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Abstract— This editorial introduces the Special Issue
on Simulation and Synthesis in Medical Imaging. In this
editorial, we define so-far ambiguous terms of simulation
and synthesis in medical imaging. We also briefly discuss
the synergistic importance of mechanistic (hypothesis-
driven) and phenomenological (data-driven) models of med-
ical image generation. Finally, we introduce the twelve
papers published in this issue covering both mechanistic (5)
and phenomenological (7) medical image generation. This
rich selection of papers covers applications in cardiology,
retinopathy, histopathology, neurosciences, and oncology.
It also covers all mainstream diagnostic medical imaging
modalities. We conclude the editorial with a personal view
on the field and highlight some existing challenges and
future research opportunities.

Index Terms— Data-driven, hypothesis-driven, machine
learning, modeling.

I. INTRODUCTION

THE medical image community has always been fascinated
by the possibility of creating simulated or synthetic data

upon which to understand, develop, assess, and validate image
analysis and reconstruction algorithms. From very basic digital
phantoms all the way to very realistic in silico models of med-
ical imaging and physiology, our community has progressed
enormously in the available techniques and their applications.
For instance, mechanistic models (imaging simulations) emu-
lating the geometrical and physical aspects of the acquisition
process have been used now for a long time. Advances on
computational anatomy and physiology have further enhanced
the potential of such simulation platforms by incorporating
structural and functional realism to the simulations that can
now account for complex spatio-temporal dynamics due to
changes in anatomy, physiology, disease progression, patient
and organ motion, etc.

More recently, developments in machine learning together
with the growing availability of ever larger-scale databases
have provided the theoretical underpinning and the practical
data access to develop phenomenologic models (image synthe-
sis) that learn models directly from data associations across

A. F. Frangi is with the CISTIB Centre for Computational Imaging
and Simulation Technologies in Biomedicine, Electronic & Electrical
Engineering Department, The University of Sheffield, Sheffield S1 3JD,
U.K. (e-mail: a.frangi@sheffield.ac.uk).

S. A. Tsaftaris is with the Institute of Digital Communications School
of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, U.K.
(e-mail: s.tsaftaris@ed.ac.uk).

J. L. Prince is with the Image Analysis and Communications Labo-
ratory, Electrical and Computer Engineering, Johns Hopkins University,
Baltimore, MD 21218-2608, USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2018.2800298

subjects, time, modalities, resolutions, etc. These techniques
may provide ways to address challenging tasks in medical
image analysis such as cross-cohort normalization, image
imputation in the presence of missing or corrupted data,
transfer of knowledge across imaging modalities, views or
domains.

To this date, however, these two main research avenues
(simulation and synthesis) remain independent efforts despite
sharing common challenges. For instance, both modeling
approaches involve dealing with large scale optimization prob-
lems (e.g. in learning processes or physical equations), involve
the use of regularization and priors (e.g. either based on
mathematical or physical properties), need to generalize well,
adapt to new scenarios, and degrade gracefully beyond the
original learning set or modeling assumptions, require the
definition of meaningful figures of merit to assess the quality,
accuracy, or realism of simulated/synthesized data, in both
approaches there is a growing emphasis on open source imple-
mentations, open data benchmarks, and evaluation challenges,
just to name a few. These and other challenges have been dis-
cussed at the successful SASHIMI Satellite Workshop1 held in
conjunction with the Medical Image Computing and Computer
Assisted Interventions (MICCAI) Conference in 2016 (Athens,
Greece) and 2017 (Quebec, Canada). We look forward to the
future editions of this Workshop as a forum for identifying
new research challenges and avenues, and tackling them as a
community.

This special issue provides an overview of the state-of-the-
art in methods and algorithms at the bleeding edge of synthesis
and simulation in/for medical imaging research. We hope
this collection will stimulate new ideas leading to the-
oretical links, practical synergies, and best practices in
evaluation and assessment common to these two research
directions. We solicited contributions from cross-disciplinary
teams with expertise, among others, on machine learn-
ing, statistical modeling, information theory, computational
mechanics, computational physics, computer graphics, applied
mathematics, etc.

In the sequel, we first aim to formally define simulation
and synthesis in medical imaging and then discuss similar-
ities and differences between simulation (mechanistic) vs.
synthesis (phenomenologic) approaches. We then give the
main highlights of the published papers within this issue and
conclude by offering our perspective on some trends and chal-
lenges, and point our to some open problems awaiting future
research.

