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Abstract— Myocardial contrast echocardiography (MCE)
is an imaging technique that assesses left ventricle function
and myocardial perfusion for the detection of coronary
artery diseases. Automatic MCE perfusion quantification
is challenging and requires accurate segmentation of the
myocardium from noisy and time-varying images. Random
forests (RF) have been successfully applied to many med-
ical image segmentation tasks. However, the pixel-wise RF
classifier ignores contextual relationships between label
outputs of individual pixels. RF which only utilizes local
appearance features is also susceptible to data suffering
from large intensity variations. In this paper, we demon-
strate how to overcome the above limitations of classic
RF by presenting a fully automatic segmentation pipeline
for myocardial segmentation in full-cycle 2-D MCE data.
Specifically, a statistical shape model is used to provide
shape prior information that guide the RF segmentation
in two ways. First, a novel shape model (SM) feature is
incorporated into the RF framework to generate a more
accurate RF probability map. Second, the shape model is
fitted to the RF probability map to refine and constrain
the final segmentation to plausible myocardial shapes. We
further improve the performance by introducing a bounding
box detection algorithm as a preprocessing step in the
segmentation pipeline. Our approach on 2-D image is fur-
ther extended to 2-D+t sequences which ensures temporal
consistency in the final sequence segmentations. When
evaluated on clinical MCE data sets, our proposed method
achieves notable improvement in segmentation accuracy
and outperforms other state-of-the-art methods, including
the classic RF and its variants, active shape model and
image registration.
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I. INTRODUCTION

MYOCARDIAL contrast echocardiography (MCE) is a
cardiac ultrasound imaging tool that utilizes microbub-

bles as contrast agents. The microbubbles are injected intra-
venously and flow within the blood vessels. This can
improve endocardial visualization and the assessment of
left ventricle (LV) structure and function, complementing
the conventional B-mode echo [1]. Furthermore, MCE can
assess myocardial perfusion through the controlled destruc-
tion and replenishment of microbubbles [2]. Such perfusion
information is useful for the diagnosis of coronary artery
diseases (CAD) [1].

However, the analysis of MCE has been restricted to human
visual assessment. Such qualitative assessment is time con-
suming and relies heavily on the experience of the clini-
cian [3]. Automatic MCE quantification is desired because it
is faster, more accurate and less operator-dependent. Quantifi-
cation can involve the measurements of LV volumes, ejection
fraction, myocardial volumes and thickness. It can also involve
the assessment of myocardial perfusion by analyzing myocar-
dial intensity changes over time. Myocardial segmentation is
a widely used method that serves as an intermediate step
to obtaining such MCE quantifications. However, manual
segmentation is time-consuming and requires high level of
expertise and training. The motivation of this paper is to
develop an automatic approach for fast and accurate myocar-
dial segmentation in MCE data. The resultant segmentation
can additionally be used as input for subsequent tasks such as
initialization for tracking algorithms [4].

Although there have been much work on segmentation in
B-mode echocardiography, most of these methods do not work
well on MCE. MCE utilizes contrast-enhanced ultrasound
imaging technique to detect microbubbles by retaining non-
linear signals from microbubble oscillations while removing
other linear signals from tissue. This is fundamentally different
from B-mode echo which simply reflects and captures the
linear tissue signals. This results in very different image
appearances between MCE and B-mode echo. Specifically,
one has to consider the following challenges when performing
segmentation on MCE data.

• Intensity variations in the image due to ultrasound
speckle noise, shadowing and attenuation artifacts, low
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Fig. 1. Overall pipeline of our myocardial segmentation approach. The three main components of the approach are bounding box detection (a-b),
RF segmentation (c-d) and shape model fitting (d-e).

signal-to-noise ratio, contrast changes over time during
microbubble destruction and perfusion imaging [5].

• Geometrical variations in the pose and shape of the
myocardium due to different apical chamber views, heart
motion and probe motion. Each chamber view is acquired
at a different probe position and captures a different 2D
cross-section of the LV, resulting in variations of the 2D
myocardial shape and orientation.

• Misleading intensity information such as 1) presence
of structures (papillary muscle) with similar appearance
to the myocardium, 2) weak image gradient informa-
tion resulting in unclear myocardial border (especially
epicardium).

• Speckle patterns in MCE are decorrelated due to the
highly dynamic bubble signals as opposed to the static
tissue speckle patterns in B-mode [6]. This poses chal-
lenges to some tracking algorithms which work by finding
corresponding speckle patterns in different frames.

In this paper, we propose a fully automatic method that
segments the myocardium on 2D MCE image. The method
is based on random forest (RF) [7] and incorporates global
shape information into the RF framework through the
use of a statistical shape model that explicitly captures the
myocardial shape. This provides stronger and more meaningful
structural constraints that guide the RF segmentation more
accurately. Our method takes the advantages of both the
RF and the shape model in order to address the above
challenges of MCE myocardial segmentation. The RF has
strong local discriminative power and serves as a good
intensity/appearance model that captures the large intensity
variations of the MCE data. The shape model captures the
myocardial shape variations of the MCE data and imposes
a global shape constraint to guide the RF segmentation.
This avoids inaccurate segmentation due to misleading
intensity information on the MCE. Fig. 1 shows the overall
pipeline of our myocardial segmentation approach. The main
contributions of our proposed method are:

• A novel shape model (SM) feature is introduced which
incorporates the shape model into the RF framework.
The feature improves RF segmentation by generating
smoother and more coherent RF probability map that
conforms to myocardial structure and shape. (Fig. 1c-d)

• A shape model fitting algorithm is developed to fit the
shape model to the RF probability map to produce a
smooth and plausible myocardial contour. (Fig. 1d-e)

The work in this paper is an extension of a preliminary
paper [8]. The new contributions are:

• A convolutional neural network (CNN) is employed
to automatically detect a bounding box enclosing

the myocardium. This pre-processing step removes any
pose variations of the myocardium and improves the
subsequent RF segmentation using SM features. The two-
stage process of bounding box detection followed by
shape inference is similar to [9]. (Fig. 1a-b)

• The approach is extended to full-cycle 2D+t MCE
sequences in which a temporal constraint is imposed
to ensure temporal consistency in the sequence
segmentations.

• The proposed approach is evaluated on a larger dataset
of 2D and 2D+t MCE data from 21 subjects.

The rest of this paper is structured as follows. In Section II,
we discuss some existing approaches related to cardiac seg-
mentation. In Section III, we describe the different components
of our segmentation method and extend it to sequence segmen-
tation. In Section IV, we describe the experiments conducted
to evaluate the proposed approach. In Section V, we report
the segmentation results of our approach and show that it
outperforms the other state-of-the-art methods. We conclude
the paper in Section VI and discuss some limitations and future
directions.

II. RELATED WORK

In this section, we give a brief overview of the segmenta-
tion methods used for cardiac ultrasound and highlight their
limitations when applied to our MCE data. Current literature
focus mainly on either LV segmentation [9]–[15] or myocar-
dial segmentation [4], [16]–[19] in B-mode echocardiography.
There are fewer of them addressing segmentation in MCE [3],
[20]–[22].

Existing methods can be classified into two categories.
The first category defines the segmentation task as a con-
tour finding problem in which the optimal contour is found
by an optimization procedure based on image information
regularized by constraints applied on the contour. Two rep-
resentative approaches in this category are the active con-
tour [23] and active shape model (ASM) [24]. Active contour
uses a parametric representation of the curves regularized
by geometrical constraints. It is used to detect endocardial
border in short-axis B-mode echo by Mishra et al [10] and
Mignotte and Meunier [11]. Malpica et al. [21] perform
myocardial segmentation in MCE sequences using a coupled
active contour which imposes distance constraints between the
epi and endocardial contours guided by inter-frame motion
estimation derived from optical flow. However, active contour
approaches depend on edge information which is unreliable
on MCE image. Unclear epicardial border and the presence
of papillary muscle often lead to spurious contour estimation.
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Level sets adopted by Lin et al. [12] combines edge and region
information for LV segmentation. However, region information
is adversely affected by the large intensity variations in MCE.
A recent paper by Pedrosa et al. [18] uses the B-spline
explicit active surfaces framework for 3D B-mode myocardial
segmentation and they compare different ways of coupling epi
and endocardial segmentations.

ASM is another widely used approach in cardiac segmenta-
tion. It builds a statistical shape model from a set of training
shapes by Principal Component Analysis (PCA). The model is
then deformed to fit an image in ways similar to the variations
observed in the training set. Butakoff et al. [19] uses an
automatically constructed ASM for myocardial segmentation
in 3D B-mode echo. Pickard et al. [22] uses ASM for
MCE myocardial segmentation and they apply a specialized
gradient vector flow field to increase its edge capture range.
Bosch et al. [13] extends ASM by using a joint model
of shape, appearance and motion to detect time-continuous
LV endocardial contours over time-normalized 2D+t B-mode
sequences. The advantage of ASM is that it can account for
the myocardial shape variations in our MCE data and provide
shape prior to help in cases where the myocardial border is
unclear. However, the linear intensity model used by ASM is
insufficient to characterize the appearance of MCE data which
exhibit huge intensity variations. Therefore, a more powerful
non-linear intensity model is required. Furthermore, some of
the above methods require good manual initialization of the
contour to prevent the solution from getting stuck in poor local
minima.

The second category uses machine learning techniques to
solve the segmentation task which is often cast as a pixel-
wise classification problem. For example, Binder et al. [25]
use an artificial neural network for pixel classification while
Xiao et al. [26] combine maximum a posteriori and Markov
random field methods for region-based segmentation. For the
purpose of this paper, we focus on the RF [7] as the classifier
due to its accuracy and computational efficiency. RF has
been successfully applied to various segmentation tasks in the
medical imaging field [27]–[29].

RF is well-suited for our MCE data because it effectively
builds a non-linear appearance model based on local intensity
regions. Therefore, it can better cope with the large intensity
variations of the MCE data compared to the simple linear
intensity model of ASM. However, the classic RF that utilizes
only local appearance features has some limitations. First, the
intensity information in MCE may be misleading and result in
inaccurate segmentation. For instance, the RF can misclassify
the papillary muscle as the myocardium because they have
similar intensity. The epicardial boundary is also often difficult
to identify based on intensity information alone. Second, the
RF classifier assigns a class label to each pixel independently.
Structural and contextual relationships between the pixel labels
are ignored [28], [30]. This results in segmentation with incon-
sistent pixel labelling which leads to unsmooth boundaries,
false detections in the background and holes in the regions
of interests. Lastly, RF outputs an intermediate probability
map which needs to be post-processed to obtain the final
segmentation.

