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Corneal Endothelial Cell Segmentation
by Classifier-Driven Merging of
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Abstract— Corneal endothelium images obtained by
in vivo specular microscopy provide important information
to assess the health status of the cornea. Estimation of
clinical parameters, such as cell density, polymegethism,
and pleomorphism, requires accurate cell segmentation.
State-of-the-art techniques to automatically segment the
endothelium are error-prone when applied to images with
low contrast and/or large variation in cell size. Here, we pro-
pose an automatic method to segment the endothelium.
Starting with an oversegmented image comprised of super-
pixels obtained from a stochastic watershed segmentation,
the proposed method uses intensity and shape information
of the superpixels to identify and merge those that con-
stitute a cell, using support vector machines. We evalu-
ated the automatic segmentation on a data set of in vivo
specular microscopy images (Topcon SP-1P), obtaining
95.8% correctly merged cells and 2.0% undersegmented
cells. We also evaluated the parameter estimation against
the results of the vendor’s built-in software, obtaining a
statistically significant better precision in all parameters
and a similar or better accuracy. The parameter estimation
was also evaluated on three other data sets from different
imaging modalities (confocal microscopy, phase-contrast
microscopy, and fluorescence confocal microscopy) and
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tissue types (ex vivo corneal endothelium and retinal
pigment epithelium). In comparison with the estimates of
the data sets’ authors, we achieved statistically significant
better accuracy and precision in all parameters except
pleomorphism, where a similar accuracy and precision were
obtained.

Index Terms— Specular microscopy, confocal micro-
scopy, merging superpixels, stochastic watershed, support
vector machines.

I. INTRODUCTION

THE corneal endothelium (CE) is a single layer of
closely packed and predominantly hexagonally-shaped

cells forming the inner surface of the cornea. It performs an
important role maintaining an optimal state of hydration of
the cornea [1]. Endothelial cell loss occurs normally due to
aging, from a density of approximately 5,000 cells/mm2 at
birth down to 2,000 cells/mm2 in a normal adult eye [2].
However, this loss can be exacerbated by trauma, dis-
eases, or intraocular surgery, which might in turn lead to
irreversible corneal swelling when the cell density drops below
500 cells/mm2 [3], [4]. Due to its limited cell division capacity,
the repair function is usually restricted to the swelling and
sliding of the existing cells in order to maintain the barrier
properties. Quantitative analysis of the corneal endothelial cell
morphology from image data provides clinical information to
assist ophthalmologists in diagnosis and treatment of corneal
diseases. Currently, endothelial cell density (ECD) is the
most important measure to assess the corneal health state,
reported as the number of cells per mm2. Other parameters
such as polymegethism – expressed by the coefficient of
variation (CV) in cell size – or pleomorphism – quantified
by the hexagonality coefficient (HEX) as the percentage of
hexagonal cells – are not used in standard clinical practice
due to unreliable estimations.

Different instruments are available to assess the cell density
and morphometry of the endothelium. Non-contact specular
microscopy, developed in the late 1970’s, is a fast, non-
invasive, in vivo imaging method, which permits to record
large field-of-view images of the endothelium. In contrast,
contact confocal microscopy, developed in the late 1980’s,
provides an in vivo, high-resolution assessment of all corneal
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layers, but requires physical contact with the cornea and
relatively long acquisition time [5]. Due to its non-invasive
nature and fast acquisition time, specular microscopy is the
current clinical standard technique. While contact confocal
microscopy obtains considerably clearer images from edema-
tous corneas [6], both microscopes provide images of sufficient
quality from the central and peripheral cornea. Due to the
optical principles of the technology, good quality specular
microscopy images are limited to corneas that have a smooth
endothelium surface [7], [8]. Non-contact confocal microscopy
is the most recent modality (early 2000s), and it provides
similar image quality as the non-contact specular microscopy
for normal corneas but yields a larger field-of-view [9].

Manual quantification of endothelial images is very labor-
intensive, so computer aided techniques to generate the cell
segmentation are necessary. Microscope manufacturers cur-
rently provide built-in software to automatically segment the
recorded images and estimate the parameters. Several studies
using different microscope modalities have been performed
in order to evaluate the reliability of these fully automated
analyses in comparison with semi-automated and manual
analyses, especially in the evaluation of cell density. In gen-
eral, the fully automatic ECD estimations were not consistent
with the manual estimations. Some studies indicated an over-
estimation of ECD in both specular and confocal microscopy
images for healthy and glaucomatous eyes exhibiting a high
cell density [9], and for healthy and transplanted corneas
with normal to low cell density [10], [11], mainly due
to the oversegmentation of large cells. In contrast, another
study (employing a different microscope vendor’s software)
reported an underestimation of ECD in both, confocal and
specular microscopy, for normal corneas with high cell density
due to the identification of false cell borders [12]. When
images with large differences in cell density were analyzed
with the same software, this was prone to underestimating the
cell density in images with high ECD and overestimating it in
images with low ECD [13], or vice versa [7]. Previous studies
on semi-automated analyses reported clinically acceptable
results as it produces ECD values comparable to the manual
analysis. However, this process is still time consuming since
an expert needs to correct the segmentation.

