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Abstract— We present a new image reconstruction
method that replaces the projector in a projected gradient
descent (PGD) with a convolutional neural network (CNN).
Recently, CNNs trained as image-to-image regressors have
been successfully used to solve inverse problems in imag-
ing. However, unlike existing iterative image reconstruc-
tion algorithms, these CNN-based approaches usually lack
a feedback mechanism to enforce that the reconstructed
image is consistent with the measurements. We propose a
relaxed version of PGD wherein gradient descent enforces
measurement consistency,while a CNN recursively projects
the solution closer to the space of desired reconstruc-
tion images. We show that this algorithm is guaranteed
to converge and, under certain conditions, converges to
a local minimum of a non-convex inverse problem. Finally,
we propose a simple scheme to train the CNN to act like
a projector. Our experiments on sparse-view computed-
tomography reconstructionshow an improvement over total
variation-based regularization, dictionary learning, and a
state-of-the-art deep learning-based direct reconstruction
technique.

Index Terms— Deep learning, inverse problems, biomed-
ical image reconstruction, low-dose computed tomography.

I. INTRODUCTION

WHILE medical imaging is a fairly mature area, there is
recent evidence that it may still be possible to reduce

the radiation dose and/or speedup the acquisition process with-
out compromising image quality. This can be accomplished
with the help of sophisticated reconstruction algorithms that
incorporate some prior knowledge (e.g., sparsity) on the class
of underlying images [1]. The reconstruction task is usually
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formulated as an inverse problem where the image-formation
physics are modeled by an operator H : RN → R

M (called the
forward model). The measurement equation is y = Hx + n ∈
R

M , where x∈ R
N is the space-domain image that we are

interested in recovering and n ∈ R
M is the noise intrinsic to

the acquisition process.
In the case of extreme imaging, the number of measurements

is reduced as much as possible to decrease either the radiation
dose in computed tomography (CT) or the scanning time in
MRI. Moreover, the measurements are typically very noisy due
to short integration times, which calls for some form of denois-
ing. Indeed, there may be significantly fewer measurements
than the number of unknowns (M � N). This gives rise to an
ill-posed problem in the sense that there may be an infinity of
consistent images that map to the same measurements y. Thus,
one challenge of the reconstruction algorithm is to select the
best solution among a multitude of potential candidates.

The available reconstruction algorithms can be broadly
arranged in three categories (or generations), which represent
the continued efforts of the research community to address the
aforementioned challenges.

1) Classical Algorithms: Here, the reconstruction is per-
formed directly by applying a suitable linear opera-
tor. In the case where H is unitary (as in a simple
MRI model), the operator is simply the backprojec-
tion (BP) HTy. In general, the reconstruction operator
should approximate a pseudoinverse of H. For example,
the filtered backprojection (FBP) for x-ray CT involves
applying a linear filter to the measurements and back
projecting them, i.e. HTFy where F : R

M → R
M .

Though its expression is usually derived in the con-
tinuous domain [2], the filter F can be viewed as an
approximate version of (HHT)−1. Classical algorithms
are fast and provide excellent results when the number of
measurements is large and the noise is small [3]. How-
ever, they are not suitable for extreme imaging because
they introduce artifacts that are intimately connected to
the inversion step.

2) Iterative Algorithms: These algorithms avoid the short-
comings of the classical ones by solving

x∗ = arg min
x∈RN

(E(Hx, y)+ λR(x)), (1)

where E : R
M × R

M → R
+ is a data-fidelity term

that favors solutions that are consistent with the mea-
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surements, R : R
N → R

+ is a suitable regularizer
that encodes prior knowledge about the image x to be
reconstructed, and λ ∈ R

+ is a tradeoff parameter. For
example, in CT reconstruction, E could be weighted
least-squares and R could be an indicator function that
enforces non-negativity. Under the assumption that the
functionals E and R are convex, the solution of (1) also
satisfies

x∗ = arg min
x∈SR

E(Hx, y) (2)

with SR = {x ∈ R
N : R(x) ≤ τ } for some unique τ that

depends on the regularizaton parameter λ. Therefore, the
solution has the best data fidelity among all images in the
set SR which is implicitly defined by R. This shows that
the quality of the reconstruction depends heavily on the
prior encoder R. Generally, these priors are either hand-
picked (e.g., total variation (TV) or the �1-norm of the
wavelet coefficients of the image [1], [4]–[7]) or learned
through a dictionary [8]–[10]. However, in either case,
they are restricted to well-behaved functionals that can
be minimized via a convex routine [11]–[14]. This limits
the type of prior knowledge that can be injected into the
algorithm.

3) Learning-Based Algorithms: Recently, a surge in
using deep learning to solve inverse problems in
imaging [15]–[19], has established new state-of-the-art
results for tasks such as sparse-view CT reconstruc-
tion [16]. Rather than reconstructing the image from the
measurements y directly, the most successful strategies
have been to train the CNN as a regressor between a
rough initial reconstruction Ay, where A : RM → R

N ,
and the final, desired reconstruction [16], [17]. This
initial reconstruction could be obtained using classical
algorithms (e.g., FBP, BP) or by some other linear oper-
ation. Once the training is complete, the reconstruction
for a new measurement y is given by x∗ = CNN θ∗(Ay),
where CNN θ : RN → R

N denotes the CNN as a func-
tion and θ∗ denotes the internal parameters of the CNN
after training. These schemes exploit the fact that the
structure of images can be learned from representative
examples. CNNs are favored because of the way they
encode the data in their hidden layers. In this sense,
a CNN can be seen as a good prior encoder.

Although the results reported so far are remarkable in
terms of image quality, there is still some concern as to
whether or not they can be trusted, especially in the context of
diagnostic imaging. The main limitation of direct algorithms
such as [16] is that they do not provide any guarantee on the
worst-case performance. Moreover, even in the case of noise-
less (or low-noise) measurements, there is no insurance that
the reconstructed image is consistent with the measurements
because, unlike for the iterative schemes, there is no feedback
mechanism that imposes this consistency.

A. Overview of Proposed Method

In this paper, we present a simple yet effective itera-
tive scheme (see Figure 1), which tries to incorporate the

Fig. 1. (a) Block diagram of projected gradient descent using a CNN as
the projector and E as the data-fidelity term. The gradient step promotes
consistency with the measurements and the projector forces the solution
to belong to the set of desired solutions. If the CNN is only an approximate
projector, the scheme may diverge. (b) Block diagram of the proposed
relaxed projected gradient descent. The αks are updated in such a way
that the algorithm always converges (see Algorithm 1 for more details).

advantages of the existing algorithms and side-steps their
disadvantages. Specifically:

• We first propose to learn a CNN that acts as a projector
onto a set S which can be intuitively thought of as the
manifold of the data (e.g., biomedical images). In this
sense, our CNN encodes the prior knowledge of the data.
Its purpose is to map an input image to an output image
that is more similar to the training data.