To overcome the above limitations of the classic RF, sev-
eral works have incorporated local contextual information
into the RF framework. Lempitsky et al. [17] demonstrates
promising myocardial delineation on 3D B-mode echo by
using image pixel coordinates as position feature for the RF
in order to learn the shape of the myocardium implicitly.
Verhoek et al. [4] further extends the method by using
optical flow to propagate the single-frame RF segmentation
for sequence tracking. Montillo et al. [28] introduces the
entangled RF which uses intermediate probability predictions
from higher levels of the tree as features for training the
deeper levels. Kontschieder et al. [30] introduces the structured
RF that incorporates structural relationships into the output
predictions by predicting structured class labels for a patch
region rather than an independent class label for each individ-
ual pixel. This is used by Oktay et al. [15] to extract a new
boundary representation of the 3D B-mode echo data which is
then utilized in a multi-atlas framework for LV segmentation.
Milletari et al. [14] employs a Hough forests with implicit
shape and appearance priors for the simultaneous detection
and segmentation of LV in 3D B-mode echo. The Hough forest
votes for the location of the LV centroid and the contour
is subsequently estimated by using a code-book of surface
patches associated with the votes. All the above works use
contextual information to improve the RF segmentation. But
they only impose weak structural constraint locally and do not
explicitly learn the myocardial shapes from the MCE data.

III. METHOD

The overall pipeline for our myocardial segmentation
method is summarized in Fig. 1. Given an input MCE image I ,
a bounding box enclosing the myocardium is first detected
using a CNN. Using the bounding box, a sub-image I sub is
cropped out from I and then rescaled to a fixed size. Next, an
RF classifier with SM feature is used to predict a myocardial
probability map IRF for the sub-image. A statistical shape
model is then fitted to IRF to give a final myocardial contour
which is subsequently mapped back to the original image
space. For sequence segmentation, an additional constraint
term is added to the shape model fitting step to ensure temporal
consistency in the segmentations.

A. Bounding Box Detection

As we will show later (Section V-A), our SM features
only work well on RF input images which do not contain
significant pose variations (translation, scaling, rotation) in the
myocardium. This requires the rigid alignment of myocardium
in RF input images. This can be done by image registra-
tion [31] but the running time can be long. To this end,
we employ a CNN to automatically detect a bounding box
containing the myocardium (Fig. 1b). The bounding box is
then used to extract a sub-image from the original image
and the sub-image is rescaled to a fixed size. This ensures
the RF input image I sub is free from pose variations in the
myocardium. CNN has been proven to be a good method in
many object detection tasks [32]–[34] and it is also compu-
tationally efficient when implemented on GPUs. In our case,
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TABLE I
CNN ARCHITECTURE FOR BOUNDING BOX DETECTION. C AND FC
DENOTE CONVOLUTIONAL LAYER AND FULLY-CONNECTED LAYER

RESPECTIVELY. KERNEL PARAMETERS ARE GIVEN BY [KERNEL

HEIGHT × KERNEL WIDTH × NUMBER OF KERNELS / STRIDE]

CNN can automatically learn a hierarchy of low to high level
features to predict the myocardial pose in an MCE image
accurately.

Similar to [9], we define the bounding box B using
5 parameters (Bx, By, Bw, Bh, Bθ ) which represent its cen-
troid (Bx , By), size (Bw, Bh) and orientation Bθ respectively.
Bounding box detection is cast as a regression problem using
CNN in which the values of the bounding box parameters
are predicted. We use the CaffeNet architecture which is a
slight modification of the AlexNet [35]. Table I shows the
network architecture comprising 5 convolutional layers and 3
fully-connected layers together with the kernel parameters for
each layer. Max pooling is always performed using a 3 × 3
kernel with stride = 2. Rectified linear units (ReLU) is the
activation function applied after all the convolutional layers.
Local response normalization (LRN) is performed after the
max pooling operations at layer 2 and 4. Dropout layer is
added after the fully-connected layers, FC6 and FC7. The final
classification layer in the original architecture is replaced with
a regression layer FC8 which contains 5 units that correspond
to the 5 bounding box parameters. The network is trained
using l2 Euclidean loss between the predicted and ground
truth bounding box parameters. During training, the original
460 × 643 image I is downsampled to a size of 256 × 358
pixels. Random cropping (227 × 227 pixels) and rotation
(within ±10°) are then performed to prepare the training
samples which are presented to the network in mini-batches
of 32. The network is initialized with random weights from
(μ, σ ) = (0, 0.01). Optimization is performed using Adam
algorithm with learning rate = 10−4, momentum = 0.9 and
weight decay = 5 × 10−4. The training is run for 18000
iterations. During testing, we extract 55 crops at uniform
intervals from the downsampled test image and combine their
predictions to give the final predicted bounding box. A sub-
image is then extracted using this bounding box and it is
rescaled to a size of 242 × 208 pixels to be used as input
to the RF.

