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Abstract— Automatic vertebrae identification and local-
ization from arbitrary computed tomography (CT) images is
challenging. Vertebrae usually share similar morphological
appearance. Because of pathology and the arbitrary field-
of-view of CT scans, one can hardly rely on the existence of
some anchor vertebrae or parametric methods to model the
appearance and shape. To solve the problem, we argue that:
1) one should make use of the short-range contextual infor-
mation, such as the presence of some nearby organs (if any),
to roughly estimate the target vertebrae; and 2) due to the
unique anatomic structure of the spine column, vertebrae
have fixed sequential order, which provides the important
long-range contextual information to further calibrate the
results. We propose a robust and efficient vertebrae iden-
tification and localization system that can inherently learn
to incorporate both the short- and long-range contextual
information in a supervised manner. To this end, we develop
a multi-task 3-D fully convolutional neural network to effec-
tively extract the short-range contextual information around
the target vertebrae. For the long-range contextual informa-
tion, we propose a multi-task bidirectional recurrent neural
network to encode the spatial and contextual information
among the vertebrae of the visible spine column. We demon-
strate the effectiveness of the proposed approach on a
challenging data set, and the experimental results show that
our approach outperforms the state-of-the-art methods by a
significant margin.

Index Terms— Automatic vertebrae identification and
localization, CT image, deep learning, convolutional neural
network, recurrent neural network, multi-task learning.

I. INTRODUCTION

MEDICAL imaging techniques have been widely used
in the diagnosis and treatment of spinal disorders.

They provide physicians the essential tools for evaluating
spinal pathologies and facilitate the spinal surgery by enabling
noninvasive visualization for surgical planing and procedure.
When evaluating spinal health, 3D imaging techniques, such
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Fig. 1. The variability of spinal CT scans. Warping is performed for
sagittal and coronal slices. Shown from left to right are the CT scan slices
with surgical implants, blurry vertebrae boundaries, abnormal curvature
and narrow field-of-view.

as magnetic resonance imaging (MRI) and computed tomogra-
phy (CT), are usually the first choices of healthcare providers
as they give better views of the spinal anatomy. However,
identifying individual vertebra from 3D images, which is
usually an initial step of reviewing and analyzing spinal
images, is nontrivial and time-consuming [1].

Computational methods can be used to automate the quan-
titative analysis of spinal images and therefore enhance physi-
cians’ ability to provide spinal healthcare. In this context,
we investigate the automation of localizing and identifying
individual vertebrae from CT scans, which can substantially
benefit the daily work of radiologists and many subsequent
tasks in spinal image analysis. On one hand, the localization
and identification results of individual vertebrae can be lever-
aged by many other computerized spinal analysis tasks, such
as vertebral body/intervertebrae disc segmentation [2], [3], 3D
spine reconstruction [4], [5], spinal image registration [6], [7],
and so on. On the other hand, it may be a crucial component
of many computer-aided diagnosis and intervention systems
for spinal health [8]–[13].

However, designing a computerized vertebrae identification
and localization system is nontrivial. Unlike other classifica-
tion problems where the objects are often visually distinct,
identifying individual vertebrae is challenging (demonstrated
in Figure 1) as neighboring vertebrae usually share similar
morphological appearance. When the quality of the CT scan
is low or only a narrow field-of-view is shown, it is really
challenging to distinguish two neighboring vertebrae due to
the similarity in appearance. Moreover, because of pathologies,
the anatomical structure of a vertebrae column is also not
always regular and predictable and it gets even more compli-
cated if a patient has surgical implants around the vertebrae,
which often reduces the contrast of the vertebrae boundaries.