• Given a measurement y, we initialize our reconstruction
using a classical algorithm.

• We then iteratively alternate between minimizing the
data-fidelity term and projecting the result onto the set S
by applying a suitable variant of the projected gradient
descent (PGD) which ensures convergence.

Besides the design of the implementation, our contribution
is in the proposal of the relaxed form of PGD that is guaranteed
to converge and under certain conditions can also find a local
minima of a nonconvex inverse problem. Moreover, as we shall
see later, this method outperforms existing algorithms on low-
dose x-ray CT reconstructions.

B. Related and Prior Work

Deep learning has already shown promising results in image
denoising, superresolution, and deconvolution. Recently, it has
also been used to solve inverse problems in imaging using lim-
ited data [16]–[19], and in compressed sensing [20]. However,
as discussed earlier, these regression-based approaches lack a
feedback mechanism that could be beneficial in solving inverse
problems.

Another usage of deep learning is to complement iter-
ative algorithms. This includes learning a CNN as an
unrolled version of the iterative shrinkage-thresholding algo-
rithm (ISTA) [21] or ADMM [22]. In [23], inverse problems
involving non-linear forward models are solved by partially
learning the gradient descent. In [24], the iterative algorithm
is replaced by a recurrent neural network (RNN). Recently,
in [25], a cascade of CNNs is used to reconstruct images.
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Within this cascade the data-fidelity is enforced at multiple
steps. However, in all of these approaches the training is
performed end-to-end, meaning that the network parameters
are dependent on the iterative scheme chosen.

These approaches differ from plug-and-play
ADMM [26]–[28], where an independent off-the-shelf
denoiser or a trained operator is plugged into the iterative
scheme of the alternating-direction method of multipliers
(ADMM) [14]. ADMM is an iterative optimization technique
that alternates between (i) a linear solver that reinforces
consistency with respect to the measurements; and (ii) a
nonlinear operation that re-injects the prior. The idea of
plug-and-play ADMM is to replace (ii), which resembles
denoising, with an off-the-shelf denoiser. Plug-and-play
ADMM is more general than the optimization framework (1)
but still lacks theoretical justifications. In fact, there is little
understanding yet of the connection between the use of a
given denoiser and the regularization it imposes (though this
link has recently been explored in [29]).

In [30], a generative adversarial network (GAN) trained
as a projector onto a set, has been used with the plug-and-
play ADMM. Similarly, in [31], the inverse problem is solved
over a set parameterised by a generative model. However,
it requires a precise initialization of the parameters. In [32],
similarly to us, the projector in PGD is replaced with a neural
network. However, the scheme lacks convergence guarantee
and a rigorous theoretical analysis.

Our scheme is similar in spirit to plug-and-play ADMM, but
is simpler to analyze. Although our methodology is generic
and can be applied in principle to any inverse problem, our
experiments here involve sparse-view x-ray CT reconstruction.
For a recent overview of the field, see [33]. Current approaches
to sparse-view CT reconstruction follow the formulation (1),
e.g., using a penalized weighted least-squares data term and
sparsity-promoting regularizer [34], dictionary learning-based
regularizer [35], or generalized total variation regularizer [36].
There are also prior works on the direct application of CNNs
to CT reconstruction. These methods generally use the CNN
to denoise the sinogram [37] or the reconstruction obtained
from a standard technique [16], [38]–[40]; as such, they do
not perform the reconstruction directly.

C. Roadmap

The paper is organized as follows: In Section II, we discuss
the mathematical framework that motivates our approach and
justify the use of a projector onto a set as an effective
strategy to solve inverse problems. In Section III, we present
our algorithm, which is a relaxed version of PGD. It has
been modified so as to converge in practical cases where
the projection property is only approximate. We discuss in
Section IV a novel technique to train the CNN as a projector
onto a set, especially when the training data is small. This is
followed by experiments (Section V), results and discussions
(Section VI and Section VII), and conclusions (Section VIII).

II. THEORETICAL FRAMEWORK

Our goal is to use a trained CNN iteratively inside PGD
to solve an inverse problem. To understand why this scheme

will be effective, we first analyze how using a projector onto a
set, combined with gradient descent, can be helpful in solving
inverse problems. Properties of PGD using an orthogonal
projector onto a convex set are known [41]. Here, we extend
these results for any projector onto a nonconvex set. This
extension is required because there is no guarantee that the
set of desirable reconstruction images is convex. Proofs of all
the results in this section can be found in the supplementary
material.

A. Notation

We consider the finite-dimensional Hilbert space R
N

equipped with the scalar product �· , ·� that induces the �2
norm 	·	2. The spectral norm of the matrix H, denoted by
	H	2, is equal to its largest singular value. For x ∈ R

N and
ε > 0, we denote by Bε(x) the �2-ball centered at x with
radius ε, i.e.,

Bε(x) =
{

z ∈ R
N : 	z− x	2 ≤ ε

}
.

The operator T : R
N → R

N is Lipschitz-continuous with
constant L if

	T (x)− T (z)	2 ≤ L 	x − z	2 , ∀x, z ∈ R
N .

It is contractive if it is Lipschitz-continuous with constant
L < 1 and non-expansive if L = 1. A fixed point x∗ of T (if
any) satisfies T (x∗) = x∗.

Given the set S ⊂ R
N , the mapping PS : RN → S is called

a projector if it satisfies the idempotent property PS PS = PS .
It is called an orthogonal projector if

PS (x) = inf
z∈S
	x − z	2 , ∀x ∈ R

N .

B. Constrained Least Squares

Consider the problem of the reconstruction of the image
x ∈ R

N from its noisy measurements y = Hx + n, where
H ∈ R

M×N is the linear forward model and n ∈ R
M is additive

white Gaussian noise. The framework is also applicable to
Poisson noise model-based CT via a suitable transformation,
as shown in Appendix B.