B. Shape Model Construction

In this section, we explain the construction of a statistical
shape model of the myocardium which is required for the
subsequent stages of our segmentation pipeline. Statistical
shape model is extremely useful for representing objects with

Fig. 2. (a) Manual annotations showing key landmarks in red and
other landmarks in green. (b) First and second modes of variation of
the shape model with bi varying in the range of ±2

√
λi. (c) SM feature

computation. Left: Landmarks x generated randomly by the shape model
in (1) (blue dots). Right: SM feature values d1 and d2 measure the signed
shortest distance from boundary B (blue contour ) to pixel p1 and p2
respectively. d1 is positive and d2 is negative.

complex shapes. It captures plausible shape variations while
removing variations due to noise. The 2D myocardial shape
can be effectively represented using the point distribution
model [24] which uses a set of landmarks to describe the
shape. The model is built from a set of training shapes
using PCA which captures the correlations of the landmarks
among the training set. Each training shape is defined by
a set of M landmarks. It consists of 4 key landmarks with
the other landmarks uniformly sampled in between (Fig. 2a).
The key landmarks are the two apexes on the epicardium and
endocardium and the two endpoints on the basal segments.
The point distribution model is given by:

x = x̄ + Pb (1)

where x is a 2M-dimensional vector (x1, y1, ..., xM , yM )
containing the x ,y-coordinates of the M landmarks, x̄ is
the mean landmark coordinates of the training shapes,
P = ( p1| p2|...| pK ) contains K eigenvectors of the covariance
matrix and each pi is associated with its eigenvalue λi , b is a
K -dimensional vector containing the shape parameters where
each element bi is bounded between ±s

√
λi to ensure that only

plausible myocardial shapes are produced. s is the number
of standard deviation from the mean shape. The value of K
can be chosen such that the model can explain a required
percentage p of the total variance present in the training
shapes. The shape model is built from manual annotations
represented in the cropped coordinate space of I sub. Since
images extracted from bounding box are already corrected for
pose variations, we do not need to rigidly align the training
shapes prior to PCA. Fig. 2b shows the first and second modes
of variation of our myocardial shape model.

C. RF With SM Feature

Myocardial segmentation using RF can be treated as a pixel-
wise binary classification problem [17]. The RF takes the sub-
image I sub from Section III-A as input and predicts the class
label (myocardium or background) of every pixel in that sub-
image based on a set of features. An RF is an ensemble of
decision trees. During training, each split node of the tree
learns a binary feature test that best splits the training pixels
into its two child nodes by maximizing the information gain.
The splitting continues recursively until the maximum tree
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depth is reached or the number of training pixels falls below
a minimum. At this time, a leaf node is created and the class
label distributions of the training pixels reaching that node
is stored and used to predict the class probability of future
unseen test pixels. During testing, the predictions from all the
trees are averaged to give a final myocardial probability map.

In the classic RF, the binary feature test is based on
appearance/intensities of local image regions. This is either
the mean pixel intensity of a displaced feature box from the
reference pixel or the difference of the mean pixel intensities
of two such feature boxes [36]. We introduce an additional
novel SM feature [8] that is derived from the shape model
constructed in Section III-B). An SM feature is constructed
by randomly sampling some values of b to generate a set
of landmarks x using (1) (Fig. 2c left). A closed myocardial
boundary B is then formed from the landmarks through
linear interpolation. The SM feature is then given by the
signed shortest distance d from the reference pixel p to the
myocardial boundary B (Fig. 2c right). d is positive if p
lies inside B and negative otherwise. The SM feature is in
fact a signed distance transform of the myocardial boundary
generated by the shape model. Each SM feature is defined
by the shape parameters b. During training, an SM feature is
constructed by random uniform sampling of each bi values in
the range of ±s

√
λi . The binary SM feature test, parameterized

by b and a threshold τ , is written as:

tb,τ
SM ( p) =

{
1, if D( p, B(x̄ + Pb)) > τ

0, otherwise.
(2)

where D(.) is the function that computes d , B is the function
that converts the landmarks to a closed boundary by linear
interpolation. Depending on the binary test outcome, pixel p
will either go to the left (1) or right (0) child node. During
training, the RF learns the values of b and τ that best split the
training pixels at the split node. The SM features explicitly
impose a global shape constraint in the RF framework. The
random sampling of b also allows the RF to learn plausible
shape variations of the myocardium.

D. Shape Model Fitting

The RF probability map is an intermediate output that
cannot be used directly for subsequent analysis and applica-
tions. Simple post-processing on the probability map such as
thresholding and edge detection produce noisy segmentations
with false positives and incoherent boundaries due to the pixel-
based nature of the RF classifier. In this section, we again
make use of the shape model by fitting it to the RF probability
map [8]. This generates a final closed myocardial contour that
is smooth and coherent. The shape model allows only plausible
myocardial shape which improves the segmentation accuracy
by imposing shape constraints that correct for some of the
misclassifications made by the RF.

Shape model fitting is formulated as an optimization prob-
lem where we want to find the optimal values of the shape
and pose parameters (b, θ) such that the shape model best fit

the RF probability map under some shape constraints. That is,

min
b,θ

�IRF − IM(Tθ (x̄ + Pb))�2 + α
1

K

K∑

i=1

|bi |√
λi

subject to − s
√

λi < bi < s
√

λi , i = 1, . . . , K . (3)

The first term compares how well the model matches the RF
probability map IRF. IM(.) is a function which computes
a binary mask from a set of landmarks generated by the
shape model. This allows us to evaluate a dissimilarity metric
between the RF probability map and the model binary mask
by simply taking their sum-of-squared differences. The second
term is a regularizer which imposes some shape constraints by
keeping bi ’s small so that the final shape does not deviate too
much away from the mean shape. This term is also related
to the probability of the given shape [37]. α controls the
weighting given to this regularization term. Another shape
constraint is imposed on the objective function by setting
the upper and lower bounds of bi to ±s

√
λi so that it can

only vary within reasonable range similar to that of the shape
model. The optimization is carried out using the pattern search
algorithm [38] since the objective function is not differentiable
due to the difficulty of representing the derivative of the
IM function in mathematical form. The algorithm carries
out global optimization which can be handled easily due to
the small problem size (small number of shape and pose
parameters). At the start of the optimization, we initialize each
bi and θi to zero.

