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A Deep Cascade of Convolutional Neural
Networks for Dynamic MR Image Reconstruction
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Abstract— Inspired by recent advances in deep learn-
ing, we propose a framework for reconstructing dynamic
sequences of 2-D cardiac magnetic resonance (MR) images
from undersampled data using a deep cascade of convolu-
tional neural networks (CNNs) to accelerate the data acqui-
sition process. In particular, we address the case where data
are acquired using aggressive Cartesian undersampling.
First, we show that when each 2-D image frame is recon-
structed independently, the proposed method outperforms
state-of-the-art 2-D compressed sensing approaches, such
as dictionary learning-based MR image reconstruction,
in terms of reconstruction error and reconstruction speed.
Second, when reconstructing the frames of the sequences
jointly, we demonstrate that CNNs can learn spatio-temporal
correlations efficiently by combining convolution and data
sharing approaches. We show that the proposed method
consistently outperforms state-of-the-art methods and is
capable of preserving anatomical structure more faithfully
up to 11-fold undersampling. Moreover, reconstruction is
very fast: each complete dynamic sequence can be recon-
structed in less than 10 s and, for the 2-D case, each image
frame can be reconstructed in 23 ms, enabling real-time
applications.

Index Terms— Deep learning, convolutional neural net-
work, dynamic magnetic resonance imaging, compressed
sensing, image reconstruction.

I. INTRODUCTION

IN MANY clinical scenarios, medical imaging is an indis-
pensable diagnostic and research tool. One such impor-

tant modality is Magnetic Resonance Imaging (MRI), which
is non-invasive and offers excellent resolution with various
contrast mechanisms to reveal different properties of the
underlying anatomy. However, MRI is associated with an
inherently slow acquisition process. This is because data
samples of an MR image are acquired sequentially in k-space
and the speed at which k-space can be traversed is limited
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by physiological and hardware constraints [1]. A long data
acquisition procedure imposes significant demands on patients,
making this imaging modality expensive and less accessible.
One possible approach to accelerate the acquisition process is
to undersample k-space, which in theory provides an accel-
eration rate proportional to a reduction factor of a number
of k-space traversals required. However, undersampling in
k-space violates the Nyquist-Shannon theorem and generates
aliasing artefacts when the image is reconstructed. The main
challenge in this case is to find an algorithm that can recover
an uncorrupted image taking into account the undersampling
regime combined with a-priori knowledge of appropriate prop-
erties of the image to be reconstructed.

Using Compressed Sensing (CS), images can be recon-
structed from sub-Nyquist sampling, assuming the following:
firstly, the images must be compressible, i.e. they have a
sparse representation in some transform domain. Secondly, one
must ensure incoherence between the sampling and sparsity
domains to guarantee that the reconstruction problem has a
unique solution and that this solution is attainable. In practice,
this can be achieved with random subsampling of k-space,
which produces aliasing patterns in the image domain that
can be regarded as correlated noise. Under such assumptions,
images can then be reconstructed through nonlinear optimisa-
tion or iterative algorithms. The class of methods which apply
CS to the MR reconstruction problem is termed CS-MRI [1].
In general, these methods use a fixed sparsifying transforms,
e.g. wavelet transformations. A natural extension of these
approaches has been to enable more flexible representations
with adaptive sparse modelling, where one attempts to learn
the optimal sparse representation from the data directly. This
can be done by exploiting, for example, dictionary learn-
ing (DL) [2].

To achieve more aggressive undersampling, several strate-
gies can be considered. One way is to further exploit
the inherent redundancy of the MR data. For example,
in dynamic imaging, one can make use of spatio-temporal
redundancies [3]–[5], or when imaging a full 3D volume, one
can exploit redundancy from adjacent slices [6]. An alternative
approach is to exploit sources of explicit redundancy of the
data to turn the initially underdetermined problem arising from
undersampling into a determined or overdetermined problem
that is easily solved. This is the fundamental assumption
underlying parallel imaging [7]. Similarly, one can make use
of multi-contrast information [8] or the redundancy generated
by multiple filter responses of the image [9]. These explicit
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redundancies can also be used to complement the sparse
modelling of inherent redundancies [10], [11].

Recently, deep learning has been successful at tackling
many computer vision problems. Deep neural network archi-
tectures, in particular convolutional neural networks (CNNs),
are becoming the state-of-the-art technique for various imaging
problems including image classification [12], object local-
isation [13] and image segmentation [14]. Deep architec-
tures are capable of extracting features from data to build
increasingly abstract representations, replacing the traditional
approach of carefully hand-crafting features and algorithms.
For example, it has already been demonstrated that CNNs
outperform sparsity-based methods in super-resolution [15] in
terms of both reconstruction quality and speed [16]. One of the
contributions of our work is to explore the application of CNNs
in undersampled MR reconstruction and investigate whether
they can exploit data redundancy through learned representa-
tions. In fact, CNNs have already been applied to compressed
sensing from random Gaussian measurements [17]. Despite the
popularity of CNNs, there has only been preliminary research
on CNN-based MR image reconstruction [18], [19], hence the
applicability of CNNs to this problem for various imaging
protocols has yet to be fully explored.

In this work we consider reconstructing dynamic sequences
of 2D cardiac MR images with Cartesian undersampling,
as well as reconstructing each frame independently, using
CNNs. We view the reconstruction problem as a de-aliasing
problem in the image domain. Reconstruction of undersampled
MR images is challenging because the images typically have
low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue,
we propose a deep network architecture which forms a cas-
cade of CNNs.1 Our cascade network closely resembles the
iterative reconstruction of DL-based methods, however, our
approach allows end-to-end optimization of the reconstruction
algorithm. For 2D reconstruction, the proposed method is
compared to Dictionary Learning MRI (DLMRI) [2] and for
dynamic reconstruction, the method is compared to Dictionary
Learning with Temporal Gradient (DLTG) [3], kt Sparse and
Low-Rank (kt-SLR) [20] and Low-Rank Plus Sparse Matrix
Decomposition (L+S) [21], which are the state-of-the-art com-
pressed sensing and low-rank approaches. We show that the
proposed method outperforms them in terms of reconstruc-
tion error and perceptual quality, especially for aggressive
undersampling rates. Moreover, owing to GPU-accelerated
libraries, images can be reconstructed efficiently using the
approach. In particular, for 2D reconstruction, each image can
be reconstructed in about 23ms, which is fast enough to enable
real-time applications. For the dynamic case, sequences can be
reconstructed within 10s, which is reasonably fast for off-line
reconstruction methods.