Our reconstruction incorporates a strong form of prior
knowledge about the original image: We assume that x must
lie in a set S ⊂ R

N that contains all objects of interest. The
proposed way to make the reconstruction consistent with the
measurements as well as with the prior knowledge is to solve
the constrained least-squares problem

min
x∈S

1

2
	Hx − y	22 . (3)

The condition x ∈ S in (3) plays the role of a regularizer.
If no two points in S have the same measurements and in
case y is noiseless, then out of all the points in R

N that
are consistent with the measurement y, (3) selects a unique
point x∗ ∈ S. In this way, the ill-posedness of the inverse
problem is bypassed. When the measurements are noisy, (3)
returns a point x∗ ∈ S such that y∗ = Hx∗ is as close as
possible to y. Thus, it also denoises the measurement, where
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the quantity y∗ can be regarded as the denoised version of y.
Note that formulation (3) is similar to (2) for the case when E
is least-squares, with the difference that the search space is the
data manifold S instead of a set defined by the regularizer SR .

The point x∗ ∈ S is called a local minimizer of (3) if

∃ε > 0 : ∥∥Hx∗ − y
∥∥

2 ≤ 	Hx− y	2 , ∀x ∈ S ∩ Bε(x∗).

C. Projected Gradient Descent

When S is a closed convex set, it is well known [41] that
a solution of (3) can be found by PGD

xk+1 = PS (xk − γ HTHxk + γ HTy), (4)

where γ is a step size chosen such that γ < 2/∥∥HTH
∥∥

2. This algorithm combines the orthogonal projec-
tion onto S with the gradient descent with respect to
the quadratic objective function, also called the Landwe-
ber update [42]. PGD [43, Sec. 2.3] is a subclass of the
forward-backward splitting [44], [45], which is known in the
�1-minimization literature as iterative shrinkage/thresholding
algorithms (ISTA) [11], [12], [46].

In our problem, S is presumably non-convex, but we
propose to still use the update (4) with some projector PS that
may not be orthogonal. In the rest of this section, we provide
sufficient conditions on the projector PS (not on S itself) under
which (4) leads to a local minimizer of (3). Similarly to the
convex case, we characterize the local minimizers of (3) by
the fixed points of the combined operator

Gγ (x) = PS (x − γ HTHx + γ HTy) (5)

and then show that some fixed point of that operator must be
reached by the iteration xk+1 = Gγ (xk) as k →∞, regardless
of the initial point x0. We first state a sufficient condition for
each fixed point of Gγ to become a local minimizer of (3).

Proposition 1: Let γ > 0 and PS be such that, for all
x ∈ R

N ,

�z− PSx , x − PSx� ≤ 0, ∀z ∈ S ∩ Bε(PSx), (6)

for some ε > 0. Then, any fixed point of the operator Gγ in (5)
is a local minimizer of (3). Furthermore, if (6) is satisfied
globally, in the sense that

�z− PSx , x − PSx� ≤ 0, ∀x ∈ R
N , z ∈ S, (7)

then any fixed point of Gγ is a solution of (3).
Two remarks are in order. First, (7) is a well-known

property of orthogonal projections onto closed convex sets.
It actually implies the convexity of S (see Proposition 2).
Second, (6) is much more relaxed and easily achievable, for
example, as stated in Proposition 3, by orthogonal projections
onto unions of closed convex sets. (Special cases are unions
of subspaces, which have found some applications in data
modeling and clustering [47]).

Proposition 2: If PS is a projector onto S ⊂ R
N that

satisfies (7), then S must be convex.
Proposition 3: If S is a union of a finite number of closed

convex sets in R
N , then the orthogonal projector PS onto S

satisfies (6).

Propositions 1-3 suggest that, when S is non-convex,
the best we can hope for is to find a local minimizer of (3)
through a fixed point of Gγ . Theorem 1 provides a suffi-
cient condition for PGD to converge to a unique fixed point
of Gγ .

Theorem 1: Let λmax and λmin be the largest and smallest
eigenvalues of HTH, respectively. If PS satisfies (6) and is
Lipschitz-continuous with constant L < (λmax+λmin)/(λmax−
λmin), then, for γ = 2/(λmax + λmin), the sequence {xk}
generated by (4) converges to a local minimizer of (3),
regardless of the initialization x0.

It is important to note that the projector PS can never be
contractive since it preserves the distance between any two
points on S. Therefore, when H has a nontrivial null space,
the condition L < (λmax + λmin)/(λmax − λmin) of Theorem 1
is not feasible. The smallest possible Lipschitz constant of PS
is L = 1, which means that PS is non-expansive. Even with
this condition, it is not guaranteed that the combined operator
Fγ has a fixed point. This limitation can be overcome when
Fγ is assumed to have a nonempty set of fixed points. Indeed,
we state in Theorem 2 that one of them must be reached by
iterating the averaged operator α Id+(1 − α)Gγ , where α ∈
(0, 1) and Id is the identity operator. We call this scheme
averaged PGD (APGD).

Theorem 2: Let λmax be the largest eigenvalue of HTH.
If PS satisfies (6) and is a non-expansive operator such that
Gγ in (5) has a fixed point for some γ < 2/λmax, then the
sequence {xk} generated by APGD, with

xk+1 = (1− α)xk + αGγ (xk) (8)

for any α ∈ (0, 1), converges to a local minimizer of (3),
regardless of the initialization x0.

III. RELAXATION WITH GUARANTEED CONVERGENCE

Despite their elegance, Theorems 1 and 2 are not directly
productive when we construct the projector PS by training
a CNN because it is unclear how to enforce the Lipschitz
continuity of PS on the CNN architecture. Without putting
any constraints on the CNN, however, we can still achieve the
convergence of the reconstruction sequence by modifying PGD
as described in Algorithm 1; we name it relaxed projected
gradient descent (RPGD). In Algorithm 1, the projector PS
is replaced by the general nonlinear operator F . We also
introduce a sequence {ck} that governs the rate of convergence
of the algorithm and a sequence {αk} of relaxation parameters
that evolves with the algorithm. The convergence of RPGD is
guaranteed by Theorem 3. More importantly, if the nonlinear
operator F is actually a projector and the relaxation parameters
do not go all the way to 0, then RPGD converges to a
meaningful point.

Theorem 3: Let the input sequence {ck} of Algorithm 1
be asymptotically upper-bounded by C < 1. Then,
the following statements hold true for the reconstruction
sequence {xk}:

(i) xk → x∗ as k →∞, for all choices of F;
(ii) if F is continuous and the relaxation parameters {αk}

are lower-bounded by ε > 0, then x∗ is a fixed
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Algorithm 1 Relaxed Projected Gradient Descent (RPGD)

Input: H, y, A, nonlinear operator F , step size γ > 0, positive
sequence {cn}n≥1, x0 = Ay ∈ R

N , α0 ∈ (0, 1].
Output: reconstructions {xk}, relaxation parameters {αk}.

k ← 0
while not converged do

zk = F(xk − γ HTHxk + γ HTy)
if k ≥ 1 then

if 	zk − xk	2 > ck 	zk−1 − xk−1	2 then
αk = ck	zk−1 − xk−1	2/	zk − xk	2 αk−1

else
αk = αk−1

end if
end if
xk+1 = (1− αk)xk + αkzk

k ← k + 1
end while

point of

Gγ (x) = F(x − γ HTHx + γ HTy); (9)

(iii) if, in addition to (ii), F is indeed a projector onto S that
satisfies (6), then x∗ is a local minimizer of (3).

