining
the node i ’s inclination toward being assigned the label xi .
This function can be unique for each node i , since the function
Ui is conditioned on the data itself. The function Vij describes
the interaction at the edge connecting node i with node j ,
taking labels xi and x j respectively. By penalizing boundaries
between different labels, we can provide a form of spatial
regularization. As our function Vij may also be conditioned

on the data it improves clarity to rewrite our energy as,

E(x) =
∑
i∈N

Ui (xi ) +
∑

(i, j )∈C

G( fi , f j )H (xi, x j ) (6)

where, G is a function of the features at nodes i and j and H
is a function of the labels alone. The functions G and H can
then be defined globally. We can then solve this approximately
using the Graph Cut method of Boykov and Jolly [30]

In our formulation we treat each superpixel as a node
of the graph. Here, fi , pi and Si correspond, respectively,
to the feature vector, centroid location and set of constituent
pixels for superpixel i . Our unary potentials are taken as the
probabilistic outputs from a Random Forest classifier [31],
the details of which will be addressed in Section IV-C. As we
wish to define a potential rather than a probability, we denote
the probabilistic output of the Random Forest URF and finally
say that,

U = − log(URF ) (7)

We define our pairwise function over the features, G( fi , f j ),
to be the product of four functions. Through the function G1
we enforce that the strength of interactions is modulated by
the distance between two nodes. The function G2 enforces that
interactions are strongest between nodes with similar features.
The difference in size between the supervoxels is accounted
for by G3 and the agreement of the local directionality of the
two nodes is dealt with by G4.

G1 = exp

(
−|pi − p j |2

γd

)
(8)

G2 = exp

(
−| fi − f j |2

γ f

)
(9)

G3 = |i |
min(| j |, Nmin)

(10)

Si, j = (vi · pi−p j
||pi −p j || ) (11)

G4 = |Si, j − (|Si, j − 1) exp

(
− fi,v

γ

)
(12)

G(i, j) = λG1(i, j)G2(i, j)G3(i, j)G4(i, j) (13)

Tuning parameters γ f ,γd and γ govern the strength of these
interactions and can be either calibrated or estimated from
the data. fi,v is given by the local Hessian strength (L2-
norm of the eigenvalues) however this could be replaced by
a vesselness measure for suitable data. This term modulates
the extent to which anisotropic regularization should occur.
The general strength of regularization is modified by the
parameter λ.

We define H to represent our biological understanding
of the image, e.g. that lumen should not co-occur with
tumor cells (because it should be surrounded by endothelial
cells) or that endothelium should not share a boundary with
background (because they should be embedded in the tumor
tissue). As this paper compares binary segmentation methods,
we represent H by a simple Potts model, taking a constant
value for different labels and 0 if the labels are the same.
However, more complex relationships between labels may be
learned and encoded.
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The combination of G1 and G3 means that we can avoid the
issues of a non-regular supervoxel lattice by taking a fully con-
nected graph and eliminating sufficiently weak interactions.
G1 allows us to set a characteristic interaction distance by
γd and G3 prevents undue influence from small supervoxels.
The interaction term G2 provides us with the classical edge
preserving regularization that provides the majority of the
regularization. However, it is known that regularization of
this form can suffer from the so-called ‘shrinking problem’
where larger, convex structures are encouraged in order to
minimize boundary areas. Anisotropic regularization terms
such as Si, j have been suggested in terms of MRF formulations
previously [32], [33] however we incorporate a transition
function G4 to give highly anisotropic interactions only in
regions of strong curvature ( fi,v ) and isotropic interactions
elsewhere. This takes a form similar to that found in the Vessel
Enhancing Diffusion of Manniesing et al. [34].

C. Random Forests

Random Forests are an ensemble learning technique of
random decision trees [31], [35]. The use of random,
bagged, decision trees has been shown to reduce over-
fitting and improve generalization error for high dimensional
classification. The decision forest is constructed by randomly
sampling from the feature space as well as randomly sampling
from the training set with replacement to produce an ensemble
of binary decision trees. A key advantage of using ensembles
of decision trees is that features are only ever compared among
themselves, which avoids concerns about feature scaling.
We can perform hard classification by taking the modal value
of the decision tree outputs, or we can obtain a probabilistic
output by considering the distribution of responses. We would
like to return a probabilistic output so that we can feed it back
into our MRF as a unary potential after transforming according
to Eq. 7.

We perform Random Forest classification for each super-
voxel by constructing a feature vector similar to that used by
Kaynig et al. [32]. This feature set contains Gaussians taken at
a number of scales, as well as differences between Gaussians
and Hessian eigenvalues computed at multiple scales. For each
supervoxel we then form a single feature vector by taking the
median value achieved over the supervoxel for each feature.
In addition to this, the feature vector for each supervoxel is
concatenated with the average feature vector of its neighboring
supervoxels, providing additional context for the classifier
as has been explored by Fulkerson et al. [22]. Features
are computed on both the endothelium and tumor channels,
as visible in Figure 1. For these experiments we trained a
decision forest consisting of 100 trees, with a maximum tree
depth of 10 splits. Sigmas for the Gaussian kernels used for
feature extraction were taken between 1 and 20.