II. PROBLEM FORMULATION

Let x ∈ CN represent a sequence of 2D complex-valued
MR images stacked as a column vector, where N = Nx Ny Nt .

1Code available at https://github.com/js3611/
Deep-MRI-Reconstruction

Our problem is to reconstruct x from y ∈ CM (M � N),
undersampled measurements in k-space, such that:

y = Fux + e (1)

Here Fu ∈ CM×N is an undersampled Fourier encoding
matrix and e ∈ CM is acquisition noise modelled as addi-
tive white Gaussian (AWG) noise. In the case of Cartesian
acquisition, we have Fu = MF, where F ∈ CN×N applies
two-dimensional Discrete Fourier Transform (DFT) to each
frame in the sequence and M ∈ CM×N is an undersam-
pling mask selecting lines in k-space to be sampled for
each frame. The corresponding subset of indices sampled in
k-space is indicated by �. For the fully-sampled case, M = N ,
the sequence is reconstructed by applying the 2D inverse DFT
(IDFT) to each frame. However, Eq. (1) is underdetermined
even in the absence of noise, and hence the inversion is ill-
posed; in particular, applying IDFT, which in this case is
also called zero-filled reconstruction, results in a sequence of
aliased images xu = FH

u y due to sub-Nyquist sampling. Note
that FH

u is the Hermitian of the encoding matrix, which first
maps y ∈ CM to the k-t coordinate and then applies the 2D
IDFT frame-wise. Examples of the aliased images are shown
in Fig. 1. Therefore, in order to reconstruct x, one must exploit
a-priori knowledge of its properties, which can be done by
formulating an unconstrained optimisation problem:

min.
x

R(x) + λ‖y − Fux‖2
2 (2)

R expresses regularisation terms on x and λ ∈ R allows
the adjustment of data fidelity based on the noise level
of the acquired measurements y. For CS-based methods,
the regularisation terms R typically involve �0 or �1 norms
in the sparsifying domain of x. Our formulation is inspired by
DL-based reconstruction approaches [2], in which the problem
is formulated as:

min.
x,D,{γ i }

∑

i

(
‖Ri x−Dγ i‖2

2+ν‖γ i‖0

)
+ λ‖y−Fux‖2

2 (3)

Here Ri is an operator which extracts a spatio-temporal
image patch at i , γ i is the corresponding sparse code with
respect to a dictionary D. In this approach, the regularisation
terms force x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for
our CNN formulation, we force x to be well-approximated by
the CNN reconstruction:

min.
x

‖x − fcnn(xu |θ)‖2
2 + λ‖Fux − y‖2

2 (4)

Here fcnn is the forward mapping of the CNN parameterised
by θ , possibly containing millions of adjustable network
weights, which takes in the zero-filled reconstruction xu and
directly produces a reconstruction as an output. Since xu

is heavily affected by aliasing from sub-Nyquist sampling,
the CNN reconstruction can therefore be seen as solving
a de-aliasing problem in the image domain. The approach
of Eq. (4), however, is limited in the sense that the CNN
reconstruction and the data fidelity are two independent terms.
In particular, since the CNN operates in the image domain,
it is trained to reconstruct the sequence without a-priori
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Fig. 1. An example of the image acquisition with Cartesian undersampling for a sequence of cardiac cine images. (a) A ground truth sequence that
is fully-sampled in k-space, shown along x-y and y-t for the image frame and the temporal profile respectively. (b) A Cartesian undersampling mask
that only acquires 1/12 of samples in k-space, where white indicates the sampled lines. Each image frame is undersampled with the mask shown
along kx-ky. The undersampling pattern along the temporal dimension is shown in ky-t. (c) The zero-filled reconstruction of the image acquired
using the 12-fold undersampling mask. (d, e) 4-fold Cartesian undersampling mask and the resulting zero-filled image. Note that the aliasing artefact
becomes more prominent as the undersampling factor is increased.

information of the acquired data in k-space. However, if we
already know some of the k-space values, then the CNN
should be discouraged from modifying them, up to the level of
acquisition noise. Therefore, by incorporating the data fidelity
in the learning stage, the CNN should be able to achieve better
reconstruction. This means that the output of the CNN is now
conditioned on � and λ. Then, our final reconstruction is given
simply by the output, xcnn = fcnn(xu |θ , λ,�). Given training
data D of input-target pairs (xu, xgnd) where xgnd is a fully-
sampled ground-truth data, we can train the CNN to produce
an output that attempts to accurately reconstruct the data by
minimising an objective function:

L(θ) =
∑

(xu,xgnd)∈D
�
(
xgnd, xcnn

)
(5)

where � is a loss function. In this work, we consider an
element-wise squared loss, which is given by �

(
xgnd, xcnn

) =
‖xgnd − xcnn‖2

2.