0278-0062 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7430-2904


LIAO et al.: JOINT VERTEBRAE IDENTIFICATION AND LOCALIZATION IN SPINAL CT IMAGES 1267

Many methods have been proposed to identify and localize
vertebrae automatically. Some early systems [14]–[17] usually
require prior knowledge or have constraints about the content
of the spinal images, making them less robust to more general
cases in spinal imaging. In 2012, Glocker et al. [18] proposed
a more general method that works for arbitrary field-of-view
CT scans. However, their work makes assumptions about the
shape and appearance of vertebrae, which may not be satisfied
on pathological or abnormal spinal images. To address the
limitations, Glocker et al. [19] further proposed a method that
transforms sparse centroid annotations into dense probabilistic
labels so that the modeling of shape and appearance can be
avoided. However, these methods are based on handcrafted
feature extraction methods which cannot encode more general
visual characteristics of spinal images and as a result they fail
to handle more complicated pathological cases when surgical
implants exist. Chen et al. [20] recently proposed to use
convolutional neural networks (CNNs) to extract more robust
features and their work achieved a superior performance on
the same dataset as [18] and [19]. In their work, they use 2D
CNNs to encode the features of 3D CT volumes. Although
it has been shown that for some segmentation tasks, applying
2D CNNs to 3D data can give reasonably well results as the
segmentation itself can sometimes be addressed slice by slice
which favors 2D operations [21], [22]. However, as denoted
in [23] and also demonstrated in this work, 2D CNNs do not
work well in detection problems as they cannot capture the
3D spatial information that is critical to the detection of the
target object. More recently, Yang et al. [24] proposed a 3D
U-Net [25] like architecture to target the vertebrae localization
problem in an image-to-image fashion. However, the proposed
architecture can not fully address the long-term contextual
information in spinal images. To compensate this limitation,
they further introduce a message passing and sparsity regu-
larization algorithm for refinement. Although the state-of-the-
art methods have already achieved acceptable performance on
a challenging 3D spine dataset [18], [19], we argue that to
further improve the vertebrae identification and localization
performance, a computerized system should (1) use a 3D
feature extraction scheme such that it can better leverage the
short-range contextual information e.g., the presence of nearby
organs of the target vertebrae; (2) process the 3D spinal image
in a sequential manner with the ability of encoding the long-
range contextual information e.g., the fixed spatial order of the
vertebrae; (3) learn the vertebrae identification and localization
simultaneously and share the domain information of the two
tasks during the training.

To this end, we propose a novel method which jointly
learns vertebrae identification and localization by combining
3D convolutional and recurrent neural networks. We first
develop a 3D fully convolutional neural network (FCN) to
extract features of CT images in a sliding window fashion.
The proposed 3D FCN employs 3D convolutional layers as
its core components. 3D convolutional layers can encode 3D
contextual information of the receptive field, which gives a
better feature representation of the 3D spinal image than their
2D counterparts. To further improve the feature extraction,
the proposed 3D FCN is trained in a multi-task learning (MTL)

manner [26] that leverages both the vertebrae centroid and
name information simultaneously. The extracted features of
the spinal images, however, only encode the short-range
contextual information of each sampling area. Due to the
special anatomical structure of spine column, vertebrae in
spinal images have a fixed spatial order which provides
important long-range contextual information. To incorporate
this domain-specific information into our model, we further
propose to use a recurrent neural network (RNN) to encode
the long-range contextual information that persists in the spinal
images. Specifically, we develop a bidirectional MTL RNNs to
jointly learn the long-range contextual information from two
directions (from cervical vertebrae to sacral vertebrae and the
other way around) for both the identification and localization
tasks.