We prove Theorem 3 in Appendix A. Note that the weak-
est statement here is (i); it guarantees that RPGD always
converges, albeit not necessarily to a fixed point of Gγ .
Moreover, the assumption about the continuity of F in (ii) is
automatically satisfied when F is a CNN.

In summary, we have described three algorithms: PGD,
APGD, and RPGD. PGD is a standard algorithm which, in the
event of convergence, finds a local minima of (3); however,
it does not always converge. APGD ensures convergence under
the broader set of conditions given in Theorem 2; but, in order
to have these properties, both PGD and APGD necessarily
need a projector. While, we shall train our CNN to act like a
projector, it may not exactly fulfill the required conditions.
This is the motivation for RPGD, which, unlike PGD and
APGD, is guaranteed to converge. It also retains the desirable
properties of PGD and APGD: it finds a local minima of (3),
given that the conditions (ii) and (iii) of Theorem 3 are
satisfied. Note, however, that when the set S is nonconvex,
this local minimum may not be a global minimum. The results
of Section II and III are summarized in Table IV given in the
supplementary material.

IV. TRAINING A CNN AS A PROJECTOR

For any point x ∈ S, a projector onto S should satisfy
PSx = x. Moreover, we want that

x = PS (x̃), (10)

where x̃ is any perturbed version of x. Given the training set,
{x1, . . . , xQ} of Q points drawn from the set S, we generate
the ensemble {{x̃1,1, . . . , x̃Q,1}, . . . , {x̃1,N . . . , x̃Q,N }} of N ×
Q perturbed points and train the CNN by minimizing the loss

function

J (θ) =
N∑

n=1

Q∑
q=1

∥∥xq − CNN θ (x̃q,n)
∥∥2

2

︸ ︷︷ ︸
Jn(θ)

. (11)

The optimization proceeds by stochastic gradient descent for
T epochs, where an epoch is defined as one pass though the
training data.

It remains to select the perturbations that generate the xq,n .
Our goal here is to create a diverse set of perturbations so that
the CNN does not overfit one specific type. In our experiments,
while training for the t th epoch, we chose

x̃q,1 = xq (12)

x̃q,2 = AHxq (13)

x̃q,3 = CNNθ t−1(x̃
q,2), (14)

where A is a classical linear reconstruction algorithm (FBP
in our experiments), and θ t are the CNN parameters after
t epochs. Equations (12), (13), and (14) correspond to no
perturbation, a linear perturbation, and a dynamic nonlinear
perturbation, respectively. We now comment on each pertur-
bation in detail.

Keeping x̃q,1 in the training ensemble will train the CNN
with the defining property of the projector: the projector maps
a point in the set S onto itself. If the CNN were trained only
with (12), it would be an autoencoder [48].

To understand the perturbation x̃q,2 in (13), recall that
AHxq is the classical linear reconstruction of xq from its
measurement y = Hxq . Perturbation (13) is indeed useful
because we initialize RPGD with AHxq . Using only (13) for
training would return the same CNN as in [16].

The perturbation x̃q,3 in (14) is the output of the CNN
whose parameters θ t change with every epoch t; thus, it
is a nonlinear and dynamic (epoch-dependent) perturbation
of xq . The rationale for using (14) is that it greatly increases
the training diversity by allowing the network to see T new
perturbations of each training point, without greatly increasing
the total training size since it only requires Q additional
gradient computations per epoch. Moreover, (14) is in sync
with the iterative scheme of RPGD, where the output of the
CNN is processed with a gradient descent and is again fed
back into itself.

A. Architecture

Our CNN architecture is the same as in [16], which is a
U-net [49] with intrinsic skip connections among its layers and
an extrinsic skip connection between the input and the output.
The intrinsic skip connections help to eliminate singularities
during the training [50]. The extrinsic skip connections make
this network a residual net; i.e., CNN = Id+Unet, where Id
denotes the identity operator and Unet : RN → R

N denotes
U-net as a function. Therefore, U-net actually provides the
projection error (negative perturbation) that should be added
to the input to get the projection.

Residual nets have been shown to be effective for image
recognition [51] and for solving inverse problems [16]. While
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the residual-net architecture does not increase the capac-
ity or the approximation power of the CNN, it does help in
learning functions that are close to an identity operator, as is
the case in our setting.

B. Sequential Training Strategy

We train the CNN in three stages. In Stage 1, we train it
for T1 epochs with respect to the partial-loss function J2 in
(11) which only uses the ensemble {x̃q,2} generated by (13).
In Stage 2, we add the ensemble {x̃q,3} according to (14)
at every epoch and then train the CNN with respect to the
loss function J2+ J3; we repeat this procedure for T2 epochs.
Finally, in Stage 3, we train the CNN for T3 epochs with all
three ensembles {x̃q,1, x̃q,2, x̃q,3} to minimize the original loss
function J = J1 + J2 + J3 from (11).

We shall see in Section VII-B that this sequential procedure
speeds up the training without compromising the performance.
The parameters of Unet are initialized by a normal distribution
with a very low variance. Since CNN = Id+Unet, this
function acts close to an identity operator in the initial epochs
and makes it redundant to use {x̃q,1} for the initial training
stages. Therefore, {x̃q,1} is only added at the last stage when
the CNN is no longer close to an identity operator. After
training with only {x̃q,2} in Stage 1, x̃q,3 will be close to
xq since it is the output of the CNN for the input x̃q,2. This
eases the training for {x̃q,3} in the second and third stage.

V. EXPERIMENTS

We validate the proposed method on the challenging case
of sparse-view CT reconstruction. Conventionally, CT imaging
requires many views to obtain good quality reconstruction.
We call this scenario full-dose reconstruction. Our main aim
in these experiments is to reduce the number of views (or dose)
for CT imaging while retaining the quality of full-dose recon-
structions. We denote a k-times reduction in views by ×k.