Overall, the automatic detection of cell borders is a com-
plicated task due to the presence of noise, variation in illu-
mination, and optical artifacts. Furthermore, the estimation
of polymegethism and pleomorphism can be significantly
affected by just a few errors in the segmentation. Previous
studies suggest that the built-in software of the currently
available commercial microscopes is prone to mistakes in the
segmentation, particularly in the presence of a low or high cell
density or a high degree of polymegethism. Therefore, there
is a need to develop an algorithm that can reliably estimate
these parameters from images with such characteristics.

A. Related Work
Several cell segmentation techniques for corneal endothe-

lium images have been proposed. Selig et al. [14] suggested
a stochastic watershed approach to segment in vivo confocal
microscopy images. Ruggeri et al. segmented ex vivo porcine

endothelium images obtained with inverse contrast phase
microscopy by means of an artificial neural network algorithm
and in vivo confocal microscopy images by means of a genetic
algorithm [16]. Gavet and Pinoli [17] proposed a binarization
algorithm to segment in vivo specular microscopy images.
Finally, Sharif et al. [18] developed a hybrid model based
on snake and particle swarm optimization for in vivo confocal
microscopy images.

B. Our Contribution

Due to the aforementioned challenges, i.e., illumination
distortions, optical artifacts, and presence of noise, current
segmentation methods fail to identify all cell edges without
finding invalid ones. These methods seem to be designed
to segment a specific type of endothelium images within
a limited range of cell density and variation of cell size.
Here, we propose a machine learning framework based on
Support Vector Machines (SVM) for segmenting a broad range
of endothelium images from different types of microscopes.
We hypothesize that, by starting with an oversegmented image
where all cell edges have been traced, a trained classifier could
identify the fragments (superpixels) that constitute a complete
cell. Indeed, the union of fragments belonging to the same cell
shows distinctive features (related to shape, intensity, size, etc.)
compared to an arbitrary combination of fragments from
different cells. Thus, by merging those fragments, the over-
segmented image converges towards the correct segmentation.
The creation of the initially oversegmented image is not a
trivial task, and here we adapted Selig et al.’s approach [14]
to generate an initial segmentation without undersegmentation
and where hardly any cell is divided in more than three
fragments.

Although superpixel merging methods have been proposed
in recent years, they were mainly applied to high quality
color images and using color histogram features [19], [20],
a combination of color and spectral information [21], or color
with superpixel size information [22]. Needless to say, all
these methods fail to provide acceptable results in specular
microscopy images due to the challenges posed by the low
image quality. In contrast, the novelty of our method lies
in exploiting the morphology of the endothelial cell layer in
addition to intensity information of the constituting superpixels
and the candidate merger, as well as the edges between them.
Moreover, we have exploited the idea that better segmentation
results can be achieved if, instead of aiming directly for
an optimal segmentation, an oversegmentation followed by a
merging process is employed.

To evaluate our method, we used a dataset of endothe-
lial images obtained with in vivo specular microscopy
(Topcon SP-1P) and we compared our results against the
estimates of the microscope’s built-in software. To illustrate
the versatility of the method, it was also applied to three
other datasets: 52 confocal microscopy endothelial images
used in Selig et al.’s paper [14], 30 ex vivo endothelial images
from phase-contrast microscopy published in Ruggeri et al.’s
paper [15], and a dataset of 23 confocal microscopy fluores-
cence images of the central retinal pigment epithelium (RPE)
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Fig. 1. Flow chart of the method.

analyzed in Chiu et al.’s paper [23]. RPE cells might show
a considerably high variation in cell size, unlikely in corneal
endothelial cells, which makes it a good example to test the
robustness of the method against polymegethism.

This paper is organized as follows. Section II provides a
description of the proposed method, including how the initial
oversegmentation was generated. Section III first evaluates
the merging process and the subsequent cell segmentation of
the main dataset. Second, it evaluates the estimates of the
clinical parameters for all datasets. Third, a brief explanation
about computational cost is provided. Finally, the results are
discussed in Section IV.

II. METHODOLOGY

A. Method Summary

An SVM algorithm is presented, which aims to create
a correct segmentation of an endothelial cell image from
an initially oversegmented image composed of superpixels.
This is accomplished by evaluating whether combinations of
adjacent superpixels constitute a complete cell. The SVM
classifier uses information about shape, structure, and intensity
from the superpixels (both, separately and combined) and
their boundaries. All possible combinations of two and three
adjacent superpixels in the image are considered simulta-
neously by means of a dedicated classifier for each type
of combination (2 or 3 fragments). In order to compare
the combinations from the different classifiers, the signed
distance from the classification hyperplane is transformed into
a probabilistic output by means of Platt’s algorithm [24]. Only
the combinations classified as positives and with probability
higher than 0.5 are considered. The combination with the
highest probability is merged, iterating this process until no
more combinations are accepted.

To optimize this iterative process, we create a list of
‘accepted combinations’ such that every time a merger is
performed and removed from the list, we also remove all
combinations that are no longer possible and all combinations
that need to be updated (i.e., neighboring combinations to
the merger whose features have changed). Then, all new
combinations involving the new superpixel are evaluated as
described above, as well as the neighboring combinations that
needed to be updated. These combinations are added to the

list if their mergers are accepted. Hence, only the strictly
necessary (or new) combinations are re-evaluated after each
merger, making the process computationally efficient. Once the
list of accepted combinations is empty, we have reached the
final segmentation. A data-flow diagram is depicted in Fig. 1.