E. Sequence Segmentation

We extend the above segmentation method for single 2D
MCE image to 2D+t MCE sequences. The proposed method
introduces temporal consistency to sequence segmentation by
ensuring that the segmentation of the current frame does not
differ too much from that of the previous frame. Specifically,
an additional temporal constraint term is added to (3) in
the shape model fitting step. The new objective function to
minimize becomes

min
b,θ

�IRF− IM(Tθ (x))�2+α
1

K

K∑

i=1

|bi |√
λi

+β
1

2M

∥
∥x−x prev

∥
∥2

subject to − s
√

λi < bi < s
√

λi , i = 1, . . . , K . (4)

where x = x̄ + Pb is the predicted landmark coordinates
of the current frame and x prev is the predicted landmark
coordinates of the previous frame. The last term in (4) is
the temporal constraint which computes the sum-of-squared
differences between the landmark positions of the two adjacent
frames. The term makes use of the segmentation from the
previous frame as a reference and penalizes any segmentation
of the current frame which deviates too much away from
the reference. The approach uses the previous segmentation
as a guide for subsequent segmentation and this ensures
the myocardial segmentations throughout the sequence transit
smoothly in time. The temporal term is normalized by the
number of landmarks M and its influence is controlled by the
weighting β. The segmentation of the previous frame is used
as initialization for the current frame during optimization.
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IV. EXPERIMENTS

A. Data and Annotations

Our dataset consists of healthy subjects and CAD patients
who are defined as those demonstrating ≥70% luminal diam-
eter stenosis of any major epicardial artery by qualitative
coronary angiography. There are a total of 21 subjects of
which 10 did not demonstrate CAD, 5 had single-vessel
disease and 6 had multi-vessel disease. MCE exams from
these 21 subjects were used in this paper. The data were
acquired using a Philips iE33 ultrasound machine (Philips
Medical Systems, Best, Netherlands) and SonoVue (Bracco
Research SA, Geneva, Switzerland) as the contrast agent. For
each of the 21 exams, MCE sequences in the apical 2, 3
and 4-chamber views are acquired. From these sequences, we
randomly selected 242 2D MCE images to form Dataset1
which comprises an approximately equal proportion of the
three different apical views and different cardiac phases (end-
systole (ES) or end-diastole (ED)). Dataset1 is split into a
training and a test set with a ratio of 14:7 on a patient basis
and a ratio of 159:83 on an image basis. In addition, we chose
6 out of the 7 test subjects in Dataset1 and from these 6
subjects, we randomly chose 12 2D+t MCE sequences (2 for
each subject) which again comprises an equal proportion of
the three apical views. We then randomly select and crop out
one cardiac cycle from each of these 12 sequences to form
Dataset2. On average, each temporally cropped sequence in
Dataset2 consists of 22±4 frames and captures one complete
cardiac cycle from ES to ES.

Manual annotations for the two datasets are done by an
expert. For Dataset1, each image is manually annotated with
a bounding box which encloses the myocardium. This is used
for training and testing the CNN. A myocardial contour is
also manually delineated for each image in Dataset1 and for
every image of the 12 sequences in Dataset2. This is used for
training and testing the RF. Subsequently, 4 key landmarks are
manually identified on the myocardial contour as illustrated in
Fig. 2a. 18 landmarks are uniformly sampled in between each
pair of key landmarks to give a total of M = 76 landmarks
that define each myocardial shape. The landmark annotations
are used for shape model construction.

B. Evaluation Metrics

Segmentation accuracy is evaluated quantitatively using
Jaccard index which measures the overlap between two con-
tours, mean absolute distance (MAD) which measures the
average point-to-point distance between two contours and
Hausdorff distance (HD) which measures the maximum dis-
tance between two contours. In addition, clinical indices such
as endocardial and myocardial areas are also computed from
the segmentations and compared to the ground truth in terms
of correlation, bias and standard deviation. Correlation and
Bland-Altman plots are also presented. Paired t-test is used to
test for significant differences at 5% significance level.

C. Implementation Details

The CNN for the bounding box detection is implemented
in Caffe [39] and runs on a machine with one NVIDIA

GeForce GTX 950 GPU. The parameters used for the CNN
are described in Section III-A.

The shape model is constructed with parameter K = 16
p = 99% and s = 2. The same shape model is used for both
the SM feature and the shape model fitting. For the SM feature,
we observe that the segmentation results are insensitive to K ,
p and s. For the shape model fitting, these parameters have
more significant influence on the results. Hence, we only tune
their values for the shape model fitting and use the same values
for the SM feature. To this end, only a single shape model
needs to be constructed for the two tasks, making the approach
more robust and generalizable.

For the RF, we use 20 trees with a maximum tree depth
of 24. Further increasing the number of trees in the forest
and the depth of each tree adds to the computational cost
with no significant improvement in segmentation accuracy. All
training images for the RF are pre-processed using histogram
equalization to reduce intensity variations between different
images. 10% of the pixels from the training images are
randomly selected for tree training. For the shape model fitting,
we empirically set α = 3000 and β = 10 via cross-validation.