The measurement operator H for our experiments is the
Radon transform. It maps an image to the values of its
integrals along a known set of lines [2]. In 2D, the mea-
surements are indexed by the angle and offset of each lines
and arranged in a 2D sinogram. We implemented H and HT

with Matlab’s radon and iradon (normalized to satisfy the
adjoint property), respectively. The Matlab code for the RPGD
and the sequential-strategy-based training are made publically
available1.

A. Datasets

We use two datasets for our experiments.
1) Mayo Clinic Dataset. It consists of 500 clinically realis-

tic, (512× 512) CT images from the lower lungs to the lower
abdomen of 10 patients. Those were obtained from the Mayo
clinic AAPM Low Dose CT Grand Challenge [52].

2) Rat Brain Dataset. We use a real (1493 px × 720 view ×
377 slice) sinogram from a CT scan of a single rat brain. The
data acquisition was performed at the Paul Scherrer Institute in
Villigen, Switzerland at the TOMCAT beam line of the Swiss

1https://github.com/harshit-gupta-epfl/CNN-RPGD

Light Source. During pre-processing, we split this sinogram
slice-by-slice and downsampled it to create a dataset of 377
(729 px × 720 view) sinograms. CT images of size (512×512)
were then generated from these full-dose sinograms (using
the FBP, see Section V-C). For the qth z-slice, we denote
the corresponding image xq

FD. For experiments based on this
dataset, the first 327 and the last 25 slices are used for training
and testing, respectively. This left a gap of 25 slices in between
the training and testing data.

B. Experimental Setups

We now describe three experimental setups. We use the first
dataset for the first experiment and the second for the last two.

1) Experiment 1: We split the Mayo dataset into 475 images
from 9 patients for training and 25 images from the remaining
patient for testing. We assume these images to be the ground
truth. From the qth image xq , we generated the sparse-view
sinogram yq = Hxq using several different experimental
conditions. Our task is to reconstruct the image from the
sinogram.

The sinograms always have 729 offsets per view, but we
varied the number of views and the level of measurement noise
for different cases. We took 144 views and 45 views, which
corresponds to ×5 and ×16 dosage reductions (assuming a
full-view sinogram has 720 views). We added Gaussian noise
to the sinograms to make the SNR equal to 35, 40, 45, 70,
and infinity dB, where we refer to the first three as high
measurement noise and the last two as low measurement noise.
The SNR of the sinogram y + n is defined as

SNR(y + n, y) = 20 log10
(	y	2/	n	2

)
. (15)

For testing with the low and high measurement noise,
we trained the CNNs without noise and at the 40-dB level
of noise, respectively (see Section V-D for details).

To make the experiments more realistic and to reduce
the inverse crime, the sinograms were generated by slightly
perturbing the angles of the views by a zero-mean addi-
tive white Gaussian noise (AWGN) with standard deviation
of 0.05 degrees. This creates a deliberate mismatch between
the actual measurement process and the forward model.

2) Experiment 2: We used images xq
FD from the rat-brain

dataset to generate Poisson-noise-corrupted sinograms yq with
144 views. Just as in Experiment 1, the task is to reconstruct
xq

FD back from yq . Sinograms were generated with 25, 30,
and 35 dB SNR with respect to Hxq

FD. To achieve this,
in (26) and (27), we assume the readout noise to be zero
and {b1, . . . , bm} = b0 = 1.66 × 105, 5.24 × 105, and
1.66 × 106, respectively. More details about this process is
given in Appendix B. The CNNs were trained at only the 30-
dB level of noise. Again, our task is to reconstruct the images
from the sinograms.

3) Experiment 3. We downsampled the views of the original,
(729 × 720) rat-brain sinograms by 5 to obtain sparse-view
sinograms of size (729× 144). For the qth z-slice, we denote
the corresponding sparse-view sinograms yq

Real. Note that,
unlike in Experiments 1 and 2, the sinogram was not generated
from an image but was obtained experimentally.
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C. Comparison Methods

Given the ground truth x, our figure of merit for the
reconstructed x∗ is the regressed SNR given by

SNR(x∗, x) = arg max
a,b

SNR(ax∗ + b, x), (16)

where the purpose of a and b is to adjust for contrast and
offset. We also evaluate the performance using the structural
similarity index (SSIM) [53]. We compare five reconstruction
methods.

1) FBP. FBP is the classical direct inversion of the Radon
transform H, here implemented in Matlab by the iradon
command with the ram-lak filter and linear interpolation
as options.

2) Total-Variation Reconstruction. TV solves

xTV = min
x

(
1

2
	Hx − y	22 + λ	x	TV

)
s.t. x ≥ 0, (17)

where

	x	TV =
N−1∑
i=1

N−1∑
j=1

√
(Dh;i, j (x))2 + (Dv;i, j (x))2,

Dh;i, j (x) = [x]i, j+1 − [x]i, j , and Dv;i, j (x) = [x]i, j+1 − [x]i, j .
The optimization is carried out via ADMM [14].

3) Dictionary Learning (DL). DL [35] solves

xDL

= arg min
x,α

(
	Hx − y	2 + λ

J∑
j=1

	E j x − Dα j	2 + λν j	α j	0
)

,

(18)

where E j : R
N×N → R

L2
extracts and vectorizes the j th

patch of size (L × L) from the image x, D ∈ R
L2×256 is

the dictionary, α j is the j th column of α ∈ R
256×R , and R =

(N−L+1)2. Note that the patches are extracted with a sliding
distance of one pixel.

For a given y, the dictionary D is learned from the corre-
sponding ground truth using the procedure described in [54].
The objective (18) is then solved iteratively by first minimizing
it with respect to x using gradient descent as described in [35]
and then with respect to α using orthogonal matching pursuit
(OMP) [55]. Since D is learned from the testing ground truth
itself, the performance that we report here is an upper bound
to the one that would be achieved by learning it using the
training images.

4) FBPconv. FBPconv [16] is a state-of-the-art deep-
learning technique, in which a residual CNN with U-net
architecture is trained to directly denoise the FBP . It has
been shown to outperform other deep-learning-based direct
reconstruction methods for sparse-view CT. In our proposed
method, we use a CNN with the same architecture as in
FBPconv. As a result, in our framework, FBPconv corresponds
to training with only the ensemble in (13). In the testing phase,
the FBP of the measurements is fed into the trained CNN to
output the reconstruction image.

5) RPGD. RPGD is our proposed method. It is described
in Algorithm 1. There the nonlinear operator F is the CNN
trained as a projector (as discussed in Section IV). For

experiments with Poisson noise, we use the slightly modified
RPGD described in Appendix B. For all the experiments, FBP
is used for the operator A.