Note we are not the first to introduce RNN to solve
medical related problems. RNN-enabled architectures have
been used by existing works for key frame detection from
medical videos [27], [28] or for biomedical image segmenta-
tion [29], [30]. Video-based problems are handled at frame-
level with conventional CNNs and RNNs are used to capture
the temporal relations between frames. Segmentation-based
problems are solved at pixel-level by image-to-image networks
(e.g., U-Net or FCN) and RNNs are used to refine the results.
While, in this context, we focus on regressing the vertebrae
locations as well as predicting their corresponding types.
Neither of the existing RNN-related approaches can directly
address this task. Instead, we argue that for our problem
CT images should be processed at sample-level for location
regression and vertebrae classification. Hence, we propose
a novel framework which first uses a 3D FCN to jointly
scan the CT images for vertebrae locations and types at
sample-level and then uses an RNN to capture the structural
relations between samples. To facilitate the unique sample-
level approach, the FCN is developed through a two-stage
design: in the first stage a 3D CNN is trained using CT image
samples and in the second stage the trained CNN is converted
to FCN for fast sample scanning from CT images. The RNN
accordingly is deployed to adapt the sample feature sequences.
As a result, the formulated approach can incorporate both
the short- and long-range information for better structural
understanding other than learning the spatial-temporal rela-
tions or the pixel-level contextual information.

The contributions of this paper are summarized as follows:
• We propose a novel multi-task 3D CNN for landmark

detection. The proposed architecture encodes better fea-
ture representations by jointly learning classification and
regression with 3D convolutions, which can benefit many
landmark detection problems that use 3D medical images.

• We improve the general 3D FCN framework by intro-
ducing RNNs to incorporate the long-range contextual
information in 3D images. This RNN based approach
can be useful for many other similar problems in 3D
medical image processing where the target objects usually
have similar anatomic structures and thus contextual
information is critical.

• The proposed approach outperforms the state of the art
on a challenging dataset by a significant margin.
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Fig. 2. Overall architecture of the proposed method for vertebrae identification and localization.

Fig. 3. The architecture of the deep multi-task 3D CNN/FCN. Note for CNN the input is a cropped image sample of size 32×112×196 and the last
two layers FC5 and FC6(_1 or _2) are fully connected layers. For FCN the input is a CT image of any size and the last two layers are convolutional
layers.

II. METHODOLOGY

The overall architecture of the proposed method is illus-
trated in Figure 2. We use a three-stage approach to solve the
problem. In the first stage, a deep multi-task 3D CNN is trained
using randomly cropped 3D vertebrae samples. The idea of
using 3D convolutional layers for medical images as well as
cropping 3D samples for training is inspired by Dou et al. [23].
Compared with other deep learning approaches [20], [31]
where only 2D convolutional layers were used, using 3D
CNN retains the 3D spatial information of the input and
encodes better feature representations. To learn a better model,
the identification and localization tasks are trained simulta-
neously through MTL. In the second stage, we transform
the trained multi-task 3D CNN into a multi-task 3D FCN
by converting the fully connected layers to 3D convolutional
layers. 3D FCN can be efficiently applied to 3D images of
any size and produce a prediction map for the effective 3D
samples. This idea is adapted from [32] and [33] and we use it
to extract the features of all the positive samples of the input
3D image. Finally, in the third stage, the extracted sample
features will be ordered and form a set of feature sequences.

Those spatially ordered sample features will be used to train a
bidirectional RNN (Bi-RNN) [34] that predicts the vertebrae
locations and identities in the testing phase. The final results
will then be generated via aggregation.

A. Stage I: Deep Multi-Task 3D CNN

In this stage, we aim to train a network that takes a relatively
small and fixed-size (32 × 112 × 96 in this paper) 3D sample
as the input and predicts the most likely vertebrae type and the
corresponding centroid location. Note a sample may contain
more than one vertebra and the network only predicts the
one that is closest to the sample centre. When applied to a
CT image (see Section II-B), this network can be used to
effectively exploit the short-range contextual information.