We chose an SVM classifier with a probabilistic out-
put instead of any other type of classifier or a different
method (clustering, regression, etc.) because of the following
reasons: (1) SVMs belong to the class of supervised tech-
niques, which usually provide better results than unsupervised
methods such as clustering techniques; (2) SVMs can use
the features of the constituting superpixels (independently)
in combination with the features of the candidate merger
in order to determine if a merger is correct, which makes
the merging decision more robust; (3) SVM’s regularization
parameter (C) can be used to avoid over-fitting; (4) SVMs
are well known to provide great performance in tasks with
highly-unbalanced classes, which happens in our problem;
(5) SVMs are robust against the high-dimensional space of
the problem; (6) SVM’s kernel trick allows building a more
complex decision boundary, and in our case it also helps to
deal with the arbitrary order of the superpixels in the feature
vector; (7) SVMs are computationally very efficient (fast in
evaluating), which is necessary in clinical applications with
thousands of combinations to be evaluated in one single image;
(8) Platt’s probabilistic output permits comparing competing
types of combinations (2- and 3-fragments), which cannot be
done directly.

B. Initial Oversegmentation

In an ideal oversegmented image, all cell edges are traced
with high accuracy and each cell is comprised by a minimum
number of superpixels. Due to the low signal-to-noise ratio
of specular microscopy images, these two goals are difficult
to achieve simultaneously. Since only the removal of edge
segments is considered by our method, any undetected cell
edge (undersegmentation) produces an error that cannot be
corrected a posteriori. On the other hand, creating a highly
oversegmented image might trace all cell edges accurately,
but makes the subsequent model too complex and prone to
mistakes.
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Fig. 2. (a) Portion of a specular microscopy image. (b) Initial overseg-
mentation (in blue). Cells are comprised of 1, 2, or 3 superpixels. In the
specular microscopy dataset, rarely any cell appears divided in more
than 3 fragments.

Selig et al. [14] proposed a method to segment endothe-
lial images by applying a seeded watershed algorithm in a
stochastic manner. The seed grid has a hexagonal pattern
with a spacing equal to the most common cell diameter
in the image (l), which is computed as the inverse of the
characteristic frequency, l = 1/ f ∗, estimated by Fourier
analysis [14]. By creating a denser grid of seeds, we can
control the degree of oversegmentation. Here, we divided the
estimated cell diameter by

√
3, which corresponds to a grid

with three times more seeds, nseeds = AI ( f ∗√3)
2 = 3AI f ∗2,

being AI the total image area [14]. This enabled a good
detection of all cells edges without creating an excess of
oversegmentation (Fig. 2).

For the remaining parameters in the stochastic watershed
method (iterations, added noise, blur size, and local minima to
ignore), we used the values reported in the original paper [14].
One of these parameters, kσ = σP DF f ∗ = 0.17, is related
to a Gaussian smoothing filter (σP DF ) that is applied to
the stochastic watershed output. Selig et al. observed that,
for large σP DF , the ridges in the segmentation were shifted
with respect to those in the input image. To solve this, Selig
et al. added a final, optional step where the classic seeded
watershed method was applied to a smoothed version of
the input image and the segmented regions of the stochastic
watershed were used as seeds. Only two datasets evaluated
in this paper showed such a shift in the ridges, namely
Selig et al.’s confocal microscope data (σP DF ≈ 6) and the
fluorescence confocal RPE data (σP DF ≈ 4.5). For the other
two datasets (σP DF ≈ 3), this final step did not substantially
change the segmentation (phase-contrast microscope data) or it
even degraded the segmentation in areas with blurry cell
edges (specular microscope data). Therefore, the edge cor-
rection method was only applied to the confocal microscopy
datasets.

C. Definition of a Merger

Given a segmented (binary) image, we define the vertices
as the branch points of the segmentation, and the edges as
the set of 8-connected positive pixels whose endpoints are
constrained to vertices. Biologically, a vertex is placed in the

Fig. 3. Visual representation of a 2-fragment merger. The segmen-
tation (edges in blue, vertices in red) is superimposed on the intensity
image. (a) Indication of the elements involved in the merger. (b) After the
merger, vertex v1 is transformed into an edge-pixel, while v2 stays as a
vertex.

point where the cell edges from three or more cells meet.
In order to avoid small edge segments comprised by less than
two pixels, these are fused with their respective vertices to
form a single vertex (Fig. 3a, vertex v2). The superpixels are
defined as the sets of 4-connected negative (non-edge) pixels.
We define a 2-fragment merger as the union of two adjacent
superpixels by the removal of the edge segment between them.
A 3-fragment merger is defined as the union of three adjacent
superpixels by the removal of the two or three edge segments
between them. This is accomplished by two consecutive
2-fragment mergers.