D. Training and Selection of Parameters

1) Experiment 1: For TV, the regularization parameter λ is
selected via a golden-section search over 20 values so as to
maximize the SNR of xTV with respect to the ground truth.
We set the additional penalty parameter inside ADMM (see
[14, eq. (2.6)]) equal to λ. The rationale for this heuristic
is that it puts the soft-threshold parameter in the same order
of magnitude as the image gradients. We set the number of
iterations to 100, which was enough to show good empirical
convergence.

For DL, the parameters are selected via a parameter sweep,
roughly following the approach described in [35, Table 1].
Specifically: The patch size is L = 8.

During dictionary learning, the sparsity level is set to
5 and 10. During reconstruction, the sparsity level for OMP
is set to 5, 8, 10, 12, 20, and 25, while the tolerance level is
taken to be 10, 100, and 1000. This, in effect, is the same as
sweeping over ν j in (18). For each of these 2 × 6 × 3 = 36
parameter settings, λ in (18) is chosen by a golden-section
search over 7 values.

As discussed earlier, the CNNs for both the ×5
and ×16 cases are trained separately for high and low mea-
surement noise.

a) Training with noiseless measurements: The training of the
projector for RPGD follows the sequential procedure described
in Section IV, with the configurations
• ×5, no noise: T1 = 80, T2 = 49, T3 = 5;
• ×16, no noise: T1 = 71, T2 = 41, T3 = 11.

We use the CNN obtained right after the first stage for
FBPconv, since during this stage, only the training ensemble
in (13) is taken into account. We empirically found that the
training error J2 converged in T1 epochs of Stage 1, yielding
an optimal performance for FBPconv.

b) Training with 40-dB measurement noise: This includes
replacing the ensemble in (13) with {Ayq} where yq =
Hxq + n, has a 40-dB SNR with respect to Hxq . With 20%
probability, we also perturb the views of the measurements
with an AWGN of 0.05 standard deviation so as to enforce
robustness to model mismatch. These CNNs are initialized
with the ones obtained after the first stage of the noiseless
training and are then trained with the configurations
• ×5, 40-dB noise: T1 = 35, T2 = 49, T3 = 5;
• ×16, 40-dB noise: T1 = 32, T2 = 41, T3 = 11.

Similarly to the previous case, the CNNs obtained after the
first and the third training stage are used in FBPconv and
RPGD, respectively. For clarity, these variants will be referred
to as FBPconv40 and RPGD40.

The learning rate is decreased in a geometric progression
from 10−2 to 10−3 in Stage 1 and kept at 10−3 for Stages 2
and 3. Recall that the last two stages contain the ensemble with
dynamic perturbation (14) which changes in every epoch. The
lower learning rate, therefore, avoids drastic changes in para-
meters between the epochs. The batch size is fixed to 2. The



GUPTA et al.: CNN-BASED PGD FOR CONSISTENT CT IMAGE RECONSTRUCTION 1447

Fig. 2. Comparison of reconstructions using different methods for the ×16 case in Experiment 1. First column: reconstruction from noiseless
measurements of a lung image. Second column: zoomed version of the area marked by the box in the original in the first column. Third and
fourth columns: zoomed version for the case of 45 and 35 dB, respectively. Fifth to eighth columns: corresponding results for an abdomen image.
Seventh and eighth column correspond to 45 and 40 dB, respectively. (a) Results(∞-dB). (b) zoom(∞-dB). (c) zoom(45-dB). (d) zoom(35-dB).
(e) Results(∞-dB). (f) zoom(∞-dB). (g) zoom(45-dB). (h) zoom(40-dB).

TABLE I
RECONSTRUCTION RESULTS FOR EXPERIMENT 1 WITH LOW MEASUREMENT NOISE (GAUSSIAN). GRAY CELLS INDICATE THAT

THE METHOD WAS TUNED/TRAINED FOR THE CORRESPONDING NOISE LEVEL

other hyper-parameters follow [16]. For stability, gradients
above 10−2 are clipped and the momentum is set to 0.99. The
total training time for the noiseless case is around 21.5 hours
on a Titan X GPU (Pascal architecture).

The hyper-parameters for RPGD are chosen as follows: The
relaxation parameter α0 is initialized with 1, the sequence {ck}

is set to the constant C = 0.99 for RPGD and C = 0.8 for
RPGD40. For each noise level and views number, the only
free parameter γ is swept over 20 values geometrically spaced
between 10−2 and 10−5. We pick the γ which gives the
best average SNR over the 25 test images. Note that, for TV
and DL, the value of the optimum λ generally increases as
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TABLE II
RECONSTRUCTION RESULTS FOR EXPERIMENT 1 WITH HIGH MEASUREMENT NOISE (GAUSSIAN). GRAY CELLS INDICATE THAT

THE METHOD WAS TUNED/TRAINED FOR THE CORRESPONDING NOISE LEVEL

Fig. 3. Profile of the high- and low-contrast regions marked in the first and fifth columns of Figure 2 by solid and dashed line segments, respectively.
First and second columns: ×16, 45-dB noise case for the lung image. Third and fourth columns: ×16, 40-dB noise case for the abdomen image.
(a) High-contrast profile. (b) Low-contrast profile. (c) High-contrast profile. (d) Low-contrast profile.

the measurement noise increases; however, no such obvious
relation exists for γ . This is mainly because it is the step
size of the gradient descent in RPGD and not a regularization
parameter. In all experiments, the gradient step is skipped
during the first iteration.

On the GPU, one iteration of RPGD takes less than 1 sec-
ond. The algorithm is stopped when the residual 	xk+1 −
xk	2 reaches a value less than 1, which is sufficiently small
compared to the dynamic range [0,350] of the image. It takes
around 1-2 minutes to reconstruct an image with RPGD.

2) Experiment 2: For this case the CNNs are trained simi-
larly to the CNN for RPGD40 in Experiment 1. Perturbations
(12)-(14) are used with the replacement of AHxq

FD in (13) by
Ayq , where yq had 30 dB Poisson noise. The xq

FD and Ayq
Real

are multiplied with a constant so that their maximum pixel
value is 480.

The CNN obtained after the first stage is used as FBPconv.
While testing, we keep C = 0.4. Other training hyper-

parameters and testing parameters of the RPGD are kept the
same as the RPGD40 for ×5 case in Experiment 1.
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3) Experiment 3: The CNNs are trained using the pertur-
bations (12)-(14) with two modifications: (i) xq is replaced
with xq

FD because the actual ground truth was unavailable; and
(ii) AHxq in (13) is replaced with Ayq

Real because we have now
access to the actual sinogram.