As shown in Figure 3, the proposed CNN has four convo-
lutional layers, four pooling layers and three fully-connected
layers. For convolutional layers, we pad the inputs such that
the outputs from the layers have the same size as the inputs.
For pooling layers, no padding is performed as we want
to downsize the inputs for dense feature representation. The
numbers associated with each convolutional layer denote the
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feature size, kernel size and stride size, respectively. The
numbers above each fully-connected layer denote the output
sizes. The feature and kernel sizes are chosen empirically with
reference from [23], [35], and [36]. The “FC5” layer serves
as the feature layer that encodes the final features for each
input image sample. “FC6_1” and “FC6_2” layers serve as the
prediction layer for vertebrae identification and localization,
respectively. The output size of “FC6_1” is 27 as we have 26
different vertebrae types plus the background and the output
size of “FC6_2” is 3 because the location has 3 dimensions.
The input sample size is 32 × 112 × 96. We choose this size
based on several considerations: (1) this size should cover
most of the vertebrae in the training set; (2) each dimension
should be a multiple of 16 such that the feature map sizes are
still integers after 4 pooling layers; (3) the ratio of the three
dimensions should approximate the shape of vertebrae.

The proposed CNN is trained using randomly cropped
vertebrae samples. In particular, we call the samples that
contain at least one vertebrae centroid positive samples and use
the label of the closest vertebrae centroid (to the sample centre)
as the sample label. For those samples that do not contain any
vertebrae centroids, we call them negative samples and assign
the background label to those samples. In total, there are 26
vertebrae types with labels from C1-C7, T1-T12, L1-L5 and
S1-S2. For convenience, we assign each of the label an integer
with C1 = 0, . . . , S1 = 25 and background = 26.

To jointly learn vertebrae identification and localization, two
losses are used for each of the tasks, respectively. The total
loss is given by

L = L id + λL loc (1)

where L id denotes the identification loss, L loc denotes the
localization loss and λ denotes the importance coefficient
that controls the relative learning rate of the two tasks.
We use a cross entropy softmax loss, which is com-
monly used for classification problems, for the identification
task. Let {x0, x1, . . . , xN−1} be a set of N image samples
and {y0, y1, . . . , yN−1} be a set of N ground truth labels
where each label is a one-hot vector denoted as yi =
[yi0, yi1, . . . , yi P−1]T , yi j ∈ {0, 1}, i ∈ {0, 1, . . . , N −1}, j ∈
{0, 1, . . . , P −1}. The identification loss L id can be written as

L id = − 1

N

N−1∑

i=0

P−1∑

j=0

yi j log ( f j
id(xi ; W))

+ (1 − yi j ) log (1 − f j
id(xi ; W)) (2)

where f j
id denotes j -th output of the “FC6_1” layer and

W denotes all the network parameters. For the localization
task, it is a regression problem. Therefore, we use a smooth
L1 loss [26] for this task. Given a set of N ground truth loca-
tions {p0, p1, . . . , pN−1} where pi = [pi0, pi1, . . . , pi D−1]T ,
i ∈ {0, 1, . . . , N − 1}, the localization loss L loc can be
written as

L loc = 1

m

N−1∑

i=0

[yi P−1 = 0]
D−1∑

j=0

smoothL1(pi j − f j
loc(xi; W))

(3)

where m = ∑N−1
i=0 [yi P−1 = 0], f j

loc is the j -th output of the
“FC6_2” layer and smoothL1(x) is the smooth L1 loss that is
given by

smoothL1(x) =
{

0.5x2, if |x | < 1,

|x | − 0.5, otherwise.
(4)

Note that only the locations for positive samples are mean-
ingful. Thus, the localization loss will only be computed for
positive samples and for negative samples the localization loss
is zero. Here, we use the Iverson bracket indicator function
[yi P−1 = 0] to ignore negative samples. P − 1 indicates the
background label and yi P−1 = 0 means that the one-hot vector
corresponds to a non-background label.

B. Stage II: Deep Multi-Task 3D FCN

We use the trained deep multi-task 3D CNN to encode
the short-range contextual information in a CT scan image.
A straightforward approach is scanning the image in a slid-
ing window manner by repeatedly cropping and processing
overlapped image samples. When the input image is large,
this approach can be very expensive and inefficient. As a
solution, we propose to transform the CNN into a FCN. FCNs
only contain convolutional and pooling layers. As pooling and
convolution operation are computed using sliding windows,
FCNs essentially process the input images in a sliding window
manner but through the more efficient pooling and convolution
operation.