III. DATA CONSISTENCY LAYER

Denote the Fourier encoding of the image reconstructed
by CNN as scnn = Fxcnn = F fcnn(xu|θ). scnn( j) represents
an entry at index j in k-space. The undersampled data y ∈
CM can be mapped onto the vectorised representation of k-t
coordinate (CN ) by s0 = FFH

u y, which fills the non-acquired
indices in k-space with zeros. In order to incorporate the data
fidelity in the network architecture, we first note the following:
for fixed network parameters θ , Eq. (4) has a closed-form
solution srec in k-space, given as in [2] element-wise:

srec( j) =
⎧
⎨

⎩
scnn( j) if j �∈ �
scnn( j) + λs0( j)

1 + λ
if j ∈ �

(6)

The final reconstruction in the image domain is
then obtained by applying the inverse Fourier encoding
xrec = FH srec. The solution yields a simple interpretation:
if the k-space coefficient srec( j) is initially unknown (i.e.
j �∈ �), then we use the predicted value from the CNN.
For the entries that have already been sampled ( j ∈ �),
we take a linear combination between the CNN prediction
and the original measurement, weighted by the level of noise
present in s0. In the limit λ → ∞ we simply replace the

j -th predicted coefficient in � by the original coefficient. For
this reason, this operation is called a data consistency step in
k-space (DC). In the case of where there is non-neglegible
noise present in the acquisition, λ = q/σ must be adjusted
accordingly, where q is a hyper-parameter and σ 2 is the power
of AWG noise in k-space (i.e. �(ei ),	(ei ) ∼ N(0, σ/

√
2)).

In [3], it is empirically shown that p ∈ [5 × 10−5, 5 × 10−6]
for σ 2 ∈ [4 × 10−8, 10−9] works sufficiently well.

Since the DC step has a simple expression, we can in fact
treat it as a layer operation of the network, which we denote
as a DC layer. When defining a layer of a network, the rules
for forward and backward passes must be specified in order
for the network to be end-to-end trainable. This is because
CNN training can effectively be performed through stochastic
gradient descent, where one updates the network parameters θ

to minimise the objective function L by descending along
the direction given by the derivative ∂L/∂θT . Therefore,
it is necessary to define the gradients of each network layer
relative to the network’s output. In practice, one uses an
efficient algorithm called backpropagation [22], where the
final gradient is given by the product of all the Jacobians
of the layers contributing to the output. Hence, in general,
it suffices to specify a layer operation fL for the forward pass
and derive the Jacobian of the layer with respect to the layer
input ∂ fL/∂xT for the backward pass.

A. Forward Pass

The data consistency in k-space can be simply decomposed
into three operations: Fourier transform F, data consistency
fdc and inverse Fourier transform FH . The data consistency
fdc performs the element-wise operation defined in Eq. (6),
which, assuming s0( j) = 0 ∀ j �∈ �, can be written in matrix
form as:

fdc(s, s0; λ) = �s + λ

1 + λ
s0 (7)

Here � is a diagonal matrix of the form:

�kk =
⎧
⎨

⎩
1 if j �∈ �

1

1 + λ
if j ∈ �

(8)



494 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 2, FEBRUARY 2018

Combining the three operations defined above, we can
obtain the forward pass of the layer performing data consis-
tency in k-space:

fL (x, y; λ) = FH�Fx + λ

1 + λ
FH

u y (9)

B. Backward Pass

In general, one requires Wirtinger calculus to derive a
gradient in complex domain [23]. However, in our case,
the derivation greatly simplifies due to the linearity of the
DFT matrix and the data consistency operation. The Jacobian
of the DC layer with respect to the layer input x is therefore
given by:

∂ fL

∂xT
= FH �F (10)

Note that unlike many other applications where CNNs process
real-valued data, MR images are complex-valued and the
network needs to account for this. One possibility would be
to design the network to perform complex-valued operations.
A simpler approach, however, is to accommodate the complex
nature of the data with real-valued operations in a dimensional
space twice as large (i.e. we replace CN by R2N ). In the latter
case, the derivations above still hold due to the fundamental
assumption in Wirtinger calculus.

The DC layer has one hyperparameter λ ∈ R. This value
can be fixed or made trainable. In the latter case, the derivative
∂ fdc
∂λ (a column vector here) is given by:

[
∂ fdc(s, s0; λ)

∂λ

]

j
=

⎧
⎨

⎩
0 if j �∈ �
s0( j) − scnn( j)

(1 + λ)2 if j ∈ �
(11)

and the update is 	λ = Je
∂ fdc
∂λ where Je is the

error backpropagated via the Jacobians of the layers
proceeding fdc.

IV. CASCADING NETWORK

For CS-based methods, in particular for DL-based methods,
the optimisation problem such as in Eq. (3) is solved using a
coordinate-descent type algorithm, alternating between the de-
aliasing step and the data consistency step until convergence.
In contrast, with CNNs, we are performing one step de-aliasing
and the same network cannot be used to de-alias iteratively.
While CNNs may be powerful enough to learn one step
reconstruction, such a network could show signs of overfitting,
unless there is vast amounts of training data. In addition,
training such networks may require a long time as well as
careful fine-tuning steps. It is therefore best to be able to use
CNNs for iterative reconstruction approaches.

A simple solution is to train a second CNN which learns to
reconstruct from the output of the first CNN. In fact, we can
concatenate a new CNN on the output of the previous CNN
to build extremely deep networks which iterate between inter-
mediate de-aliasing and the data consistency reconstruction.
We term this a cascading network. In fact, one can essentially
view this as unfolding the optimisation process of DLMRI.
If each CNN expresses the dictionary learning reconstruction

step, then the cascading CNN can be seen as a direct extension
of DLMRI, where the whole reconstruction pipeline can be
optimised from training, as seen in Fig. 4. In particular, owing
to the forward and back-backpropagation rules defined for the
DC layer, all subnetworks can be trained jointly in an end-to-
end manner, defining yielding one large network.