All other training hyper-parameters and testing parameters
are kept the same as RPGD for the ×5 case in Experiment 1.
Similar to Experiment 1, the CNN obtained after the first stage
of the sequential training is used as the FBPconv.

VI. RESULTS AND DISCUSSIONS

A. Experiment 1

We report in Tables I and II the results for low and high
measurement noise, respectively. FBPconv and RPGD are used
for low noise, while FBPconv40 and RPGD40 are used for
high noise. The reconstruction SNRs and SSIMs are averaged
over the 25 test images. The gray cells indicate that the method
was optimized for that level of noise. As discussed earlier,
adjusting λ for TV and DL indirectly implies tuning for the
measurement noise; therefore, all of the cells in these columns
are gray. This is different for the learning methods, where
tuning for the measurement noise requires retraining.

1) Low Measurement Noise: In the low-noise cases (Table I),
the proposed RPGD method outperforms all the others for
both ×5 and ×16 reductions in terms of SNR and SSIM
indices. FBP performs the worst but is able to retain enough
information to be utilized by FBPConv and RPGD. Due to the
convexity of the iterative scheme, TV is able to perform well
but tends to smooth textures and edges. DL performs worse
than TV for ×16 case but is equivalent to it for ×5 case.
On one hand, FBPConv outperforms both TV and DL. but
it is surpassed by RPGD. This is mainly due to the feedback
mechanism in RPGD which lets RPGD use the information
in the given measurements to increase the quality of the
reconstruction. In fact, for the ×16, no noise, case, the SNRs
of the sinogram of the reconstructed images for TV, FBPconv,
and RPGD are around 47 dB, 57 dB, and 62 dB, respectively.
This means that reconstruction using RPGD has both better
image quality and more reliability since it is consistent with
the given noiseless measurement.

2) High Measurement Noise: In the noisier cases (Table II),
RPGD40 yields a better SNR than other methods in the low-
view cases (×16) and is more consistent in performance than
the others in the high-view (×5) cases. In terms of the SSIM
index, it outperforms all of them. The performance of DL
and TV are robust to the noise level with DL performing
better than others in terms of SNR for the 45-dB, ×5,
case. FBPconv40 substantially outperforms DL and TV in
the two scenarios with 40-dB noise measurement, over which
it was actually trained. For this noise level and ×5 case,
it even performs slightly better than RPGD40 but only in
terms of SNR. However, as the level of noise deviates from
40 dB, the performance of FBPconv40 degrades significantly.
Surprisingly, its performances in the 45-dB cases are much
worse than those in the corresponding 40-dB cases. In fact,
its SSIM index for the 45-dB, ×5, case is even worse than
FBP. This implies that FBPConv40 is highly sensitive to

Fig. 4. Reconstruction results for a test slice in Experiment 3. Full-
dose image is obtained by taking FBP of the full-view sinogram. The
rest of the reconstructions are obtained from the sparse-view (×5)
sinogram. The last column shows the difference between the recon-
struction and the full-dose image. (a) Results (∞-dB). (b) zoom (∞-dB).
(c) diff (∞-dB).

the difference between the training and testing conditions.
By contrast, RPGD40 is more robust to this difference due to
its iterative correction. In the ×16 case with 45-dB and 35-dB
noise level, it outperforms FBPconv40 by around 3.5 dB and
6 dB, respectively.

3) Case Study: The reconstructions of lung and abdomen
images for the case of ×16 downsampling and noiseless
measurements are illustrated in Figure 2 (first and fifth
columns). FBP is dominated by line artifacts, while TV and
DL satisfactorily removes those but blurs the fine structures.
FBPConv and RPGD are able to reconstruct these details.
The zoomed version (second and sixth columns) suggests
that RPGD is able to reconstruct the fine details better than
the other methods. This observation remains the same when
the measurement quality degrades. The remaining columns,
contain the reconstructions for different noise levels. For the
abdomen image it is noticeable that only TV is able to retain
the small bone structure marked by an arrow in the zoomed
version of the lung image (seventh column). Possible reason
for this could be that the structure similar to this were rare in
the training set. Increasing the training data size with suitable
images could be a solution.

Figure 3 contains the profiles of high- and low-contrast
regions of the reconstructions for the two images. These
regions are marked by line segments inside the original image
in the first column of Figure 2. The FBP profile is highly
noisy and the TV and DL profiles overly smooth the details.
FBPconv40 is able to accommodate the sudden transitions
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Fig. 5. Convergence with iteration k of RPGD for the Experiment 1, ×16, no-noise case when C = 0.99. Results are averaged over 25 test images.
(a) SNRs of �k with respect to the ground-truth image. (b) SNRs of ��k with respect to the ground-truth sinogram. (c) Evolution of the relaxation
parameters αk. In (a) and (b), the FBP, FBPconv, and TV results are independent of the RPGD iteration k but have been shown for the sake of
comparison.

TABLE III
RECONSTRUCTION RESULTS FOR EXPERIMENT 2 WITH POISSON

NOISE AND ×5 VIEWS REDUCTION. GREY CELL INDICATE THAT THE

METHOD WAS TRAINED FOR THE CORRESPONDING NOISE LEVEL

in the high-contrast case. RPGD40 is slightly better in this
regard. For the low-contrast case, RPGD40 is able to follow
the structures of the original (GT) profile better than the
others. A similar analysis holds for the ×5 case (Figure 7,
supplementary material).

B. Experiment 2

We show in Table III the regressed SNR and SSIM indices
averaged over the 25 reconstructed slices. RPGD outperforms
both FBP and FBPconv in terms of SNR and SSIM. Similar
to the Experiment 1, its performance is also more robust with
respect to noise mismatch. Fig. 9 in the supplementary material
compares the reconstructions for a given test slice.

C. Experiment 3

In Figure 4, we show the reconstruction result for one slice
for γ = 10−5. Since the ground truth is unavailable, we show
the reconstructions without a quantitative comparison. It can
be seen that the proposed method is able to reconstruct images
with reasonable perceptual quality.

VII. BEHAVIOR OF ALGORITHMS

We now explore the behavior of the proposed method in
more details, including its empirical convergence and the effect
of sequential training.

A. Convergence of RPGD

In Figure 5, we show the behavior of RPGD with respect
to the iteration number k for Experiment 1. The evolution of
the SNR of images xk and their measurements Hxk computed
with respect to the ground truth image and the ground-truth
measurement are shown in Figures 5 (a) and (b), respectively.
We give αk with respect to the iteration k in Figure 5 (c). The
results are averaged over 25 test images for ×16, no noise,
case and C = 0.99. RPGD outperforms all the other meth-
ods in the context of both image quality and measurement
consistency.