When converting a CNN to a FCN, we must make sure
the output of a FCN is identical to the output of a CNN if
the input image size of FCN is the same as the input size
required by CNN. This requires the convolutional layers of
FCN should share the same weights and kernel layout as the
corresponding fully connected layers in CNN. As denoted in
Figure 3, for the “FC5” layer, we convert it to a convolutional
layer with parameters configured as “1024@2 × 7 × 6, 1”.
We use a kernel size of 2 × 7 × 6 because the output feature
map size from “Pool4” is 2 ×7×6 when the input image size
is the same as the sample size, i.e., 32 × 112 × 96. Similarly,
“FC6_1” and “FC6_2” are converted to convolutional layers
with configurations of “27@1×1×1, 1” and “3@1×1×1, 1”,
respectively. After this conversion, the constructed FCN will
have the same number of parameters and kernel layouts as the
trained CNN. Thus, we use the trained parameters from CNN
to initialize the FCN which, as a result, gives the same outputs
as the ones from CNN.

As shown in Figure 4, the FCN outputs two 3D score maps,1

one for identification and the other for localization. Each score
is a vector indicating either the vertebrae label or the vertebrae
location. The scores at the same location of the two maps can
be mapped to the same image sample in the CT image space.
As there are 4 pooling layers in the proposed FCN with each
has a stride of 2, the effective sliding window stride is 24 = 16.
Therefore, for a score at pscore = (x, y, z) of the output 3D
score map, the corresponding image sample location at the
input image is given by psample = (16x, 16y, 16z). The iden-
tification score decides the vertebrae type of the image sample

1Strictly speaking, the maps are 4D as each score itself is a vector.
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Fig. 4. 3D score maps and their mapping to the image space.

Fig. 5. Feature sequence generation using the proposed FCN.

and the localization score gives the vertebrae centroid location
in the sample. Assuming the predicted centroid location is
cscore = (a, b, c), then the corresponding location at the image
space is given by csample(r, s, t) = (16x +a, 16y +b, 16z+c).
For each of the predicted centroid location, we assign it with
the vertebrae label from the corresponding identification score.
The final results are a set of densely predicted centroid points,
as demonstrated in Figure 4, with each color indicating a
different vertebrae type.

The proposed FCN can be used to extract feature sequence
from the CT image, which will be further used to feed the
RNN in the next stage (see Section II-C). Figure 5 illustrates
the process of generating the feature sequence. Given an input
image, the FCN implicitly processes it in a sliding window
fashion. In addition to the 3D score maps, we can also obtain
the feature maps from the intermediate layers and in this
paper we extract the high-level features from the “FC_5”
layer.2 Since for each sample image we can obtain a feature
map, the final output is a sequence of feature maps. Note
we ignore the feature maps of background sample images as
they contain no vertebrae and have little contribution to the
vertebrae identification and localization.

C. Stage III: Multi-Task Bidirectional RNN

FCN can be used directly for vertebrae identification and
localization by aggregating the predication results of all the
positive samples. However, the limitation is that FCN can only

2The feature map from this layer is a vector. We resize it to 2D in Figure 4
for visualization purpose.

encode short-range contextual information inside each sample
image. But for vertebrae identification, long-range contextual
information of neighboring vertebrae is also very helpful. For
example, the algorithm may have difficulty distinguishing a
vertebra between T2 and T3. However, if it knows that the
vertebra above current vertebra is very likely to be T1 then
it would be more confident to classify the current vertebra as
T2 than T3. To this end, we propose to use RNN to encode the
long-range contextual information between vertebrae. The idea
is first converting a CT scan image into a sequence of spatially
ordered vertebrae sample features using FCN and then feeding
the sequence into an RNN that has already learned to encode
the long-range contextual information among samples.