1http://www.cistib.org/sashimi
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II. CONTEXT AND DEFINITIONS

It is helpful at this point to be specific about the concepts
of simulation and synthesis in this special issue, that is,
in medical imaging and medical image computing. We found
out that the concept of simulation is, in general, very ample
and unspecific to medical imaging, and that there was virtually
no formal definition of medical image synthesis. We could find
none of these terms defined in the Dictionary of Computer
Vision and Image Processing [item 1) in the Appendix].

The concepts of image simulation and synthesis can be
ambiguous (or even interchangeable) if one attends to dic-
tionary definitions of these terms by authoritative references
such as Oxford (OED)2 and Merriam-Webster (MWD)3:

Simulation [OED] n • 3. The technique of imitating the
behaviour of some situation or process (whether economic,
military, mechanical, etc.) by means of a suitably analogous
situation or apparatus, esp. for the purpose of study or per-
sonnel training.
Simulation [MWD] n • 3a: the imitative representation
of the functioning of one system or process by means of
the functioning of another – a computer simulation of an
industrial process; b: examination of a problem often not
subject to direct experimentation by means of a simulating
device.
Synthesis [OED] n • 1. Logic, Philos., etc.: a. The action
of proceeding in thought from causes to effects, or from
laws or principles to their consequences. (Opposed to
analysis n. 3).
Synthesis [MWD] n • 1 a : the composition or combination
of parts or elements so as to form a whole.

The concept of synthesis currently in use in computer vision
and medical image analysis contrasts strikingly as almost
opposite to that traditionally used in philosophy or science.4

In computer graphics, the “goal in realistic image synthesis is
to generate an image that evokes from the visual perception
system a response indistinguishable from that evoked by the
actual environment” [item 2) in the Appendix] [item 3) in
the Appendix]. However, computer graphics is focused on
perceptual accuracy. Glassner, in his classical book states: “our
job as image synthesists is to create an illusion of reality –
to make a picture that carries our message, not necessarily
one that matches some objective standard. It’s a creative
job” [item 4) in the Appendix]. While medical imaging does
not neglect visual realism (e.g. for conventional radiographic
assessment this remains important), the key concern is one
of quantitative accuracy of the synthesised images or, at least,
in accuracy in terms of figures of merit that are meaningful for
the intended task (e.g. diagnostics, planning, prognosis, etc.).

2http://www.oed.com
3http://www.merriam-webster.com
4The Oxford English Dictionary provides contextual quotes that illustrate

this contrast. For instance, from T. Hobbes in Elements Philos. iii. xx. 230,
1656: “Synthesis is Ratiocination from the first causes of the Construction,
continued through all the middle causes till we come to the thing itself which
is constructed or generated.”, and from I. Newton in Opticks (ed. 2) iii. i.
380, 1718: “The Synthesis consists in assuming the Causes discover’d, and
establish’d as Principles, and by them explaining the Phnomena proceeding
from them.” Source: http://www.oed.com/view/Entry/196574.

Fig. 1. Data-Information-Knowledge-Wisdom (DIKW) pyramid and how
phenomenologic and mechanistic approaches relate to it. Adapted from
[item 6) in the Appendix]

In the sequel, we attempt to provide some distinction between
and propose a definition to the concepts of image synthesis
and image simulation based on the literature and praxis of our
medical imaging community.

At one level, in using the concepts of simulation and synthe-
sis, our community usually makes a fundamental ontological
distinction best described by referring to mechanistic and phe-
nomenologic models, respectively. In simulation, we usually
adopt first principles for image generation while in synthesis
we start off with abundant data (with the notion of abundance
changing through the years). We also usually assume behind
these concepts a natural information processing direction: from
data to models with synthesis; and from models to data with
simulation (Fig. 1). Simulation implies the existence of an
abstraction of the knowledge we possess, usually in the form
of first principles, that is used to derive instances of that
knowledge in a scenario that is fully controlled by the selection
of simulation parameters. Synthesis, on the contrary, implies
the ability to abstract or summarise (synthesise) knowledge
from a collection of exemplars that are representative of a
wider population, phenotype or phenomenon. This is usually
accomplished through statistical or phenomenologic models.
If a mechanistic model is available, one can perform data
assimilation or parameter identification resulting in a cus-
tomised or individualised mechanistic model. Conversely, one
can simulate new image (or shape) examples from an image (or
shape) synthesis method but we talk then of data-driven mod-
els and these are usually phenomenologic in nature. At this
point, we make explicit that the notion of “medical image”
we use here refers to any spatially (or spatio-temporally)
resolved mapping or function [item 5) in the Appendix] to
any physical or physiological parameter space, even if that
space is non-measurable and hence derived from a computer-
based synthesis or simulation. In this case, we can refer to “vir-
tual” or ”in silico” medical imaging [item 6) in the Appendix].
This has as a side-effect that while phenomenologic model
can issue forecasts (i.e. are regressive or extrapolative), only
mechanistic models are truly predictive (Latin: præ-, “before,”
and dicere, “to say”).