Due to the high value of the step size (γ = 2× 10−3) and
the large difference (Hxk − y), the initial few iterations have
large gradients and result in the instability of the algorithm.
The reason is that the CNN is fed with (xk − γ HT(Hxk −
y)), which is drastically different from the perturbations on
which it was trained. In this situation, αk decreases steeply and
stabilizes the algorithm. At convergence, αk �= 0; therefore,
according to Theorem 3, x100 is the fixed point of (9) where
F = CNN .

B. Advantages of Sequential Training

Here, we experimentally verify the advantages of the
sequential-training strategy discussed in Section V. Using
the setup of Experiment 1, we compare the training time
and performance of the CNNs trained with and without this
strategy for the ×16 downsampling and no noise case. For
the gold standard (systematic training of CNN), we train
a CNN as a projector with the 3 types of perturbation
in every epoch. We use 135 epochs for training which is
roughly equal to {T1 + T2 + T3} used during training for the
corresponding sequential-training-based CNN. This number
was sufficient for the convergence of the training error. The
reconstruction performance of RPGD using this gold standard
CNN is 26.86 dB, compared to 27.02 dB for RPGD using
the sequentially trained CNN. The total training times are
48 and 22 hours, respectively. This demonstrates that the
sequential strategy reduces the training time (in this case more
than 50%), while preserving (or even slightly increasing) the
reconstruction performance.
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VIII. CONCLUSION

We have proposed a simple yet effective iterative scheme
(RPGD) where one step of enforcing measurement consistency
is followed by a CNN that tries to project the solution onto
the set of desired reconstruction images. The whole scheme is
ensured to be convergent. We also introduced a novel method
to train a CNN that acts like a projector using a reasonably
small dataset (475 images). For sparse-view CT reconstruction,
our method outperforms the previous techniques for both
noiseless and noisy measurements.

The proposed framework is generic and can be used to
solve a variety of inverse problems including superresolution,
deconvolution, accelerated MRI, etc. This can bring more
robustness and reliability to the current deep-learning-based
techniques.

APPENDIX

A. Proof of Theorem 3

(i) Set rk = (xk+1 − xk). On one hand, it is clear that

rk = (1− αk)xk + αkzk − xk = αk (zk − xk) . (19)

On the other hand, from the construction of {αk},
αk 	zk − xk	2 ≤ ckαk−1 	zk−1 − xk−1	2
⇔ 	rk	2 ≤ ck 	rk−1	2 . (20)

Iterating (20) gives

	rk	2 ≤ 	r0	2
k∏

i=1

ci , ∀k ≥ 1. (21)

We now show that {xk} is a Cauchy sequence. Since {ck} is
asymptotically upper-bounded by C < 1, there exists K such
that ck ≤ C,∀k > K . Let m, n be two integers such that
m > n > K . By using (21) and the triangle inequality,

	xm − xn	2 ≤
m−1∑
k=n

	rk	2 ≤ 	r0	2
K∏

i=1

ci

m−1−K∑
k=n−K

Ck

≤
(
	r0	2

K∏
i=1

ci

)
Cn−K − Cm−K

1− C
. (22)

The last inequality proves that 	xm − xn	2 → 0 as m →
∞, n → ∞, or {xk} is a Cauchy sequence in the complete
metric space R

N . As a consequence, {xk} must converge to
some point x∗ ∈ R

N .
(ii) Assume from now on that {αk} is lower-bounded by

ε > 0. By definition, {αk} is also non-increasing and, thus,
convergent to α∗ > 0. Next, we rewrite the update of xk in
Algorithm 1 as

xk+1 = (1− αk)xk + αk Gγ (xk), (23)

where Gγ is defined by (9). Taking the limit of both sides
of (23) leads to

x∗ = (1− α∗)x∗ + α∗ limk→∞ Gγ (xk). (24)

Moreover, since the nonlinear operator F is continuous, Gγ

is also continuous. Hence,

lim
k→∞Gγ (xk) = Gγ

(
lim

k→∞ xk

)
= Gγ (x∗). (25)

By plugging (25) into (24), we get that x∗ = Gγ (x∗), which
means that x∗ is a fixed point of the operator Gγ .

(iii) Now that F = PS satisfies (6), we invoke Proposition 1
to infer that x∗ is a local minimizer of (3), thus completing
the proof.

B. RPGD for Poisson Noise in CT

In the case where the CT measurements are corrupted by
Poisson noise, the data-fidelity term in (3) should be replaced
by weighted least squares [35], [56], [57]. For the sake of
completeness, we show a sketch of the derivation. Let x
represent the distribution of linear attenuation coefficient of
an object and [Hx]m represents their line integral. The mth
CT measurement, ym , is a Poisson random variable with
parameters

pm ∼ Poisson
(

bme−[Hx]m + rm

)
(26)

ym = − log

(
pm

bm

)
(27)

where bm is the blank scan factor and rm is the readout noise.
Since logarithm is bijective, the negative log-likelihood of y
given x is equal to the one of p given x. After removing
the constants, we use this negative log-likelihood as the data-
fidelity term

E(Hx, y) =
M∑

m=1

(
p̂m − pm log p̂m

)
, (28)

where p̂m = bme−[Hx]m + rm is the expected value of pm . We
then perform a quadratic approximation of E with respect to
Hx around the point (− ln( p̂m−rm

bm
)) using a Taylor expansion.

After ignoring the higher-order terms, this yields

E(Hx, y) =
M∑

m=1

wm

2

(
Hx − log

(
bm

pm − rm

))2

, (29)

where wm = (pm−rm )2

pm
.

In the case when the readout noise rm is insignificant, (29)
can be written as

E(Hx, y) =
M∑

m=1

wm

2
([Hx]m − ym)2 (30)

= 1

2
	W 1

2 Hx −W
1
2 y	2 (31)

= 1

2
	H�x − y�	2, (32)

where W ∈ R
M×M is a diagonal matrix with [diag(W)]m =

wm = pm , H� =W
1
2 H, and y� =W

1
2 y.

Imposing the data manifold prior, we get the equivalent of
Problem (3) as

min
x∈S

1

2
	H�x − y�	2. (33)
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Note that all the results discussed in Section II and III apply to
Problem (33). As a consequence, we use Algorithm 1 to solve
the problem with the following small change in the gradient
step:

zk = F(xk − γ H�T H�xk + γ H�T y�). (34)
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