The architecture of the proposed RNN is illustrated in
Figure 6. Here, we use a Bi-RNN structure instead of a con-
ventional one. Such a choice is based on the observation that
the contextual information of current vertebra may come from
two directions: the vertebrae above and below. The RNN cell
used in the network is long-short term memory (LSTM) [37]
cell which can handle long sequences. Each LSTM cell has
256 hidden states. As denoted in Figure 6, a bidirectional
LSTM layer consists of two LSTM cells of opposite directions.
The outputs of the two LSTM cells are concatenated together
to form the final output of the bidirectional LSTM layer.
We stack N layers of such bidirectional LSTM to encode the
input feature sequence. In our experiments N = 3 and we find
minor performance difference with more bidirectional LSTM
layers. Two fully-connected layers “FC1” and “FC2” are put
at the top of the bidirectional LSTM layers for computing the
classification and regression scores, respectively. The input at
each timestep is a sample feature vector extracted from FCN
as illustrated in Figure 5. The RNN is also trained in a multi-
task learning manner. At the end of each timestep, there are
two loss functions, one for the identification loss and the other
for the localization loss. We use the same loss functions as the
ones used in Stage I, but the total loss is accumulated over
time

L =
T −1∑

t=0

Lt
id + λLt

loc (5)

To train the Bi-RNN, we need to generate a set of sample
feature sequences from the training set. To increase the data
variation, we first augment the training set by randomly
cropping subimages (not the fixed-size samples) from the
training CT scans. For each of the cropped subimages, we feed
it through the FCN that samples the input image in a sliding
window manner. Next, the features of the samples that are
labeled as positive are kept and ordered based on the samples’
relative spatial locations. Each of the spatially ordered sample
feature sequences will be used as the training data for the
Bi-RNN. Note the associated vertebrae labels and centroid
points for each of the sample features can be easily calculated
from the ground truth annotations that come with the CT scan
images.

During the testing phase, each of the new CT scan image
will first be processed by the FCN to generate the ordered
sample feature sequence. Next, the sample feature sequence
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Fig. 6. The architecture of the multi-task Bi-RNN (unrolled in time).

will be passed to the Bi-RNN which outputs the identification
and localization results for each of the samples at each
timestep. Note they are dense identification and localization
results as the samples are overlapped. Finally, we aggregate
the dense results using the median 3 of the localization results
that have the same identification label.

III. EXPERIMENTS

The dataset used in all of the experiments is a public
dataset from spineweb.4 It is considered challenging due to
the variety of pathological cases, arbitrary of field-of-view
and the existence of artificial implants. For all the experi-
ments, we use the official split for training and testing as
did by other state-of-the-art methods [19], [20], [24]. In total,
there are 302 CT scans in this dataset. 242 CT scans from
125 patients are used for training and the rest 60 CT scans
are held out for testing. During preprocessing, CT images are
resampled such that the resolutions along the longtitudinal,
frontal and sagittal axes are 1.25mm, 1.0mm and 1.0mm,
respectively. Vertebrae locations are first normalized according
to the new resolution and then converted to the corresponding
voxel locations of images or image samples. Each vertebra
centroid location in the CT sans is annotated along with
the corresponding vertebrae type. All the experiments are
conducted using the TensorFlow5 platform on two NVIDIA
GTX Geforce 1070 GPUs.

A. Performance of Deep Multi-Task 3D CNN

To train and evaluate the performance of the proposed deep
multi-task 3D CNN, we randomly crop samples with size

3We use median instead of mean to suppress the outliers.
4http://spineweb.digitalimaginggroup.ca
5https://www.tensorflow.org