V. DATA SHARING LAYER

For the case of reconstructing dynamic sequences, the tem-
poral correlation between frames can be exploited as an addi-
tional regulariser to further de-alias the undersampled images.
For this, we use 3D convolution to learn spatio-temporal
features of the input sequence. In addition, we propose incor-
porating features that could benefit the CNN reconstruction,
inspired by data sharing approaches [24]–[26]: if the change
in image content is relatively small for any adjacent frames,
then the neighbouring k-space samples along the temporal-
axis often capture similar information. In fact, as long as this
assumption is valid, for each frame, we can fill the entries
using the samples from the adjacent frames to approximate
missing k-space samples. Specifically, for each frame t , all
frames from t − nad j to t + nad j are considered, filling the
missing k-space samples at frame t . If more than one frame
within the range contains a sample at the same location,
we take the weighted average of the samples. The idea is
demonstrated in Fig. 2.

An example of data sharing with nad j = 2 applied to
the Cartesian undersampling is shown in Fig. 3(a). As data
sharing aggregates the lines in k-space, the resulting images
can be seen as a zero-filled reconstruction from a measure-
ment with lower undersampling factor. In practice, however,
cardiac sequences contain highly dynamic content around the
heart and hence combining the adjacent frames results in
data inconsistency around the dynamic region, as illustrated
in Fig. 3(b,c,d). However, for CNN reconstruction, we can
incorporate these images as an extra input to train the network
rather than treating them as the final reconstructions. Note
that the reduction in the apparent acceleration factor is non-
trivial to calculate: if each frame samples 10% of k-space,
combining 5 adjacent frames in theory should cover 50%.
However, one often relies on variable density sampling, which
samples low-frequency terms more often, yielding overlapped
lines between the adjacent frames. Therefore, the apparent
acceleration factor is often much less. As a remedy, regular
sampling can be considered. However, regular sampling results
in coherent artifact in the image domain, the removal of which
is a different problem from the one we address here, which
attempts to resolve incoherent aliasing patterns. Alternatively,
one can perform a sampling trajectory optimisation to reduce
the overlapping factor, however, this is out-of-scope for this
work and will be investigated in future.

For our network, we implement data sharing (DS) layers
which take an input image and generate multiple “data-
shared” images for a range of nad j . The resulting images
are concatenated along the channel-axis and treated as a
new input fed into the first convolution layer of the CNNs.
Therefore, using the images obtained from data sharing can be
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Fig. 2. The illustration of data sharing approach. The acquired lines,
which can be seen as nadj = 0, are colour-coded for each time frame.
For each nadj, the missing entries in each frame are aggregated using
the values from up to ±nadj neighbouring frames. The overlapped lines
are averaged.

interpreted as transforming the problem into joint estimation
of aliasing as well as the dynamic motion, where the effect of
aliasing is considerably smaller. Note that for the cascading
network architecture, from the second subnetwork onwards,
the input to each subnetwork is no longer “undersampled”,
but instead contains intermediate predicted values from the
previous subnetwork. In this case, we average all the entries
from the adjacent frames and update the samples which were
not initially acquired. For this work, we allocate equal weight
on all adjacent k-space samples, however, in future, more
elaborate averaging schemes can be considered.

VI. ARCHITECTURE AND IMPLEMENTATION

Incorporating all the new elements mentioned above, we can
devise our cascading network architecture. Our CNN takes
in a two-channeled sequence of images R2Nx Ny Nt , where
the channels store real and imaginary parts of the zero-
filled reconstruction in the image domain. Based on literature,
we used the following network architecture for the CNN,
illustrated in Fig. 4: it has nd − 1 3D convolution layers Ci ,
which are all followed by Rectifier Linear Units (ReLU) as
a choice of nonlinearity. For each of them, we used a kernel
size k = 3 [27] and the number of filters was set to n f = 64.

Fig. 3. The illustration of data sharing approach applied to the image and
the mask from Fig.1(a,b). In this figure, (a) shows the appearance of the
resulting sequence for nadj = 2. (b) The entries in k-space that are either
acquired or aggregated using the data sharing approach with nadj = 2,
which conceptually defines a sampling mask. (c) For a comparison,
we show the resulting zero-filled reconstruction if (b) were treated as
a mask. (d) The error map between the (a) and (b). One can observe
their similarity except for the data inconsistency of the dynamic content
around the heart region. Note that for nadj = 2, the obtained image
has the appearance similar to acceleration factor around 4 (rather than
12/5 = 2.4, which is the maximum achievable from 5 frames) due to
overlapping lines.

The final layer of the CNN module is a convolution layer
Crec with k = 3 and n f = 2, which projects the extracted
representation back to the image domain. We also used
residual connection [12], which sums the output of the CNN
module with its input. Finally, we form a cascading network by
using the DC layers interleaved with the CNN reconstruction
modules nc times. For DS layer, we take the input to each
subnetwork, generating images for all nad j ∈ {0, 1, . . . , 5}.
As aforementioned, the resulting images are concatenated
along the channel-axis and fed to the first convolution layer.
We found that this choice of architecture works sufficiently
well, however, the parameters were not optimised and there
is therefore room for refinement of the results presented.
Hence the result is likely to be improved by, for example,
incorporating pooling layers and varying the parameters such
as kernel size and stride [14], [28].

Our model can also be used for 2D image reconstruction
by setting Nt = 1 and use 2D convolution layers instead,
however, data sharing does not apply to 2D reconstruction.
For the following experiments, we first explore the network
configurations by considering 2D MR image reconstruction.
We identify our network by the values of nc, nd and the use
of data sharing. For example, D5-C2 means a network with
nd = 5, nc = 2 with no data sharing. D5-C10(S) corresponds
a network with nd = 5, nc = 10 and data sharing.

As mentioned, pixel-wise squared error was used as
the objective function. As the proposed architecture is
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Fig. 4. A cascade of CNNs. DC denotes the data consistency layer and DS denotes the data sharing layer. The number of convolution layers within
each network and the depth of cascade is denoted by nd and nc respectively. Note also that DS layer only applies when the input is a sequence of
images.

memory-intensive, a small minibatch size is used to train
the cascade networks. We used minibatch size 1 for all the
experiments but we did not observe any problem with the
convergence. We initialised the network weights using He
initialisation [29]. The Adam optimiser [30] was used to
train all models, with parameters α = 10−4, β1 = 0.9 and
β2 = 0.999 unless specified. We also added �2 weight decay
of 10−7.