Here, we offer these two definitions:

(Image) Synthesis [ours] n • The generation of
visually realistic and quantitatively accurate images
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through learning phenomenologic models with appli-
cation to problems like interpolation, super resolu-
tion, image normalisation, modality propagation, data
augmentation, etc.
(Image-based) Simulation [ours] n • The application of
mechanistic first principles from imaging physics, organ
physiology, and/or their interaction, to produce virtual
images that are informed by individualised data; these
result on both visually realistic and physically/clinically
plausible images, and are generated under controlled
hypothetical imaging conditions.

Synthetic images are generally useful in structuring infor-
mation and capturing knowledge from vast image data sets
when little is known about the underlying mechanisms. They
are particularly useful as a modeling approach when data is
abundant and we have few hypothesis to make about the under-
lying mechanisms. They are hypothesis-free but data-driven:
this means the extracted knowledge must be cautiously inter-
preted in light of the way the data has been collected (e.g. what
population is represented by this sample?, which inclusion
and exclusion criteria underlie the data?, etc.). Virtual images
derived from image-based simulations, in turn, produce images
with strong mechanistic priors and are a great approach when
acquiring (large amounts of) images is impractical, ethically
unjustifiable, or simply impossible. Here, the data generated
from simulations must also be cautiously interpreted check-
ing the epistemological validity of the underlying modeling
assumptions and mechanisms. In brief, both approaches have
strengths and limitations. Synthetic images play a key role in
data-driven information processing and knowledge discovery
while image-based simulations are valuable in hypothesis-
driven research in image-based diagnosis and treatment.

III. MECHANISTIC OR PHENOMENOLOGIC?

It is beyond the scope of this editorial to review the consid-
erable progress made over the past decades in both physical
models of image formation and in machine learning techniques
for image synthesis. This special issue is a modern and exciting
excerpt of the most recent developments. We would like,
however, to put these two approaches underpinning these
special issue in the wider context of current trends in science
and data science.

There are opportunities and limitations in approaching
image generation from a mechanistic or a phenomenologic
standpoint, some of epistemological reach. Some would
argue with increasing availability of big data, computational
resources, and breakthroughs in artificial intelligence, data-
driven phenomenologic models will eventually supersede the
need of mechanistic theories [item 7) in the Appendix], while
others seriously contest this viewpoint [item 8) in the Appen-
dix]. The complexity of image generation process, the need
to model detailed and accurately the geometry and physics
of imaging, and the variability and uncertainty associated
with anatomical and physiological factors, all seem to favour
those challenging the need or feasibility of generating truly
accurate medical images from first principles. In Chapter 12 of
his book, Helbing [item 9) in the Appendix] presents an

Fig. 2. Helbing’s model for digital growth where systemic complexity (e.g.
algorithmic parametric complexity and complexity of health data) grows
at a factorial rate compared to the exponential rate of data and computing
resources. Courtesy of D Helbing. Reprinted with permission.

interesting cautionary argument that contrasts with Anderson’s
vision of Big Data (assuming that we no longer will need
theory and science). Fig. 2 shows Helbing’s model for dig-
ital growth in computational resources doubling about every
18 months (Moore’s law), and data resources doubling about
every 12 months (soon every 12 hours!). While these two
resources follow an exponential growth, the complexity of
the processes that these resources help to elucidate or decide
on (e.g. parametric complexity of the computational meth-
ods, ontological complexity of health data) follow a factorial
growth as they are based on combinatorial combinations and
system networks, respectively. The above implies the problem
of “dark data”, i.e. the share of data we cannot process is
increasing with time. As a consequence, we must know what
data to process and how, which requires hypothesis-driven
science and understanding of the underlying mechanisms
relating data and phenomena so that algorithmic complexity
is dealt with tractably.