D. Features

For every candidate merger, let us consider SA and SB

as the two fragments to be merged, SA+B as the resulting
superpixel, e1 as the edge segment that needs to be removed
to create SA+B , and v1 and v2 as the vertices at the ends of
e1 (Fig. 3a). A merger is computed as SA+B = SA + SB + e1,
and v1 with v2 are evaluated to identify whether they stay as
vertices or they become part of the edge of SA+B (Fig. 3b).
The following features are computed for each superpixel in the
merger (SA, SB , and SA+B ). Let S be any of those superpixels:

1) Normalized cell size, computed as the number of pixels
in S (area) divided by the size, in pixels, of the most
common cell (estimated by Fourier Analysis [14]).

2) Normalized cell intensity, computed as the ratio of the
average pixel intensity of S to the average pixel intensity
of the neighboring superpixels.

3) Convexity, defined as the ratio of the perimeter of the
convex hull of S to the perimeter of S.

4) Solidity, defined as the proportion of the pixels in the
convex hull that are also in S (Area/Convex Area).

5) Circularity, defined as 4π Area/Perimeter2.
6) Eccentricity, defined as the eccentricity of the ellipse

that has the same second-order moments as S.
7) Number of neighboring superpixels.
8) Standard deviation of the lengths of the edges associated

with S.
9) Standard deviation of the inner angles. We define the

inner angles as the angles that are formed in the center
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of mass of S between the straight lines that are traced
from that point to the vertices of S.

10) Standard deviation of the outer angles. We define the
outer angles as the angles formed in the vertices of S
between the straight lines that are traced between the
vertices.

11) Ratio of the area of S to the polygon area, where the
polygon is formed by connecting the vertices of S with
straight lines.

12) Binary value to indicate whether S lies in the border
region of the image (this is not included for SA+B ).

For SA+B , we compute extra features. Here, we define l1
as the straight line that is formed by connecting v1 with v2.
Features related to those vertices provide two values, one per
vertex.
13) Ratio of the average intensity of e1 to the average

intensity of SA and SB .
14) Ratio of the average intensity of e1 to the average

intensity of the edges of SA+B .
15) Ratio of the area formed between e1 and l1 to the area

of SA+B .
16) Ratio of the length of l1 to the length of e1.
17) For each vertex (v1, v2), ratio of the average intensity

of half e1 (the part closest to the vertex) to the average
intensity of the edges of SA+B ending in v (only the
half of the edges closest to v). In contrast to feature
14, here only the intensity in the vicinity of v is
evaluated (2 values).

18) Ratio of the length of e1 to the average edge length of
SA and SB (2 values).

19) Standard deviation of the angles formed in the ver-
tices (v1 and v2) before the merger occurs (2 values).

20) The angles formed in the vertices (v1 and v2) after the
merger occurs (2 values).

The concatenation of the features of the involved superpixels
creates the feature vector of a merger. For an n-fragment
merger, n! possible feature vectors can describe the same
merger, depending on the order of the fragments. The SVM
kernel was designed to map all those vectors to the same point
in feature space (see Section II-F).

For a 2-fragment merger, the feature vector contains
47 elements. For a 3-fragment merger, the extra features are
computed twice (one per removed edge segment), and they are
processed as follows: For features 13-16, the averaged value
is computed; for features 17-20, the maximum and minimum
values are kept. In total, a 3-fragment merger is represented
with a feature vector of 59 elements.

E. Class Definition & Training Data Preparation

In the 2-fragment SVM classifier, the good-merger class is
defined as the set of combinations of two superpixels that form
a cell. The bad-merger class is defined as the set of all other
combinations of two adjacent superpixels, with the exception
of combinations coming from within cells divided in more than
two fragments. The classes in the 3-fragment SVM classifier
are defined in an analogous way, but now for sets of three
superpixels.

To prepare the training/test data, we retrieved the class
elements from the oversegmented images as described above.
Since some features are affected by the state of fragmenta-
tion of the neighboring cells, the training elements in the
good-merger class were computed twice, once when none
of the fragmented neighboring cells were merged yet, and
again when all were merged. Bad-merger examples were also
retrieved from the resulting superpixel of a good-merger with
its neighboring superpixels. Hence, the training/test examples
not only included all the mergers that could be formed in the
initially oversegmented image, but also (some of) the mergers
that could appear during the merging process.

To help solve the segmentation of cells divided in more
than three fragments without having a classifier specifically
built for that purpose, the following training elements in the
good-merger class were included: for the n-fragment classifier,
a cell divided in m fragments, being m > n, will generate
combinations of n superpixels where one superpixel is the
result of previously merging m − n + 1 fragments of the cell.

To deal with cells touching the border of the image, some
good and bad mergers were included for those cases. Feature
no 12 was added for this purpose. Eventually, the estimation
of the endothelial parameters is done excluding the superpixels
touching the border region of the image.

The ratio of bad-mergers (negative class) to good-
mergers (positive class) in the training/test dataset was around
25:1 for the 2-fragment classifier, and 200:1 for the 3-fragment
classifier.

F. SVM, Kernel, & Probabilistic Model

By design, no oversampling or undersampling is applied to
the classes, and each element in any of the two classes has
the same weight. For computational purposes, the negative
class in the 3-fragment classifier was undersampled to the
same ratio as in the 2-fragment classifier without losing
discriminative power. This was done by selecting the closest
negative elements to the positive ones, in Euclidean distance,
which removes elements that exert no influence on the SVM
hyperplane.