Unless otherwise stated, 3-fold cross-validation is applied
on the training set of Dataset1 to optimize the above para-
meters. Once the optimal parameters are found, the entire
training set of Dataset1 is used to learn a CNN model, an RF
model and a shape model. Using these models, testing is then
performed on 1) the test set of Dataset1 and 2) the entire
Dataset2.

Using a machine with Intel Core i7-4770 at 3.40 GHz and
32 GB of memory, RF training takes 7.1 minutes for 1 tree.
Given a test image, RF segmentation takes about 25.5s using
20 trees but tree prediction can be parallelized so that it takes
1.3s per tree. The bounding box detection takes 0.1s and the
shape model fitting takes 7.8s. In total, our fully automatic
algorithm takes around 9.2s to segment one image.

D. Comparisons With Other State-of-the-Art Approaches
We compare our proposed approach to ASM for static

segmentation on Dataset1 and to image registration and
optical flow for sequence segmentation on Dataset2.

We use a modified ASM [40] which selects a set of optimal
features for the appearance model around each landmark point
instead of using the Mahalanobis distance. The parameters for
shape model construction are K = 16 and M = 76. The length
of landmark intensity profile is 6 pixels. The search length for
each landmark is 2 pixels and the number of search iterations
is 40. The shape constraint is limited to ±1.5 × √

λi and two
resolution levels are used for matching. The ASM is initialized
by manually placing the contour near the myocardium.

The non-rigid image registration is based on B-spline
free-form deformations [31]. The error metric used is the
sum-of-squared difference and two resolution levels are used.
Smoothness penalty is set to 0.003 and B-spline control point
spacing is set to 32 pixels. For each MCE sequence, the first
frame is registered to all the other frames. A manual segmen-
tation is performed on the first frame and it is propagated to
the other frames in the sequence through the transformation
fields found by registration.
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Fig. 3. Effect of bounding box detection on RF segmentation. Error bar
denotes the standard deviation over Dataset1.

TABLE II
DETECTION ERROR OF THE BOUNDING BOX

PARAMETERS ESTIMATED BY CNN AGAINST

THE MANUAL GROUND TRUTH

Optical flow is based on the algorithm described in [41]. It is
a variational model based on the gray level constancy and the
gradient constancy assumptions, together with a smoothness
constraint. The weighting for the smoothness term is set
to 0.05. A multi-resolution approach is also used with a
downsampling ratio set to 0.75 and the width of the coarsest
level set to 10 pixels. Optical flow motion fields are computed
between consecutive frame pairs in the sequence and are used
to propagate the manual segmentation on the first frame to all
the other frames.

The above methods all require some manual user inputs as
initialization and the algorithm parameters are optimized using
grid search.

V. RESULTS

We evaluate different components of our segmen-
tation method separately in the four sections below.
Sections V-A to V-C evaluate the bounding box detection,
the SM feature and the proposed static segmentation algo-
rithm respectively using Dataset1. Section V-D evaluates the
sequence segmentation method using Dataset2.

A. Bounding Box Detection

In this experiment, we evaluate the accuracy of the
CNN bounding box detection algorithm against the
manual ground truth. We measure the detection error as
Bdetected − Bgroundtruth = δB =(δBx , δBy, δBw, δBh, δBθ ).
Table II shows the bias and standard deviation of the error
for each bounding box parameter. All parameters show
mean values close to zero, indicating small systematic
bias. Localization uncertainty of (Bw, Bh) is higher
than that of (Bx , By). This indicates the CNN is less
accurate in determining the scale of the bounding box
compared to its position. CNN also has high localization
precision for predicting the bounding box orientation (Bθ ).

Qualitatively, the top row of Fig. 7 shows the manual and
CNN-detected bounding boxes on some example MCE
images.

In the next experiment, we study the effect of bounding box
on the RF probability map. Specifically, we analyze three cases
in which different input images are used for RF training and
testing. BBNone: Original full size image; BBCNN: Sub-image
cropped from the bounding box detected by CNN; BBManual:
Sub-image cropped from the manual bounding box; The RF
probability maps obtained for these three cases are evaluated
against the ground truth segmentations using Jaccard index as
shown in Fig. 3. Our SM feature works under the assumption
that the shape of interest in all the RF input images are aligned
to a reference. The bounding box effectively performs this
alignment by cropping out a sub-image that is free from any
myocardial pose variations which leads to more accurate RF
segmentation. BBNone has the worst segmentation accuracy
because it does not account for any pose variations. BBCNN
improves the segmentation accuracy but does not perform
as well as BBManual. This is due to possible inaccuracy in
the CNN-detected bounding box and pose variations may not
be completely removed. However, BBCNN is fully-automatic
while BBManual requires the manual annotation of bounding
box which makes the overall segmentation method semi-
automatic. An additional advantage of the bounding box is that
it removes irrelevant image regions and reduces the image size
so that subsequent RF segmentation and shape model fitting
is faster.