VII. EXPERIMENTAL RESULTS

A. Setup

1) Dataset: Our method was evaluated using the cardiac
MR dataset consisting of 10 fully sampled short-axis cardiac
cine MR scans. Each scan contains a single slice SSFP
acquisition with 30 temporal frames with a 320 × 320 mm
field of view and 10 mm slice thickness. The data consists
of 32-channel data with sampling matrix size 192 × 190,
which was zero-filled to the matrix size 256 × 256. The raw
multi-coil data was reconstructed using SENSE [31] with no
undersampling and retrospective gating. Coil sensitivity maps
were normalized to a body coil image to produce a single
complex-valued image set that could be back-transformed to
regenerate complex k-space samples or further processed to
form final magnitude images. For the following experiments,
we perform retrospective undersampling, simulating a practical
single-coil acquisition scenario.

2) Undersampling: In this work, we focus on Cartesian
undersampling, where one fully samples frequency-encodes
(along kx ) and randomly undersamples the phase encodes
(along ky). In addition, we pair consecutive phase encodes,
which has been reported to reduce eddy current which is a
source of image degredation [33]. For each frame, the eight
lowest spatial frequencies are always acquired and other
frequencies have a probability of being acquired determined
by a zero-mean Gaussian variable density function that is
marginally offset, such that the probability of acquisition never
reaches zero even at the highest frequencies. An implementa-
tion of this approach can be found in [4], and an example of a
2D mask and its effect on the magnitude of a temporal frame
is shown in Fig. 5. For each experiment, the undersampling
rate is fixed and will be stated. For training, the sampling
masks were generated on-the-fly to allow the network to learn
the differences between potential aliasing artefacts and the

underlying signal better. Note that for each acceleration factor
acc, one can generate

( ky
ky/acc

)
different masks.

While Cartesian acquisition is the most common protocol
in practice and offers straightforward implementation using
fast Fourier transform (FFT), other practical sampling strate-
gies such as radial [34] or spiral [35] could be considered,
which achieve greater aliasing incoherence. Nevertheless, they
require the use of methods such as nonuniform Fourier trans-
forms and gridding [36] which could propagate interpolation
errors.

3) Data Augmentation: Typically, deep learning benefits
from large datasets, which are often not available for med-
ical images. Our dataset is relatively small (300 images),
however, the literature suggests that it is still possible to
train a network by applying appropriate data augmentation
strategies [14]. Therefore, we follow that practice and apply
data augmentation including rigid transformation and elastic
deformation to counter overfitting. Specifically, given each
image (or a sequence of images), we randomly apply transla-
tion up to ±20 pixels along x and y-axes, rotation of [0, 2π),
reflection along x-axis by 50% of chance. Therefore, from
rigid transformation alone, we create 0.3 million augmented
data per image. Combined with the on-the-fly generation of
undersampling masks, we generate very large dataset. For the
dynamic scenario, we further added elastic deformation, using
the implementation in [32], with parameters α ∈ [0, 3] and
σ ∈ [0.05, 0.1], sampled uniformly, as well as reflection along
temporal axis. Note that while strong elastic deformation may
produce anatomically unrealistic shapes its use is justified as
our goal is to train a network which learns to de-alias the
underlying object in the image, rather than explicitly learning
the anatomical shapes.

4) Evaluation Methodology: For the 2D experiments, we split
the dataset into training and testing sets including 5 subjects
each. Each image frame in the sequence is treated as an indi-
vidual image, yielding a total of 150 images per set. Note that
typically, a portion of training data is treated as a validation
set utilised for early-stopping [37], where one halts training
if the validation error starts to increase. Initially, we used
3-2-5 split for training, validation and testing. However, even
after 3 days of training cascade networks, we did not observe
any decrease in the validation error. Therefore, we instead
included the validation set in the training to further improve the
performance but fix the number of backpropagation to be an
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Fig. 5. The detail of the Cartesian undersampling mask employed in
this work. Note that the mask can be seen as a 3D volume indexed by
(kx, ky, t). For each image frame t, we fully sample along kx-axis and
undersample in ky direction. We always acquire the 8 central lines and
the remaining lines are sampled according to a zero-mean Gaussian
distribution with the tail that is marginally offset so it will never reach
zero.

order of 105, which we empirically found to be sufficient. For
the dynamic experiments, we used 7-3 split for training and
testing and an order of 104 for the number of backpropagation.

To evaluate the performances of the trained networks,
we used mean squared error (MSE) as our quantitative mea-
sure. The reconstruction signal-to-noise ratio from undersam-
pled data is highly dependent on the imaging data and the
undersampling mask. To take this into consideration for fair
comparison, we assigned an arbitrary but fixed undersampling
mask for each image in the test data, yielding a fixed number
of image-mask pairs to be evaluated.

B. Reconstruction of 2D Images

1) Trade-Offs Between nd and nc: In this experiment we
compared two architectures: D5-C2 (nd = 5, nc = 2) and
D11-C1 (nd = 11, nc = 1) to evaluate the benefit of the
DC step. The two networks have equivalent depths when the
DC layers are viewed as feature extraction layers. However,
the former can build deeper features of the image, whereas
the latter benefits from the intermediate data consistency step.
The undersampling rate was fixed to 3-fold and each network
was trained end-to-end for 3 × 105 backpropagations.