A Gaussian-based kernel was designed, which maps all
permutations of the feature vectors of a single merger onto
the same point in the feature space. Let us suppose G(x j , xk)
denotes element ( j, k) in the Gram matrix, where x j and
xk are p-dimensional vectors representing elements j and k.
For the 2-fragment SVM classifier, let j indicate the merger
between superpixels A and B , whose vector can be depicted
as x j = [ f A, fB , fA+B ] or x′

j = [ fB, fA, fA+B ], with fn the
features of the superpixel n. Then, the kernel is defined as

G(x j , xk) = exp(−γ ||x j −xk ||2)+exp(−γ ||x′
j −xk ||2), (1)

with γ the scale parameter of the Gaussian radial basis
function. The kernel for the 3-fragment classifier was defined
in a similar fashion, covering the six possible permutations
that describe the same 3-fragment merger.

In order to compare mergers from different SVM classifiers,
the optimal score-to-posterior-probability transformation was
computed for each classifier by using Platt’s approach [24].
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III. EXPERIMENTS & EVALUATION

We evaluate the proposed method in Section III-A for the
main dataset, which is described in Section III-A1. The eval-
uation is done for the classifiers separately in Section III-A2,
for the classifiers jointly in Section III-A3, and for the full
cell segmentation task in Section III-A4. In Section III-B we
evaluate the estimates of the clinical parameters from the
segmented images for all datasets, which are described in
Section III-B1. The estimates are compared against the gold
standard and either the estimates of the microscope’s built-in
software or the estimates provided by the original authors.

For all datasets, a double 5-fold cross-validation approach
was used to separate training, validation, and testing sets,
providing a ratio in the size of the sets of approximately
64% training, 14% validation, and 20% testing. Images were
completely assigned to a single fold to prevent combinations
of fragments from the same image in different sets. For the
evaluations in Section III-A, the experiments were repeated
five times, reassigning the images to the folds differently each
time, and the averaged results were reported.

A. Evaluation of the Method
1) Dataset: The main dataset consists of 30 corneal endothe-

lium images from the central cornea of 30 glaucomatous eyes,
with approximately 250 cells per image. They were obtained
with a non-contact specular microscope (SP-1P, Topcon Co,
Japan) for an ongoing study regarding the implantation of a
Baerveldt glaucoma drainage device in The Rotterdam Eye
Hospital. The images were acquired prior to the implantation
of the device. They cover an area of 0.25 mm × 0.55 mm
and were saved as 241×529 pixels 8-bits grayscale images.
The acquisition occurred with informed consent and followed
the tenets of the Declaration of Helsinki. One expert created
the gold standard for each image by performing manual
segmentation of the cell contours using an open-source image
manipulation program (GIMP v.2.8).

2) Evaluating the Accuracy of the Classifiers: The perfor-
mances of the two classifiers (2- and 3-fragments) were
evaluated independently. Fifteen SVMs were computed per
classifier by varying the misclassification cost between False
Positives (FP) and False Negatives (FN). The cost values
FP:FN followed the ratio 5n/2:1, with n = 12, 11, . . . , 1, 0,
−1, −2. Based on the class definition, a FP is defined as a
bad-merger classified as positive, whereas a FN is a good-
merger classified as negative. A grid search was performed to
find the best SVM parameters, γ and C , in the validation set,
using the cost function: argminγ,C (costF PFP + costF N FN).

The evaluation was done on the test set, built as described in
Section II-E. FROC curves [25] were generated by calculating
the true positive rate, TPR = TP/(TP+FN), and the fractional
number of false positives per cell, FPs/cell, from the output
of each classifier. Two setups were considered: one where
the fifteen classifiers performed the task independently, and
another for a cascade of classifiers. In the latter, the classifiers
were ordered from highest to lowest ratio of cost FP:FN,
and any accepted merger at one classifier was automatically
accepted by the following classifiers. The classifier with equal
costs (FP:FN of 1:1) was marked in all curves (Fig. 4a-b).

Fig. 4. FROC curves of the 2-fragment classifier (a), 3-fragment classi-
fier (b), and the outcome of the merging process (c), using 15 classifiers
with different costs of FP:FN. The 15 classifiers are evaluated in two ways:
independently and connected in a cascade. In all cases, the classifier with
equal cost (FP:FN of 1:1) is marked.

An inflection point was observed in the curves of the inde-
pendent classifiers, at those with costs 5:1 (2-frag) and 25:1
(3-frag). Beyond that point, decreasing the misclassification
cost of the FP created more FPs, but did not increase the
number of TPs. In contrast, the cascade of classifiers benefited
from a higher TPR because of the accumulative effect of
TPs in a cascade design, but at the expense of a slightly
higher number of FPs. It was clear from the graphs that no
further improvement occurs beyond the classifier with equal
costs (FP:FN of 1:1), as the remaining good-mergers would
come at a high price in terms of FPs. At that point (1:1), the
2-fragment classifier in the cascade provided a TPR of 96.5%
with 0.037 FPs/cell, and the 3-fragment classifier provided a
TPR of 94.9% with 0.046 FPs/cell. Moreover, half of the FPs
in both cases came from cells touching the image borders
and such cells are not considered when calculating ECD,
CV, or HEX.