TABLE I
ABLATION STUDY OF THE PROPOSED MULTI-TASK 3D CNN

32 × 112 × 96 from CT scans. During the sample generation,
we make sure that all the vertebrae are evenly sampled
and, on the average, there are about 40 samples for each
vertebra. The network are trained for about 15 epochs with
batch_size = 24, learning_rate = 0.001, weight_decay =
0.0001, momentum = 0.9 and λ = 0.12. The learning
rate is reduced every 20000 iteration by a factor of 0.4.
All the hyperparameters and λ are chosen empirically with
validation. For this study we are not interested in finding the
best parameter settings for the model. In general, we find
λ = 0.12 works better in a multi-task scenario and values
close to 0.12 give minor performance difference. We refer
readers to [38] for better multi-task parameter choices. Two
evaluation metrics are used: sample classification accuracy
and sample localization error. Sample classification accuracy
is the number of samples that are successfully classified among
all the testing samples. Average sample localization error is
defined as the average distances (in mm) between the predicted
locations and vertebrae centroids

e =
∑N

i=1 ‖li
pred − li

gt‖
N

(6)

where li
pred and li

gt denote the predicted location and the
ground truth centroid for the i -th positive sample, respectively.

To demonstrate the effectiveness of the proposed multi-task
3D CNN, we compare our approach with 3 other baseline
methods: 2D CNN MTL, 3D CNN ID and 3D CNN LOC.
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TABLE II
COMPARISON OF THE PROPOSED METHOD WITH THE STATE-OF-THE-ART METHODS

For 2D CNN MTL, we convert all the 3D convolutional/
pooling layers of the proposed network to their 2D versions.
For 3D CNN ID and 3D CNN LOC, we remove the identi-
fication loss and the localization loss, respectively. We train
theses three methods using the similar hyperparameters as the
3D CNN MTL. The evaluation results are shown in Table I.

We can see that 2D CNN MTL only achieves 43.19%
classification accuracy and 8.74 mm localization error which
is much worse than its 3D counterpart. Since 2D convolution
can not encode the important spatial information of 3D images,
the degradation in performance is expected. The classification
accuracy of 3D CNN ID is 48.52% which is significantly
better than 2D CNN MTL due to the use of 3D convolution.
However, its performance is still worse than 3D CNN MTL,
which achieves a 52.39% classification accuracy. This demon-
strates that training identification and localization jointly is
very helpful in improving the network’s ability to distinguish
different vertebrae. The localization error of 3D CNN LOC
and 3D CNN MTL are 7.05 and 7.03 mm, respectively. Such
a close performance in localization error demonstrates that
finding the vertebra centroids does not necessarily require
recognizing vertebrae type which is consistent with common
sense. However, the classification accuracy overall is not
so good. This is because each cropped sample has a very
narrow field-of-view that contains limited contextual informa-
tion. Since different vertebrae are very similar in appearance,
distinguishing between vertebrae, especially those neighboring
ones, is very challenging without more contextual information.

B. Overall Performance

To train the multi-task Bi-RNN, we first randomly crop
subimages of various sizes from the CT scans used for
training. The number of cropped subimages is proportional
to the number of vertebrae inside a CT scan. On the average,
30 subimages are generated for each vertebra and in total,
we obtain about 70, 000 subimages. Due to memory limitation,
the maximum subimage size is 96×256×256 which covers a
maximum of 8 vertebrae and gives longer enough contextual
information. For each of the subimage, we generate a sequence
of sample features in the way described in Section II-C. The
average sequence length T is 266. We train the Bi-RNN for
about 12 epochs with batch_size = 256, learning_rate =
10−6, weight_decay = 0.0001, momentum = 0.9 and
λ = 0.10. Again the hyperparameters are chosen empirically
with validataion. The trained Bi-RNN in combination with the
trained FCN is used to evaluate the testing CT scans. We use
identification rate and localization error as the evaluation
metrics following the definition from [18].