To further investigate the dependence of RF segmentation
results on the bounding box detected, we conduct the following
experiment. We perturb each ground truth bounding box
Bgroundtruth in the set BBManual by adding a random error δB
to it. The error of each bounding box parameter δBi , where
i = x, y, w, h, θ , is sampled randomly from a zero-mean
normal distribution with standard deviation σBi . By setting
different σ values, we create 5 sets of bounding boxes BBA-
BBE with increasing amount of errors introduced to the ground
truths. Specifically, we set σB = (σBx , σBy , σBw, σBh , σBθ ) for
BBA and set multiples of it, 2σB, 3σB, 4σB, 5σB , for BBB,
BBC, BBD and BBE. σ values of each bounding box parameter
are chosen so that σ values of BBC are the same as the
standard deviation of the CNN detection errors reported in
Table II. Fig. 3 shows that RF segmentation accuracy decreases
with increasing perturbations from the ground truth bounding
boxes. This confirms that the final RF segmentation result is
heavily dependent on the accuracy of bounding box detection.
Future work should therefore be directed at improving the
bounding box detection since there is still a significant gap
for improvement on RF segmentations between using the
CNN-detected bound boxes and the manual ground truths.

B. Shape Model Feature

We study the effect of SM feature on RF segmentation by
comparing it with the classic RF that uses simple intensity fea-
tures [36] as well as RF that uses other contextual features such
as the entanglement features [28] and position features [17].
We use the sub-images extracted from the manual bounding
boxes BBManual to train and test all the RFs in this section.
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Fig. 4. Visual comparison of the RF probability maps obtained by
different RF variants.

Fig. 5. Comparison of Jaccard indices of different RF variants vs tree
depth.

Fig. 4 compares the probability maps generated by RFs
using different features. Our SM feature produces smoother
and more coherent probability map. Other RFs often misclas-
sify low intensity structure in the LV cavity as myocardium
(row 1) and the high intensity region in the myocardium as
background (row 2). RF with SM feature can overcome these
problems by imposing a global shape constraint.

Fig. 5 shows the segmentation performance of different RFs
at different tree depths. Our SM feature RF outperforms the
other RFs at all tree depths. This is because the SM feature
captures the explicit geometry of the myocardium to guide the
segmentation. A binary test of the SM feature in the split node
partitions the image space using meaningful myocardial shape
based on the shape model. Position feature [17] also learns the
myocardial shape implicitly but its binary test partitions the
image space using simple straight line which is less effective.
To learn complex shape like the myocardium, many more
position feature tests are needed compared to SM feature tests
which learn the myocardial shape directly. This causes SM
feature to be the more discriminative feature at lower levels
of the tree, leading to better results than other RFs especially
at lower tree depths.

C. Static Segmentation on Dataset1

We compare the following different approaches for the
evaluation of static segmentation on Dataset1.
ASM: Active shape Model [40]
M1: BBCNN+ SM feature RF + Canny edge detector
M2: BBCNN+ SM feature RF + Shape model fitting
M3: BBCNN+ SM feature RF + Shape model fitting (View
specific)
M4: BBManual+ SM feature RF + Shape model fitting

Fig. 6a presents the segmentation accuracy results (Jaccard,
MAD and HD) and Table III reports the evaluation on clinical
indices such as endocardial area and myocardial area. ASM
does not perform well because it uses a simple intensity profile
model to search for the best landmark position. This model
is not adequate for noisy MCE images. RF can provide a
much stronger and discriminative intensity model. In M1, we
apply our segmentation method using the CNN bounding box
detection algorithm (BBCNN) and the RF with SM features.
However, we replace the last shape model fitting step with
a Canny edge detector to obtain a binary edge map as the
final segmentation. This gives better results than the ASM
but the final segmentation is not regularized by global shape
constraint. To improve the results further, shape model fitting
is added in M2 to give our fully automatic segmentation
approach. It combines the local discriminative power of RF
with the global shape constraint imposed by the shape model.
The fitting guides the segmentation in regions where the RF
probability map has low confidence predictions. It also ensures
the final segmentation is a smooth and coherent contour that
represents plausible myocardial shape. The bottom row of
Fig. 7 shows the final myocardial contours predicted by M2.
The method is able to segment the myocardium accurately
even in the presence of shadowing and attenuation artifacts
which result in unclear epicardial border. In M3, we trained
three separate RF models and shape models for the three dif-
ferent apical chamber views. There is a small improvement in
results since each model learns more specifically the different
anatomy of each view although a general model that includes
all views (M2) is also quite robust. Since there are less training
data for each view model in M3, we expect the results to
improve with more data. In M4, we replace the CNN bounding
box in M2 with manual bounding box (BBManual). This results
in a semi-automatic approach which accurately removes any
myocardial pose variations and achieves the best results in the
final segmentation.

D. Sequence Segmentation on Dataset2

Fig. 6b presents the segmentation accuracy of the different
approaches on Dataset2. Our proposed approach (N1-N3)
achieves significantly more accurate segmentation results than
image registration (R) and optical flow (OF) methods. Image
registration and optical flow perform tracking by finding corre-
sponding speckle patterns between frames and they are based
on the constant intensity assumption. They do not perform well
on MCE because MCE data exhibit high intensity variations
and decorrelated speckle patterns due to the highly dynamic
microbubbles.

N1 is our static segmentation method which uses (3) for
shape model fitting. It is the same as M2 and both RF model
and shape model are trained on Dataset1 which consists of
only ES and ED frames. N2 is exactly the same as N1 except
that the training is performed on Dataset2 which consists of
frames in all cardiac phases. Segmentation results for N2 are
obtained using leave-one-out cross-validation on the 6 subjects
in Dataset2. Although N2 is trained on all cardiac phases
and is expected to have a more representative shape model,
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Fig. 6. Segmentation accuracy results of the various approaches for (a) Dataset1 and (b) Dataset2. The red line and the black diamond marker
represent the median and the mean respectively. The ends of the whiskers represent the lowest and highest data point within 1.5 times the interquartile
range. Top black brackets indicate the difference between the two approaches is significant using the paired t-test.