IV. SPECIAL ISSUE STATISTICS

Twenty-four manuscripts were received for this special
issue. Two were immediately rejected while another ten were
rejected after a revision round. Twelve papers were finally
accepted after peer-review covering both mechanistic (5) and
phenomenologic (7) modeling and data generation. This rich
selection of papers covers applications in cardiology, retinopa-
thy, histopathology, neurosciences, and oncology. It also cov-
ers all mainstream diagnostic medical imaging modalities.
Two manuscripts were handled by Associate Editors Mehrdad
Gangeh and Hayit Greenspan to avoid potential conflicts of
interest. Each paper was reviewed, at least, by three expert
reviewers.

V. SPECIAL ISSUE OVERVIEW

This special issue comprises 12 papers covering both image-
based simulation and synthesis.
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A. Image-Based Simulation

Simulation papers focus on either devising computational
phantoms of anatomy or physiology in health and dis-
ease, or aim at developing computational phantoms in image
formation.

In the first category of simulation papers, Segars et al.
start off by reviewing what is arguably one of the most
widespread digital phantoms in computational human anatomy
and physiology of the human thorax. The authors overview
the four dimensional (4D) eXtended CArdiac-Torso (XCAT)
series of phantoms, which cover a vast population of phan-
toms of varying ages from newborn to adult, each including
parametrised models for the cardiac and respiratory motions.
This paper illustrates how these phantoms found great use in
radiation dosimetry, radiation therapy, medical device design,
and even the security and defence industry. Abadi et al. extend
upon the capabilities of the XCAT series of computational
phantoms, and propose a detailed lung architecture including
airways and pulmonary vasculature. Eleven XCAT phantoms
of varying anatomy were used to characterize the lung archi-
tecture. The XCAT phantoms were utilized to simulate CT
images for validation against true clinical data. As the number
of organs described as numerical phantoms as XCAT models
increases, the potential use of such models as a tool to
virtually evaluate the current and emerging medical imaging
technologies increases. Polycarpou et al. propose a digital
phantom to synthesise 3D+t PET data using a fast analytic
method. The proposed method derives models of cardiac res-
piration and motion based on real respiratory signals derived
from PET-CT images are combined with MRI-derived motion
modeling and high resolution MRI images. In addition, this
study incorporates changes in lung attenuation at different
respiratory cycle positions. The proposed methodology and
derived simulated datasets can be useful in the development
and benchmarking of motion-compensated PET reconstruction
algorithms by providing associated ground-truth of various
controlled imaging scenarios.

Others consider the role of models in disease processes.
For example, in the paper by García et al., the authors
consider the challenging task of evaluating the correlation of
parenchymal patterns (i.e. local breast density) as provided
by mammography with MRI volume information. Differences
in distributions (MRI versus x-ray) and radical deformation
present (due to how the breast is imaged during mammography
and MR) render this problem also relevant from a registration
perspective. The authors in tackling this challenge, employ a
subject-specific biomechanical model of the breast to assist
the MRI volumes to X-ray mammograms. When converged,
a direct projection of the MR-derived glandular tissue permits
the comparison to the corresponding mammogram. Along
the same theme, Roque et al. propose a reaction-diffusion
model of tumour growth. Predicting tumour growth (based
on models) and particularly its response to therapy is a
critical aspect of cancer care and a challenge in cancer
research. In this work, the authors derive an image-driven
reaction-diffusion model of avascular tumour growth, which
permits proliferation, death and spread of tumour cells, and

accounts for nutrient distribution and hypoxia. The model
parameters are learned (and evaluated) based on longitudinal
time series of DCE-MRI images. Rodrigo et al. study the
influence of anatomical inaccuracy in the reconstruction of
Electrocardiographic Images (ECGI) in non-invasive diagnosis
of cardiac arrhythmias. The precise position of the heart
inside the body is important for accurate reconstructions but
often not accurately known. They explored the curvature of
L-curve from the Tikhonov regularization approach, which
is one methodology used to solved the inverse problem, and
discovered that optimization of the maximum curvature min-
imizes inaccuracies in the atrial position an orientation. Such
automatic method to remove inaccuracies in atrial position
improves the results of ECGI. Moreover, it allows to apply
ECGI technology also where the electric recording, usually
done via Body Surface Potential Mapping (BSPM) and the
anatomical CT/MRI images are not recorded one after another,
which could potentialy expand ECGI use to a larger group of
patients.

B. Image Synthesis

This issue also comprises several papers using phenomeno-
logic or data-driven methods for image synthesis or generating
annotated reference datasets.