The MSE’s on the training and test data are shown in Fig. 6.
Note that a gap between the performance on training and
test set may exist by the nature of the dataset (e.g. due to
image features, initial level of aliasing, etc.) and therefore
it is more informative to study in combination the rate of
improvement and the slope at the tail of the curves to assess
the overfitting process. Indeed, one can observe that D11-C1
eventually started to overfit the training data after about
1.2 × 105 backpropagations. As one would expect, since our
dataset is small, deep networks can overfit easily. On the other
hand, both train and test errors for D5-C2 were notably lower
and had relatively tighter gap, showing better generalisabil-
ity compared to D11-C1. This is suggestively because the
architecture employs two data consistency steps and rebuilds
the representations at each cascading iteration. This suggests
that it is more beneficial to interleave DC layers projecting
the acquired k-space onto intermediate reconstructions with
the CNN image reconstruction modules, which appears to

Fig. 6. A comparison of the networks with and without the intermediate
DC step. D5-C2 shows superior performance over D11-C1. In particular,
D5-C2 has considerably lower test error, showing an improved general-
ization property.

Fig. 7. The effect of increasing cascading iteration nc. One can see
that the reconstruction error on both training and test data monotonically
decreases as nc increases. However, the rate of improvement is reduced
after nc = 3.

help both the reconstruction as well as the generalisation.
Nevertheless, there is a considerable gap between train and test
data even for D5-C2. However, we note from the figure that
even after 3 × 105 backpropagations, the test error is still
improving. Therefore, although it seems that the network gets
more optimised to the features in training data quickly, it still
learns features generalisable to test data. Having more training
data is likely to accelerate the learning process.

2) Effect of Cascading Iterations nc: In this experiment,
we explored how much benefit the network can get by increas-
ing the cascading iteration. We fixed the architectures to have
nd = 5, but varied the cascading iteration nc ∈ {1, 2, 3, 4, 5}.
For this section, due to time constraints, we trained the
networks using a greedy approach: we initialised the cascading
net with nc = k using the net with nc = k − 1 that was
already trained. For each nc, we performed 105 backpropa-
gations. Note that the greedy approach leads to a satisfactory
solution, however, better results can be achieved with random
initialisation, as initialising a network from another networks
convergence point can make it more likely that it gets stuck
in suboptimal local minima.

Reconstruction errors for each cascading network of differ-
ent nc are shown in Fig. 7. We observed that while deeper
cascading nets tend to overfit more, they still reduced the test
error every time. The rate of improvement was reduced after
3 cascading layers, however, we see that the standard deviation
of error was also reduced for the deeper models. In the interest
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Fig. 8. 2D reconstruction results of D5-C5 for one of the test subjects.
Here we inspect the intermediate output from each subnetwork in D5-C5.
(a) Ground truth (b) The input to the network that was 3x undersampled
image. The output of (c) first, (d) second, (e) third, (f) fourth cascading
subnetwork respectively. (g,h) The final output and the corresponding
error. Note that this is not the reconstruction results from the networks in
Experiment in VII-B2.

of space, we have not shown the resulting images of each
D5-Cnc but we have observed the that increasing nc resulted
in images with more of the subtle image details correctly
reconstructed and there were also less noise-like aliasing
remaining in the images.

On the other hand, in Fig. 8, we show the intermediate
reconstructions from each subnetwork within D5-C5 to bet-
ter understand how the network exploits the iterative nature
internally. In general, we see that the cascading net gradu-
ally recovers and sharpens the output image. Although the
reconstruction error decreased monotonically at each cas-
cading depth, we observed that the output of the fourth

TABLE I
THE RESULT OF 2D RECONSTRUCTION.

DLMRI VS. CNN ACROSS 10 SCANS

subnetwork appears to be more grainy than the output of the
preceding subnetwork. This suggests the benefit of the end-
to-end training scheme: since we are optimising the whole
pipeline of reconstruction, the additional CNNs are internally
used to rectify the error caused by the previous CNNs.
In this case, the fourth subnetwork appears to counteract over-
smoothing in the third subnetwork.

3) Comparison With DLMRI: In this experiment, we com-
pared our model with the state-of-the-art DL-based method,
DLMRI, for reconstructing individual 2D cardiac MR images.
The comparison was performed for 3-fold and 6-fold acceler-
ation factors.

a) Models: For CNN, we selected the parameters nd = 5,
nc = 5. To ensure a fair comparison, we report the aggregated
result on the test set from two-way cross-validation (i.e. two
iterations of train on five subjects and test on the other
five). For each iteration of the cross validation, the network
was end-to-end trained using He intialisation [29]. For 6-fold
undersampling, we initialised the network using the parameters
obtained from the trained models from 3-fold acceleration.
Each network was trained for 3×105 backpropagations, which
took one week to train per network on a GeForce TITAN X,
however, our manual inspection of the loss curve indicates that
the training error plateaued at much early stage, approximately
within 3 days.

For DLMRI, we used the implementation from [2] with
patch size 6 × 6. Since DLMRI is quite time consuming,
in order to obtain the results within a reasonable amount
of time, we trained a joint dictionary for all time frames
within the subject and reconstructed them in parallel. Note
that we did not observe any decrease in performance from this
approach. For each subject, we ran 400 iterations and obtained
the final reconstruction.

b) Results: The means of the reconstruction errors across
10 subjects are summarised in Table. I. For both 3-fold
and 6-fold acceleration, one can see that CNN consistently
outperformed DLMRI, and that the standard deviation of the
error made by CNN was smaller. The reconstructions from
6-fold acceleration is in Fig. 9. Although both methods
suffered from significant loss of structures, the CNN was
still capable of better preserving the texture than DLMRI
(highlighted in red ellipse). On the other hand, DLMRI created
block-like artefacts due to over-smoothing. 6x undersampling
for these images typically approaches the limit of sparsity-
based methods, however, the CNN was able to predict some
anatomical details which was not possible by DLMRI. This
could be due to the fact that the CNNs has more free
parameters to tune with, allowing the network to learn complex
but more accurate end-to-end transformations of data.
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Fig. 9. The comparison of 2D reconstructions from DLMRI and CNN for
test data. (a) The original (b) 6x undersampled (c,d) CNN reconstruction
and its error map (e,f) DLMRI reconstruction and its error map. There
are larger errors in (f) than (d) and red ellipse highlights the anatomy that
was reconstructed by CNN better than DLMRI.

c) Comparison of reconstruction speed: While training the
CNN is time consuming, once it is trained, the inference can be
done extremely quickly on a GPU. Reconstructing each slice
took 23 ± 0.1 milliseconds on a GeForce GTX 1080, which
enables real-time applications. To produce the above results,
DLMRI took about 6.1 ± 1.3 hours per subject on CPU. Even
though we do not have a GPU implementation of DLMRI, it is
expected to take longer than 23ms because DLMRI requires
dozens of iterations of dictionary learning and sparse coding
steps. Using a fixed, pre-trained dictionary could remove this
bottleneck in computation although this would likely be to the
detriment of reconstruction quality.