TABLE III
CORRELATION COEFFICIENT, BIAS AND STANDARD DEVIATION

BETWEEN GROUND TRUTH AND ESTIMATED CLINICAL INDICES

FOR Dataset�. NOTE THAT IT IS NOT POSSIBLE TO OBTAIN

CLINICAL INDICES FROM THE PARTIAL CANNY

EDGE MAPS OF APPROACH M1

it is surprising to find that N1 has slightly more accurate
results than N2. This could mean that the shape model trained
from ED and ES frames alone is adequate for segmenting
myocardial shapes over the full cardiac cycle. This is possible
since the ED and ES shapes are at the extreme ends and all
other shapes of the cardiac cycle can be found as intermediate
transitions in between these two extremes. Another reason
for the better performance of N1 could be due to N1 being
trained on a more diverse dataset comprising 14 subjects
while N2 is trained based on only 5 subjects during cross-
validation. Increasing the number of training sequences from
more subjects could potentially improve the results for N2.

N3 is our sequence segmentation method and it achieves the
best results by extending N1 using (4) for shape model fitting.
The temporal constraint allows N3 to produce temporally more
consistent segmentations throughout the sequence with the
most improvement reflected by the HD metric. The clinical
indices of endocardial and myocardial areas are also computed
for the automatic segmentations from N3 and compared to
the manual segmentations in terms of correlation and Bland-
Altman plots as shown in Fig. 8. It can be observed that

Fig. 7. Top: Visual comparison of the bounding boxes estimated by
CNN (blue) and the ground truth (red ). Bottom: Visual comparison of the
final contours estimated by our fully automatic approach M2 (blue) and
the ground truth (red ).

our method results in overestimation for smaller areas and
underestimation for larger areas. Fig. 9 shows the myocardial
and endocardial area-time curves over one cardiac cycle. The
curves are the mean across the 12 sequences in Dataset2.
We observe that our proposed method produces curves that
are similar to the ground truth. Visual segmentation results
on some full MCE sequences using N3 can be found in the
supplementary materials.1

VI. DISCUSSION AND CONCLUSION

We have presented a fully automatic approach for fast and
accurate segmentation of myocardium in 2D MCE image.

1Downloadable supplementary materials are available at
http://ieeexplore.ieee.org. This includes three AVI format movie clips
which show the N3 segmentation results of three MCE sequences taken in
the apical 2, 3 and 4 chamber view respectively.
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Fig. 8. Correlation plots (a,c) and Bland-Altman plots (b,d) of the endocardial and myocardial areas computed for the manual segmentations and
estimated segmentations from N3. For BA plots, solid line: bias; dotted lines: limits of agreement (μ± 1.96σ).

Fig. 9. Mean endocardial (blue) and myocardial (red) areas of
12 sequences over one cardiac cycle computed from ground truth
(dash lines) and N3 segmentations (solid lines).

The proposed method uses a statistical shape model to guide
the RF segmentation by imposing global shape constraints.
This is done by first incorporating a novel SM feature into
the RF framework and then fitting the shape model to the RF
probability map to obtain the final myocardial contour. The
SM feature outperforms other contextual features by producing
more accurate RF probability map while the shape model
fitting step further improves the final segmentation results
by producing a smooth and coherent contour. Bounding box
detection using CNN serves as an important image alignment
step that improves the performance of subsequent RF seg-
mentation using SM feature. The method is further extended
to 2D+t MCE sequence which imposes temporal consistency
in the final sequence segmentations. The overall segmentation
method combines the advantages of both ASM and RF, and
outperforms either of this method used alone.

Our proposed method is generic and can be applied to
other image data containing large intensity variations where
prior knowledge of shape becomes important in guiding the
segmentation. Current study only limits our approach to con-
trast echocardiography data. As future work, we will evaluate
our method on other datasets of B-mode echocardiography
or even medical data of different modalities in order to test
the robustness and generality of the approach. In addition,
our sequence dataset Dataset2 is small and only based on
6 subjects. Increasing the training data on this set can allow
us to train better models than the one derived from Dataset1
which comprises only ES and ED frames.

Extension to 3D data should also work in principle. In this
case, we need to compute the shortest distance from a point to
a surface for the SM feature which can increase computational
cost. Shape model fitting can also take longer if 3D binary
volume needs to be generated from the mesh surface of 3D
shape model. Since this is the limiting step with the longest
running time in our segmentation pipeline, future work will
look at more efficient ways of optimizing this step in order to
make our approach real-time. One way is to define the shape
model on distance maps directly instead of the landmarks as
described in [42]. This will save the computational cost of
converting the contour into a distance map or binary mask
during SM feature computation and shape model fitting.

We have added a simple temporal constraint term to induce
temporally smooth sequence segmentation. More sophisticated
tracking algorithms such as block matching and optical flow
could be incorporated into our framework to ensure temporal
consistency. This is done in [4] where the RF segmentation
is propagated using optical flow. Finally, effort should also be
directed at more accurate bounding box detection since we
have shown that the final segmentations obtained using our
approach is strongly dependent on this step.
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