It is interesting to see that some methods are hybrid, i.e.
they combine both data-driven with mechanistic approaches.
Zhou et al., for instance, undertake to generate realistic syn-
thetic cardiac images, of both ultrasound (US), and cine and
tagged Magnetic Resonance Imaging (MRI), corresponding to
the same virtual patient. This method develops a synthesis-
by-registration approach where an initial dataset is segmented,
transformed and warped (as needed) to generate a motion and
deformation-informed set of cMRI, tMRI, and US images.
Only the motion model in this method is derived from an
actual physical model while the image intensity is created
through mapping reference values from literature. In a related
paper, Duchateau et al. also focus on the automatic generation
of a large database of annotated cardiac MRI image sequences.
Their approach, like the one of Zhou et al., combines both
mechanistic motion models of cardiac electro-mechanics with
anatomical augmentation via data-driven non-rigid deforma-
tions. The proposed method requires the existence of a small
database of cine CMR sequences that serve as seed to augment
the anatomical variability by creating simulations of car-
diac electro-mechanics under diverse conditions. Augmented
data is created by warping image intensities in the origi-
nal sequence through the electromechanical simulation. This
method ensures the material point correspondence between
frames complies with a mechanistic electromechanical model
yet image appearance is not altered compared to that of the
original dataset used. The authors apply this approach to
generate a database of subjects myocardial infarction under
controlled conditions in infarct location and size. Finally, Mat-
tausch and Goksel’s paper focuses on how to reconstruct the
distribution of ultrasound image scatterers of tissue samples
non-invasively. The recovered scatterer map will inform a
realistic ultrasound image simulation under different viewing
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angles or transducer profiles. The robustness of this technique
relies on obtaining images from multiple view points to accu-
rately assess scatterer distribution, without which the forward
problem is not accurately solved. Besides an inversion strategy,
the authors contribute a novel beam-steering technique to
insonify the tissue rapidly and conveniently acquiring multiple
images of the same tissue. The authors also demonstrate that
the scatterer map offers a new tissue representation that can
be edited to create controlled variations.

Several papers focus on machine learning for image
synthesis to tackle problems as diverse as generating
benchmark data, image normalisation, super resolu-
tion, or cross-modality synthesis, to name just a few. One
technique prominent among several submissions is adversarial
learning. For instance, Costa et al. propose a combination
of adversarial networks and adversarial auto-encoders to
develop synthetic retinal colour images. Adversarial auto-
encoders are used to learn a latent representation of retinal
vascular trees and generate corresponding retinal vascular
tree masks. Adversarial learning, in turn, is used to map
these vascular masks into colour retinographies. The authors
present a learning approach that jointly learns the parameters
of the adversarial network and auto-encoder. The authors
extensively validated of the quality of their synthetic images.
The data produced can help in the generation of valuable
labelled ground-truth data for testing or training retinal
image analysis methods. Ben Taieb and Hamarneh also use
adversarial learning to address the problem of histopathology
normalisation. Recognizing the large variability between
staining processes in different histopathology laboratories,
the authors propose a method that aims to emulate stain
characteristics from one laboratory to the other. Treated as
a style transfer problem (to adopt the term from computer
vision literature) the authors proposed a deep neural network
that learns to map input images to output images that best
match the distribution characteristics of a reference set of
data, thus achieving stain normalization. A combination of
generative, discriminative and task specific networks jointly
optimized achieve the desired objective of finding stain
normalizations suitable for segmentation or classification
tasks.

Chartsias et al. propose an approach to MRI synthesis that is
both multi-input and multi-output and uses fully convolutional
neural networks. The model has two interesting properties: it
is robust to handle missing data, and, while it benefits from,
does not require, additional input modalities. The model was
evaluated on the ISLES and BRATS datasets and demon-
strated statistically significant improvements over state-of-the-
art methods for single input tasks. Using dictionary learning,
Huang et al. present a method that can synthesize data across
modalities using paired and unpaired data. Relying on the
power of cross modal dictionaries they establish matching
functions that can discover cross-modal sparse embeddings
even when unpaired and unregistered data are available. Con-
sidering that across modalities different distributions may be
present, a manifold geometry formulation term is considered.
They extensively evaluate their method on two publicly avail-
able brain MRI datasets.

Fig. 3. Top five healthcare artificial intelligence use cases revenue.
World Markets: 2016-2025. Medical image analysis has the lion’s share
of revenues; other use cases are likely to also involve image analytics
of some sort. Courtesy of Tractica [item 18) in the Appendix]. Reprinted
with permission.