C. 3D Experiments

For the following experiments, we split our dataset into
training and testing sets containing seven and three subjects
respectively. Compared to the 2D case, we have significantly
less data. As aforementioned, we applied elastic deformations
in addition to rigid transformation to augment the training data
input in order to increase the variation of the examples seen
by the network. Furthermore, working with a large input is
a burden on memory, limiting the size of the network that

Fig. 10. The effect of data sharing. The network with data sharing shows
superior performance over the other. In particular, it has considerably
lower test error, showing an improved generalization property.

can be used. To address this, we trained our model on an
input size 256 × Npatch × 30, where the direction of patch
extraction corresponds to the frequency-encoding direction.
In this way, we can train the network with the same aliasing
patterns while reducing the input size. Note that the extracted
patches of an image sequence will have different k-space
values compared to the original data once the field-of-view
(FOV) is reduced. As such, this trick only works for training
where the patches can be treated as the new instances of
training data. In particular at test time, since only the raw data
with full FOV is available, the CNN must also be applied to
the entire volume in order to perform data consistency step
correctly.

1) Effect of Data Sharing: In this experiment, we evaluated
the effect of using the features obtained from data sharing.
We trained the following two networks: D5-C10(S) (nd = 5,
nc = 10 with data sharing) and D6-C10 (nd = 6, nc = 10
without data sharing). In the second network, the data sharing
is replaced by an additional convolution layer to account for
the additional input. We trained each model to reconstruct
the sequences from 9-fold undersampling for 2.5 × 104 back-
propagations. Their learning is plotted in Fig. 10. We can
notice that there is a considerable difference in their errors.
The error of the D5-C10(S) was smaller for both train and
test, suggesting that it was able to learn a strategy to de-alias
image that generalises better. Moreover, by using data sharing,
the network was able to learn faster. The visualization of their
reconstructions can be found in the following section.

2) Comparison With State-of-the-Art: In this experiment,
we compared our model with state-of-the-art methods:
DLTG [3], kt-SLR [20] and L+S [21] for reconstructing the
dynamic sequence. We compared the results for 3, 6, 9 and
11-fold acceleration factors.

a) Models: For the CNN, we used nd = 5, nc = 10 with
data sharing as explained above. We also set the weight decay
to 0 as we did not notice any overfitting of the model. Contrary
to the 2D case, we trained each network as follows: we first
pre-trained the network on various undersampling rates (0-9x)
for 5×104 backpropagations. Subsequently, each network was
fine-tuned for a specific undersampling rate using Adam with
learning rate reduced to 5 × 10−5 for 104 backpropagations.
We performed three way cross validation (where for two
iterations we train on 7 subjects then test on 3 subjects, one
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Fig. 11. The reconstruction errors of CNN vs state-of-the-art methods
across 10 subjects for different undersampling rates. Note that we
average over the test error from all iterations of cross-validation.

iteration where we train on 6 subjects and test on 4 subjects)
and we aggregated the test errors. The pre-training and the
fine tuning stages took approximately 3.5 days and 14 hours
respectively using a GeForce GTX 1080. Since the training is
time consuming, we did not train the networks longer but we
speculate that the network will benefit from further training
using lower learning rates. For DLTG, we used the default
parameters described in [3]. For kt-SLR, we performed grid
search to identify the optimal parameters for the data, which
were μ1 = 10−5, μ2 = 10−8, ρ = 0.1. Similarly for L+S,
the optimal parameters were λL = 0.01 λS = 0.01.

b) Result: The final reconstruction error is summarised
in Fig. 11. we see that CNN consistently outperforms state-
of-the-art methods for all undersampling factors. For a low
acceleration factor (3x undersampling), all methods performed
approximately the same, however, for more aggressive under-
sampling factors, CNN was able to reduce the error by
a considerable margin. For aggressive undersampling rates,
the performance of kt-SLR and L+S degraded much faster.
These methods employ low-rank and simple sparsity con-
straints. We speculate that they underperformed in this regime
because the data is not exactly low-rank (as our temporal
dimension is already small) as well as the sparsifying trans-
forms (temporal FFT for L+S and temporal gradient for
kt-SLR) lack adaptability to data compared to CNN and
DLTG. The visualisation of reconstruction from 9-fold under-
sampling is shown in Fig. 12, including the reconstruc-
tion from the CNN without data sharing and DLTG. The
reconstructions of kt-SLR and L+S were omitted as their
quantitative error were already much worse. One can see
that, as with the 2D case, at aggressive undersampling rate
dictionary-learning based method produced blocky artefacts,
whereas the CNN methods were capable of reconstructing
finer details (indicated in red ellipse). On the other hand, for
the CNN without data sharing, one can notice grainy noise-
like artefacts. Even though it was able to reconstruct the
underlying anatomy more faithfully than DLTG, the overall
error was worse. However, this artefact was not present in
the images reconstructed by the CNN with data sharing.
Although the quantitative result is not shown, CNN without
data sharing in fact outperformed DLTG for low acceleration