The overall performance results of the proposed method are
given in Table II. Here, we compare our method with three
state-of-the-art methods on the same dataset. To demonstrate
the effectiveness of the Bi-RNN, we also compare our method
(denoted as CNN + Bi-RNN) with two baseline methods:
1) using CNN (denoted as CNN) only, 2) using CNN together
with conventional RNN (denoted as CNN + RNN). For
the CNN only baseline method, we use the trained FCN to
generate dense predictions in a sliding window manner and
the dense predictions for each vertebra will then be aggregated
and refined to give the final identification and localization
results. Table II shows the performance for all vertebrae types
as well as the performance for each of the vertebrae categories
(cervical, thoracic and lumbar). Both the mean and standard
deviation of the localization errors are measured. We can see
from Table II that the proposed method outperforms both the
state-of-the-art methods and the baseline methods in most of
the measurements. For the standard deviation of the localiza-
tion errors, the method from Yang et al. [24] gives similar
performances with our method. This is because they used a
message passing and sparsity regularization algorithm during
the refinement step to suppress the outliers. This scheme can
be also added to our method for further performance improve-
ment. We then analyze the vertebra-wise performance of the
proposed approach and compare it with the baseline methods.
As shown in Figure 7, we can find that the proposed approach
performs better than the baseline methods on most vertebrae.
This demonstrates that using RNN in combination with CNN
can give better long-range contextual understanding and yield
better performance. We also find that using Bi-RNN against
convensional RNN can further boost the performance. This
is consistent with the observation that contextual information
comes from two directions (below and above) and should be
addressed accordingly.

C. Success and Failure Cases

Figure 8 shows two successful identification and localization
results. In the second and third columns, each colored point
denotes the predicted vertebrae location for a sample. For
images (a)2 and (b)2, the colored points are from the CNN
only baseline method that samples the image using FCN in a
sliding window manner. For images (a)3 and (b)3, the colored
points are from the proposed method that makes predictions
for each of the positive feature samples of the input sequence.
As we can see here, the dense predictions from the proposed
method are more concentrated around the vertebrae centroids
which indicates more accurate prediction results. The fourth
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Fig. 7. Vertebra-wise identification and localization results. Left: the identification accuracy of each vertebra; Right: the localization error statistics
of each vertebra.

Fig. 8. Two example successful cases of using the proposed method and the CNN only baseline method.

and fifth columns are the aggregated predictions from the
dense predictions for the CNN only baseline method and
the proposed method, respectively. Compared with the ground
truths in the first column, we can see that both the proposed

and CNN only baseline method perform well and the proposed
method is slightly better than the CNN only baseline method.

Besides the success cases, we also investigate when the pro-
posed method does not work. Figure 9 shows two challenging
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Fig. 9. Two example failure cases of using the proposed method and the CNN only baseline method.

examples that the CNN only baseline method or proposed
method fail. For both examples, we show the results of the
sagittal and frontal view, respectively. Figure 9 (a) shows a
pathological example with blurred vertebra boundaries. We can
see that most of the predictions by the CNN only baseline
method are incorrect. On the other hand, the predictions from
the proposed method follow the spine structure and in general
are acceptable. Figure 9 (b) is even more challenging and both
the baseline and proposed methods fail.

IV. CONCLUSION

We present a novel approach to vertebrae identification
and localization from CT scans. Due to the similarity of
vertebrae appearance and the variability of spinal images, such
as arbitrary field-of-view, vertebrae curvatures, we develop a
data-driven learning-based method to robustly capture both
the short-range and long-range contextual information that
are critical for vertebrae identification and localization. For
the short-range contextual information, we train an MTL 3D
CNN that effectively extracts the features of vertebral samples
by leveraging the domain information contained in both the
vertebrae identification and localization tasks. The use of 3D
convolutions enables it to encode 3D spatial information of CT
volumes to yield a more robust model than the 2D counter-
parts. For the long-range contextual information, we develop
a bidirectional MTL RNN that inherently learns the anatomic
structure in a data-driven manner and exploits the contextual
information among vertebral samples during testing phase.

Experimental results demonstrate that the proposed MTL
3D CNN/FCN extracts better feature representations than its
2D or single-task counterparts, outperforming the state-of-the-
art on a challenging dataset by a significant margin.
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