C. Outlook and Conclusions

We hope with this special issue we have successfully consol-
idated current efforts in image-based simulation and synthesis,
and stimulate future research. Image-based simulation and
image synthesis will only gain relevance in the years to
come: consider the tsunami of healthcare data, [item 10)
in the Appendix] emerging large-scale population imaging
and its analytics [item 10) in the Appendix], [item 10) in
the Appendix] and the growing role of machine learning
[item 13) in the Appendix]–[item 15) in the Appendix] and
computational medicine [item 16) in the Appendix], [item
17) in the Appendix], just to name a few trends. As perhaps
never before, intensive industrial innovation in this area fuels
translation of these technologies into clinical applications and
commercial products. Tractica [item 16) in the Appendix],
for instance, forecasts global software revenue from 21 key
healthcare AI use cases will grow from $165 million in 2017 to
$5.6 billion annually by 2025. Including the hardware and ser-
vices sales driven by these software implementations, the firm
anticipates the total revenue opportunity for the healthcare AI
market will reach $19.3 billion by 2025.

By unambiguously defining these terms and putting them
in context, we will be in a better position to see the research
gaps and synergies, address common challenges, and better
track the evolution of these methods. With data becoming
pervasive and machine learning a commodity, we expect
image synthesis research to grow. As our discussion above
shows, mechanistic understanding and interpretation of the
available data will have to develop on par to data-driven
approaches. Mechanism-driven priors will remain a foundation
of Bayesian inference or physics-based approaches to data
interpretation and reconstruction. Some methods presented do
in fact combine both mechanistic and data-driven models, but
the gap still exists and more research is needed here.

Evaluation of machine learning and computational modeling
remain crucial if these models are to percolate to the clinical
community with credibility. As machine learning, artificial
intelligence, computational medicine, etc. turn into buzzwords
even among clinicians and market analysts [item 19) in the
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Appendix], [item 20) in the Appendix], and the threshold to
access and (mis)use these technologies lowers, they become
commodities [item 21) in the Appendix] [item 22) in the
Appendix] with the potential risk of confusing reality with
fiction. Well-designed community challenges5 for performance
assessment and cross-algorithmic benchmarking should keep
us grounded in reality and grow their importance. For these
challenges to be successful in this aim, larger and more
diverse datasets must be developed and made openly available,
alongside with standards ensuring transparent analysis and
reporting protocols.

More benchmark data only part addresses the problem.
Preprocessing, training, and testing largely remain ad hoc
processes with non-negligible impact on performance compar-
isons. Standardised evaluation protocols are as key as standard-
ised datasets. There are insufficient reference implementations
of key algorithms that everyone uses in open benchmarks.
This leads to considerable algorithmic re-implementation fur-
ther obfuscating genuine contributions and the origin of
improved performance. Reference open-source implementa-
tions of benchmark protocols are helpful but still remain
the exception rather than the norm (e.g. only a fraction
of the papers in the special issue offer that). Of course,
this challenge holds both for simulation and synthesis
approaches.

Computational sciences are increasingly pervasive in our
lives. It is reassuring to see growing awareness on the impor-
tance of model verification and validation across engineering,
[item 23) in the Appendix], [item 24) in the Appendix] medi-
cine, [item 25) in the Appendix] [item 26) in the Appendix]
and biology [item 27) in the Appendix]. While recent years
have seen very positive initiatives in this arena, [item 28) in
the Appendix]–[item 30) in the Appendix] our community of
medical imaging and medical image computing will have to
give even more consideration to these topics and develop and
promote best practices in the assessment and benchmarking of
simulation and synthesis methods.

One other area we believe is worth investigating is the
definition of appropriate evaluation criteria. Numerical fidelity
in reconstruction is rather common (e.g. mean square error
and its variants) yet does not necessarily translate to best
visual results. In computer vision research, human observers
are recruited via crowd sourcing and visually score the results
of image synthesis. In our domain (medical imaging), this
would ideally require the involvement of clinical experts,
which is costly and time consuming. Perhaps more suitable
evaluations can be those that are application-driven, i.e. those
that assess whether simulated/synthesised data can be used in
lieu of real data in an analysis task (or several tasks). Some
papers in this special issue did in fact use such application-
driven evaluations, but these approaches are not standardised
across methods or applications, which adds another layer of
obfuscation to the assessment of performance.

In summary, simulation and synthesis are evolving areas
in our field. Thankfully, specialised workshops such as the
MICCAI SASHIMI series can facilitate cross-disciplinary

5https://grand-challenge.org

exchange, visualise the progress made, and advance upon the
challenges described earlier.
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