V. RESULTS

We compare the results of our segmentation algorithm
against a gold-standard, manual-segmentation. We compared
the manual segmentation against our method, a median-
filtering approach, a commonly used Hessian-based, vesselness

Fig. 6. Comparison of the effects of MRF strength on isotropic and
anisotropic regularization.

Fig. 7. Left: Method of Narayanaswamy [11]. Right: Proposed Method.
Here the method of Naranayaswamy struggles to fill the vessel lumens,
leaving gaps in the segmentation.

filtering method [4] and a state-of-the-art vessel segmentation
method specifically designed for labeled vessel laminae [11].
In the case of median filtering and vesselness, the images
are thresholded to produce a final segmentation. The method
of Narayanaswamy et al. was made available as part of
the Farsight Toolkit (www.farsight-toolkit.org) [11]. All the
parameters and thresholds are optimized on a calibration image
and held constant over the test set. The Random Forest model
is trained over the entire data set in a leave-one-out framework,
so for each test case, the model has been trained on all images,
excluding the current test case.

We found, in the case of the method of
Narayanaswamy et al. , that although the method had been
specifically designed for data of this type, the computational
time meant that this method would not be well suited for
our purposes (∼70,000s per tile). This can be compared
to our method (∼100s per tile) and the median filtering
method (∼10s per tile). We found that the method of
Narayanaswamy performed well in regions of strong signal
but failed to regularize in regions of low signal leaving
incomplete sections of the vasculature as well as ‘holes’. This
is not unexpected as the method was designed for larger,
more mature, vasculature where the endothelium would be
regular and more clearly labeled. The results of this method,
in comparison with our method, can be seen in Figure 7.
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Fig. 8. Top left: Endothelial cell channel, top right: manual segmentation,
bottom left: median filtering method, botton centre: vesselness filtering
method, bottom right: proposed method.

TABLE I
RESULTS FOR hesSLIC VS SLIC COMPARISON

We found the median filtering method to be by far the most
effective of the other methods tested, due to its ability to ‘fill’
the lumen of the vessel by filtering the strong signal from the
vessel walls. However, it is not a context aware method and
we found that it was unable to fill the larger vessels found in
our images. This can be observed in Figure 8.

We also investigate the role played by our proposed
hesSLIC algorithm in improving segmentation. We perform
this analysis on a synthetic dataset designed to replicate a
number of the complexities of our real data. We compare
the Dice overlap using both the traditional SLIC algorithm
and our hesSLIC algorithm for two different values of the
MRF regularization. The results of this can be seen in Table I,
where we show the mean Dice score over our synthetic dataset,
along with standard deviations. Here the hesSLIC variant out-
performs the regular SLIC algorithm both with and without
MRF regularization.

To explore the impact of anisotropic regularization in the
MRF, as imposed by Eq. 12, we test the effectiveness on our
synthetic data. Experiments were run over a range of MRF
strengths, represented by the parameter λ in Eq. 13, both with
and without the contribution from Eq. 12. This provides a
directional anisotropic regularization, encouraging regularity
in the direction of ‘vessel structures’. We present an averaged
Dice score over 10 synthetic image volumes. The results of
this analysis are shown in Figure 6.

Although prevalent in the literature, we find the Dice
overlap score to be poorly suited to the analysis of vascular
segmentation. The Dice overlap relies on an assumption of

local convexity such that change in the score should be small
with respect to small deviations from the optimal solution.
This is not the case in vasculature where small lateral changes
perpendicular to the direction of vasculature may have a
magnified effect on the Dice score. In addition to this, the Dice
score does not assess the success with which a method
has performed a true semantic segmentation, which, in this
case means its ability to recover the true topology of the
vasculature. Although we report comparable results to the
median filtering method in terms of Dice overlap, we direct our
main focus toward analysis of the extracted vascular topology,
via skeletonization. In order to do this, we present the results
of a Hausdorff analysis as well as the error in reported vessel
diameter, this can be seen in Tables II, III and IV. We derive
a skeletal representation from each segmentation by applying
a simple iterative thinning algorithm [36]. We refine each
skeleton by pruning artifactual branches that did not exceed
some minimum length, or the diameter of their parent vessel.
For these experiments we chose a minimum branch length of
10 voxels.

We define the Hausdorff Average [37], [38] as

dH (A, B) = 1

|A|
∑
a∈A

d(a, B)

where d(a, B) is the minimum Euclidean distance between a
point a and a set B , given by d(a, B) = minb∈B |a − b|.