3) Evaluating the Accuracy of the Merging Process: This eval-
uation differed from the previous one in three aspects: (1) the
setup follows the proposed method (Fig. 1), which means
that both classifiers work simultaneously; (2) the evaluation
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Fig. 5. Three representative specular microscopy images (a)-(c), and their respective visual outcome of the merging (d)-(f): black lines indicate the
segmentation outcome, and magenta lines indicate edges being removed in the merging process. All fragments involved in mergers are colored:
green denotes complete cells after merging, red denotes undersegmented cells (FP), dark blue denotes oversegmented cell (FN), and light blue
denotes inconclusive mergers.

now uses the test images, which means that only mergers
that occur during the merging process are involved; (3) the
evaluation metric is now defined for the final result at the cell
level: a TP is defined as a fragmented cell that is correctly
merged, a FN is defined as a fragmented cell that is not
completely merged (oversegmentation), and a FP is defined
as any cell âŁ"- fragmented or not âŁ"- that suffers from an
incorrect merger (undersegmentation). A cell can be labeled
with only one condition, and the condition FN prevails over FP.
For instance, if a fragment from an oversegmented cell (FN)
merges with another cell, the former cell is labeled as FN and
the latter as FP. If a fragmented cell, after merging correctly,
merges with another cell, then both are labeled as FP. Hence,
TPR indicates the percentage of oversegmented cells that were
correctly merged, whereas the number of FPs/cell indicates
the percentage of cells that were undersegmented. This metric
will be also used for the remaining datasets.

The same fifteen SVMs were used here, and both setups,
independent classifiers and the cascade of classifiers, were
considered. In the latter, once all the accepted combinations
have been merged in one set of classifiers, the output segmen-
tation is provided as input to the next set of classifiers. The
FROC curves (Fig. 4c) showed a similar pattern as before. The
cascade, whose main goal is to merge the most certain true
combinations in the first stages, could potentially reduce FPs in
the last stages as less false combinations are being evaluated,
showing a small but clear effect. At the classifier with equal
costs (FP:FN of 1:1) in the cascade, a TPR of 95.8% with
0.020 FPs/cell was obtained. To illustrate the outcome, at that
point there are, on average, less than six undersegmented cells
and less than two oversegmented cells per image (Fig. 5),
considering that initially 25% of the approximately 250 cells
per image were oversegmented. Furthermore, the majority of
undersegmented cells were located along the image borders.
This supports the idea of having reached the optimal point,
since the number of over- and undersegmented cells in the
inner part of the image was similar, while undersegmentation
was starting to prevail along the image borders.

4) Evaluating the Accuracy of the Segmentation: The seg-
mentation accuracy was measured by using the distance
transform. In a first measure, the distance transform was
computed on the resulting segmentation. The distance values
were averaged over those pixels that were labeled as edge
pixels in the gold standard, providing a single value per image.
This measure is sensitive to undersegmentation, as missing
true edges in the output segmentation increases the value, but
is barely affected by oversegmentation. In a second measure,
the distance transform was computed on the gold standard,
retrieving only the values of those pixels that were labeled
as edge pixel in the resulting segmentation. In contrast to the
former measure, this is sensitive to oversegmentation, as false
edges increase the value, but insensitive to undersegmentation.
In almost all images, the first measure was slightly higher (the
difference was 0.05 ± 0.05, mean ± SD), suggesting a very
small dominance of undersegmentation. The average of both
measures was computed for each image, providing a value of
0.93±0.09 (mean ± SD). This suggested that the segmentation
was on average within one pixel from the gold standard.

B. Evaluation of the Application

Based on the previous results, a cascade of four classifiers
was established as the final setup, with cost values (FP:FN)
of 125:1, 25:1, 5:1 and 1:1.

1) Datasets & Statistical Analysis Method: Besides the main
dataset (Section III-A1), three other, publicly available datasets
were evaluated.

The confocal microscopy dataset includes 52 in vivo
images (768×576 pixels, Nidek Confoscan 4, Italy) of trans-
planted corneal endothelium (DSAEK), imaged one year after
surgery. Images were cropped by the author to remove dark
areas. Each image contains approximately 70 cells [14].

The phase-contrast microscopy dataset includes 30 ex vivo
images (768×576 pixels, Olympus CK 40, USA) of porcine
corneal endothelium. These images were also cropped by the
author. Each image contains approximately 350 cells [15].
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Fig. 6. Estimates of the clinical parameters in all datasets: Specular microscopy (a)-(c), confocal microscopy (d)-(f), phase-contrast microscopy (g)-(i),
and fluorescence confocal microscopy (j)-(k). The x-axis indicates the value for the gold standard, and the y-axis indicates the error computed either
as the difference between the estimates and the gold standard estimates (a)-(i), or the percentage of such error (j)-(k). Each point corresponds to
one image in the dataset (proposed results in red, third-party results in blue). The mean value of the error for each set is drawn with a discontinuous
line.

The fluorescence confocal microscopy dataset includes
23 images (1024×1024 pixels, Nikon Eclipse C1, Japan) of
central RPE from 17 mice, with approximately 1000 cells per
image [23].