In this case the sets A and B denote the set of skeletal points
of the segmented image and the ground truth image respec-
tively. We propose this as a method to quantify the semantic
value of the segmentation. While a Dice overlap shows that a
significant pixel co-occurrence is achieved, the pixels that are
not included in the segmentation may fundamentally change
the meaning of the segmented structure. By quantifying the
segmentation according to this distance metric rather than
a simple segmentation overlap, we reward a method which
captures the semantic meaning of the image, the vascular
network.

Although we observe no significant difference in the values
of the Dice overlap, we test the significance of the Mean Haus-
dorff Distance and Mean Vessel Diameter Error using a paired
Wilcoxon Signed-Rank Test. We report a significant (tested
at p = 0.05) improvement of the proposed method over the
others in both the Hausdorff average distance (Table III) and
the mean vessel diameter error (Table IV).

VI. DISCUSSION

Here we have presented a method for the multi-label seg-
mentation of vasculature in 3D, endothelium-labeled, multi-
photon microscopy images. We build up a primitive structure
of the image using a novel supervoxel algorithm and gener-
ate likelihoods over the labels for each supervoxel using a
supervised Random Forest algorithm. These likelihoods are
then regularized using a vessel-oriented MRF, which encodes
ideas about the anisotropic nature of vasculature as well as
the relative likelihood of co-occurrence for different labels.
We have shown that this method out-performs a number of
other methods, most notably in its ability to produce full
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TABLE II
DICE OVERLAP COMPARISON

TABLE III
MEAN HAUSDORFF DISTANCE

TABLE IV
MEAN VESSEL DIAMETER ERROR

Fig. 9. Skeletons extracted from segmentation. Left: Proposed method, Middle: Ground Truth, Right: Median Filtering.

segmentations of the vasculature, and thus accurately extract
the underlying topology of the vasculature.

A key advantage of the method proposed here, in compar-
ison to other segmentation methods, is that although here we
compared against binary segmentations, the method extends
to as many classes as are present in the training annotations.
An example in this case would be to separate the image into
tumor cells, lumen, endothelial cells and background, as men-
tioned previously. This can be done to an arbitrary degree
with any biological understanding of the relationship between
labels encoded in the label affinity function H from Eq. 6.
In motivating this method, we placed great importance on the
ability to fully capture the topology of the vascular network in
an efficient manner. The ability of this method to achieve both
of these goals allows the analysis of large, irregular, vascular
structures such as those found in tumors during angiogenesis.
Although many segmentation methods value a high Dice
overlap, we emphasize the fact that any region identified by
the segmentation method should correspond to a complete

section of the vasculature. It is this desire that leads us to
prioritize the Hausdorff distance. One of the key strengths of
the proposed method is the ability to fully segment sections of
the vasculature. However, this context awareness can cause the
method to reject sections of vasculature that are only partially
visible. The ability of the thresholding method to segment
only partially visible sections of the vasculature produces a
favorable Dice score but makes the results wholly unsuitable
for further analysis. This can be observed in Figure 9 where,
although the median filtering method detects vasculature in
approximately the correct parts of the image, the skeleton
that is extracted is disjointed and contains many artifactual
branches due to the incorrect topology of the segmentation.

From our synthetic experimental results, shown in Table I,
we see an improved ability to segment the structures when
using the hesSLIC formulation. We intuitively attribute this
to an ability to perform better clustering in the presence
of soft gradients in the image. In our synthetic experi-
ments into the effects of modifying MRF strength λ, shown
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in Figure 6, we also see an improved result by the application
of anisotropic regularization. In addition to a higher peak,
we note that the results in the anisotropic case appear less
sensitive to the value of λ. This could potentially be due to a
reduction in the impact of the ‘shrinking problem’ discussed
earlier.

Another key advantage of our method is the relative speed
with which we are able to produce segmentations, in compar-
ison to methods such as that of Narayanaswamy et al. As the
desired application of this method is to segment longitudinal
data sets of large image volumes, each with upward of billions
of voxels, it is imperative that we are able to process them
efficiently.

A potential area for future improvement is the limitations
imposed by our edge potentials in the MRF which are tuned
rather than learned. Although methods exist that are able to
learn fully connected pairwise CRFs [24], [39], they require
densely annotated training sets to capture the full extent of
spatial interactions. The expectation of the existence of fully
annotated training sets for many applications is unrealistic.
Future work will focus on the suitability of semi-supervised
methods to achieve fully supervised levels of performance on
sparse annotations. It is possible that this may be done in
the current framework using label-transduction methods [40].
Interesting work in the transduction and interactive learning
for sparsely labeled superpixel microscopy images has also
been undertaken by Su et al. [41]. A method that can take
sparse image annotations and use them to leverage information
from large set of unlabeled parts of the image to create high
quality segmentations would be an extremely powerful tool.
This would have very broad applications in novel imaging
experiments where large training sets are not readily available
and where there is a high time-cost in producing such a
training set.
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