The parameters to be estimated were endothelial cell den-
sity (ECD), polymegethism (CV), and pleomorphism (HEX)
for the endothelium datasets, and the number of cells and
the average cell size for the RPE images (as it was done in
the original papers). The gold standard and the segmentation
images produced by the original authors were publicly avail-
able or provided at our request, which allowed us to apply the
same algorithm for parameter estimation in all cases. For all
images in all datasets, only the cells covered by the area of
the gold standard were included for the parameter estimation.
The only exception was Topcon’s segmentation (specular
microscopy dataset), since the microscope’s software did not
provide any cell segmentation in areas where cells were not

correctly detected by the software. In that dataset, the gold
standard covered a surface 35% larger. The estimation error
was defined as the difference between the estimated value
and the gold standard value for the CE datasets (Fig. 6a-i),
and as the percentage of that difference for the RPE dataset
(Fig. 6j-k). Note that, for polymegethism (Fig. 6b, 6e, 6h)
and pleomorphism (Fig. 6c, 6f, 6i), the parameter values are
provided as a percentage, where the error is the difference of
the percentages. The mean value and SD of those estimation
errors are indicated in Table I.

The RPE images and their gold standard were originally pre-
sented by Ding et al. [26], but Chiu et al. [23] discovered (but
did not correct) in the gold standard a few unsegmented
cells due to their small size; here those cells were corrected
(on average, three cells per image were added). We also
noticed that cell edges along the perimeter of the gold standard
area were not annotated, and they were corrected. For the
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TABLE I
MEAN AND STANDARD DEVIATION OF THE ESTIMATION ERROR

OF THE CLINICAL PARAMETERS FOR ALL DATASETS

phase-contrast microscopy dataset, the cell edges in the gold
standard had a thickness of 2-3 pixels, so skeletonization was
applied to reduce it to 1 pixel thickness.

A statistical analysis based on linear mixed-effects
models [27] was performed to determine, for each parameter,
whether there was a statistically significant difference in
precision (smaller variance) and in accuracy (smaller absolute
mean) between the two estimation errors. To determine
whether the variances were different, we used a likelihood
test to compare a model that assumes equal variances between
both estimation errors with a model that assumes different
variances. From the fixed effects test of the models we
evaluated whether the mean values in both estimations were
different. No correction for multiple testing was applied, and
a p-value of < 0.05 was considered statistically significant.

2) Specular Microscopy Dataset: The statistical analysis
indicated a significantly better precision in all parameters for
the proposed method ( p < 0.001, p = 0.020, and p <
0.001, for ECD, CV, and HEX respectively). The analysis also
indicated a significantly better accuracy for CV ( p < 0.001),
but comparable accuracy for ECD and HEX ( p = 0.57, both)
(Table I).

3) Confocal Microscopy Dataset: This dataset was character-
ized for having significantly smaller images with a rather low
cell density (Fig. 6d). The larger cell sizes (Fig. 7a-d) resulted
in an initial oversegmentation in approximately 45% of the
cells. In the output, there were on average only one over- and
one undersegmented cell per image, the majority of them in the
border region of the image. This provided a TPR of 97.5% and
0.016 FPs/cell. The statistical analysis indicated that, for ECD
and CV, there was a significantly better precision (p < 0.001)
and better accuracy (p = 0.028, p = 0.002, respectively) for
the proposed method, but comparable precision and accuracy
for HEX ( p = 0.074, p = 0.088, respectively) (Table I).
The small image sizes and large cells made the parameter
estimation more sensitive to merging errors and small variation

in edge location. Overall, the method could successfully
cope with images exhibiting large differences in cell
density (Fig. 6d).

4) Phase-Contrast Microscopy Dataset: This dataset showed
a high cell density and a low degree of polymegeth-
ism (Fig. 6g-h), and the image quality was significantly
better (Fig. 7e-h) compared to the other datasets. Therefore,
only 7.5% of the cells were initially oversegmented. After
applying our method, 20 of the images had a perfect merging,
and the remaining 10 images showed on average one over-
and one undersegmented cell. In total, the method provided a
TPR of 98.70% and 0.0009 FPs/cell. The statistical analysis
indicated a significantly better precision in all parameters for
the proposed method ( p < 0.001), a significantly better accu-
racy for ECD and CV (p = 0.008, p < 0.001, respectively),
and similar accuracy for HEX (p = 0.214) (Table I). Overall,
the high cell density and good quality image made that our
method provided highly satisfactory estimates.

5) Fluorescence Confocal Microscopy Dataset: The last
dataset was characterized by a large variation in cell
size (Fig. 7i-l). Approximately 50% of the cells in each
image were oversegmented, and around 5% of the cells
were comprised of more than three fragments. In the out-
put, there were on average three over- and three underseg-
mented cells (from the approx. 1000 cells per image). This
provided a TPR of 99.37% and 0.0036 FPs/cell. However,
the oversegmented cells were mainly large cells divided
in 5-10 fragments (Fig. 7k-l), which affected the parame-
ter estimation considerably. The statistical analysis indicated
a significantly better accuracy in both parameters for our
method (p < 0.001), but comparable precision (p = 0.428
and p = 0.201, for number of cells and mean cell area,
respectively) (Table I). Due to the high intensity contrast
between edges and cells, another SVM model with smaller
cost (FP:FN of 1:25) could be added to the cascade, which
barely introduced any FP but solved the majority of those
oversegmented cells (figure not provided; values in Table I).
Consequently, this also provided a statistically significant
better precision in both parameters ( p = 0.024 and p = 0.007,
for number of cells and mean cell area, respectively).

C. Computational Cost & Execution Time

Besides the details explained in Section II-A, several con-
siderations were taken into account in order to reduce the
computational cost. On average, each superpixel had 7 neigh-
bors in the oversegmented image. Hence, the features of the
superpixels were computed only once, stored in memory, and
retrieved when building the feature vector of a candidate
merger. When the features of a superpixel changed due to
neighboring mergers, the features were recomputed and over-
written. Initially, the oversegmented image was translated into
a structure where each superpixel, edge, vertex, and pixel was
labeled, and where the connection between these elements
were listed. This simplified the iterative merging process,
as we could directly access to the elements that needed to
be updated.
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Fig. 7. Two representative images and their respective visual outcome of the merging for the confocal microscopy dataset of CE (a)-(d), phase-
contrast microscopy dataset of CE (e)-(h), and fluorescence confocal microscopy dataset of RPE (i)-(l). Black lines indicate the segmentation
outcome, and magenta lines indicate edges being removed in the merging process. All fragments involved in mergers are colored: green denotes
complete cells after merging, red denotes undersegmented cells (FP), dark blue denotes oversegmented cell (FN), and light blue denotes results of
mergers outside the gold standard area.

The computational cost of the 2-fragment classifier was
linear with respect to the number (N) of initial superpixels,
O(N). For the 3-fragment classifier, the relation was quadratic,
O(N2). For the main dataset, the entire segmentation process
for a single pair of classifiers took on average 2.5 minutes (four
times more if we used the cascade of four classifiers). The
majority of time was used in evaluating all combinations of
3-fragments. Restricting the segmentation to mergers of
two fragments reduced the computation time to less than
30 seconds, but as a consequence not all cells divided
in 3 fragments were correctly segmented. We believe that
these computation times can be decreased substantially if
this method were implemented in a low-level programming
language.

IV. DISCUSSION

We presented a new method to segment corneal endothe-
lium images that requires no user intervention. The method
provided very good results in endothelium images obtained
from different devices and with large differences in cell density
and variation in cell size. Furthermore, our method can be

applied to other images of similar closely-packed cells with
little extracellular matrix, such as RPE images. To the best of
our knowledge, no other technique with such versatility has
been reported up to now.

The qualitative results shown in Figs. 5 and 7 indicate
accurate cell segmentation despite the presence of image
artifacts and blurriness, and the variability in cell size was not
a performance-limiting factor. The quantitative results indicate
an average error of less than 2.1% (Table I), although this
can be considerably smaller depending on the dataset and
the estimated parameter. The proposed method outperforms
the other automatic techniques from the literature, offering a
significantly better accuracy and/or precision for the majority
of the clinical parameters.

While we have used only classifiers dealing with cells
divided in two and three fragments, it is straightforward to
extend our method to cells composed of more fragments.
Endothelial cells rarely show such a large difference in cell
size that inclusion of explicit classifiers for cells divided in
more than three fragments is required. Indeed, those cases
only represent 0.35% of the cells in the specular microscopy
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Fig. 8. Several examples of undersegmented cells (k)-(m), and over-
segmented cells (m)-(o) in the segmentation result of the specular
microscopy dataset, where black lines indicate the final segmentation
and magenta lines indicate edges being removed in the merging process.
All fragments involved in mergers are colored: green denotes complete
cells after merging, red denotes undersegmented cells (FP), and dark
blue denotes oversegmented cell (FN). Intensity image (a)-(e), gold
standard in red (f)-(j).

dataset and 2.5% of the cells in the confocal microscopy
dataset. In practice, the proposed method achieves the correct
segmentation for the majority of those cells as the intensity-
related features help to identify the false edges. This was illus-
trated convincingly in the fluorescence confocal microscopy
dataset (RPE), where cells divided in up to 15 fragments were
correctly segmented (Fig. 7i-l).

Among the datasets presented here, the specular microscopy
images generate the highest number of errors due to their
lower signal-to-noise ratio and lower image quality in terms
of contrast and blurriness. Indeed, lack of contrast between
edges and cells produces a rather inaccurate delineation of the
edges in the initial oversegmentation, which is the major factor
for errors in the merging process (Fig. 8a, 8c-e). Even in the
absence of cell fragmentation, the inaccurate edge delineation
significantly affects the estimation of CV and, especially,
HEX. Other factors, such as oddly shaped cells (Fig. 8b,
8d) or cells touching in the image borders, may produce wrong
mergers. We expect that the latter could be avoided with more
training examples.

Overall, we observe that fragmented cells with correctly
segmented edges are satisfactorily merged. Hence, to further
increase the accuracy of the segmentation, improvements
should be primarily made in the method to generate the
initially oversegmented images.

In general, the method provides clinically usable results,
especially for ECD and CV. As observed in Fig. 6, the error
of those two biomarkers are relatively low, although the error
for HEX is still rather large. Whether this accuracy is clinically
acceptable depends more on the actual application and/or
disease under study. Nonetheless, a manual correction could
be suggested to correct mistakes. This could be done in a
user-friendly manner, permitting the user to remove a false
edge (or to undo an erroneously removed true edge) with a
simple click, without the need of tracing it manually.
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