Fig. 12. The comparison of cardiac MR image sequence reconstructions
from DLTG and CNN. Here we show nth slice from one of the test subjects
(a) The original (b) 9x undersampled (c,d) CNN with data sharing and its
error map (e,f) CNN without data sharing and its error map (g,h) DLTG
reconstruction and its error map. Red ellipses highlight the anatomy that
was reconstructed by CNN better than DLTG.

factor (3x) but not for more aggressive undersampling factor.
This suggests that when the aliasing is severe, more drastic
transformation is required, in which case for CNN to do
better, we either need to increase depth, which would increase
its computation cost, or increase the training samples. This
confirms the importance of data sharing and the necessity to
exploit the domain knowledge to simplify the learning problem
for the case when the data is limited. Temporal profiles from
the reconstructions are shown in Fig. 13. Even though the data
sharing itself results in data inconsistency in highly dynamic
regions, the CNN was able to rectify this internally and
reconstructed the correct motion with errors smaller than the



SCHLEMPER et al.: DEEP CASCADE OF CNNs FOR DYNAMIC MR IMAGE RECONSTRUCTION 501

Fig. 13. The comparison of reconstructions along temporal dimension.
Here we extract a 110th slice along y-axis from the previous figure.
(a) The original (b) 9x undersampled (c,d) CNN with data sharing and its
error map (e,f) CNN without data sharing and its error map (g,h) DLTG
reconstruction and its error map.

other methods. This suggests the CNN’s capability solve the
joint de-aliasing and implicit estimation of dynamic motion.

c) Reconstruction with noise: This section analyses the
impact of acquisition noise in reconstruction performance.
In this experiment we fixed the acceleration factor to be 3 and
varied the level of noise in the data. Specifically, we tested
for noise power σ 2 ∈ [10−9, 4 × 10−8]. For fully-sampled
reconstruction, the noise power is equivalent to peak signal-
to-noise (PSNR) values of 41.84 dB and 25.81 dB for 10−9

and 4 × 10−8 respectively, where PSNR was calculated as
10 log10(1/MSE). The result is summarised at Fig 14, where
we aggregate the reconstruction error from all 10 subjects. The
input level of noise is indicated by PSNR f and for consistency,
the reconstruction results are also indicated by PSNR (higher
the better). For DLTG, we used the value λ = 5 × 10−6

as recommended in [3]. DLTG showed decent robustness to
noise, owing to the nature of underlying K-SVD, which has
the effect of sparse coding denoising. For kt-SLR and L+S,
we used the same parameters as before. They showed some
robustness for small noise but they did not perform well in the
presence of aggressive noise, as the implementations (and the
data consistency step in particular) do not explicitly account
for them. Changing such implementation is likely to improve
the result.

For CNN, we used the model D5-C10(S) as before and
tested the following two variations. Firstly, we tested the
performance of CNN from the previous section, which were
trained in the absence of noise, denoted as CNN-NAD (blue
curve). It can be seen that for the low level of noise
(PSNR > 35 dB), CNN-NAD were able to maintain similar
performance as the rest of the methods. However, the per-
formance degraded almost at the same rate as kt-SLR and
L+S for the high level of noise. We then trained CNN-NAD
to adapt for noise as following. Firstly, we added noise in
training data, where we randomly sample the noise power
in the range [10−9, 4 × 10−8]. Secondly, we modified our

Fig. 14. The aggregated test error across 10 subjects with injected
noise. For different value of input noise power, PSNRf is shown. The
corresponding reconstruction PSNR for CNN-NAD, CNN-AD, DLTG,
kt-SLR and L+S are shown.

data consistency layers to account for noise. In particular,
we initialised λ for each DC layer as λ = q/σ = 0.025 (as in
DLTG), made the parameters trainable. We trained the network
for 3 × 104 backpropagations and the result is denoted as
CNN-AD (green curve). Interestingly, the performance for very
small noise (> 38 dB) became worse compared to the original
CNN. However, for further acceleration, it showed significant
improvement for all level of noise, showing better robustness
compared to other methods. We also observed that after fine-
tuning, λ was increased to 0.5. This signifies that DLTG
and CNN, even though the reconstruction framework shows
similarity in terms of the iterative nature, are fundamentally
different approaches and the required parameters also vary.
Note that since we trained the network for a wide range
of noise, the performance is likely to be improved if a
narrower range of noise is selected for training. In practice,
measuring the level of noise a-priori is non-trivial. However,
our CNN showed the adaptability to the pre-specified range
which indeed can be simulated in practice.

d) Reconstruction speed: Similar to the 2D case, the DLTG
takes 6.6 hours per subject on CPU. For the CNN, each
sequence was reconstructed on average 8.21s ±0.02s on GPU
GeForce GTX 1080. This is significantly slower than recon-
structing 2D images as introducing a temporal axis greatly
increases the computational effort of the convolution opera-
tions. Nevertheless, the reconstruction speed of our method
is much faster than DLTG and is reasonably fast for offline
reconstruction.

D. Memory Requirement

The memory requirement of the CNNs is based on the
number of the network parameters, the number and the sizes
of the intermediate activation maps and the space needed
for computing the layer operations. The total number of the
network parameters is simply given by the sum of all the
layer parameters. Each convolution layer has (kxkykt n′

f +1)n f

parameters, where kx , ky , kt are the kernel sizes along x , y
and t , n′

f and n f are the number of features of the incoming
and current convolution layers respectively and one for the
bias. For each DC layer, we also store one parameter for λ. For
2D reconstruction (kt = 1) and D5-C5 has about 0.6 million
parameters, which occupies 2.3MB of the storage assuming
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Fig. 15. The reconstruction with noise σ2 = 4 × 10−8. The aggregated test error across 10 subjects with injected noise. For different value of input
noise power, PSNRf is shown. The corresponding reconstruction PSNR for CNN, finetuned CNN, DLTG, kt-SLR and L+S are shown.

single-precision floating point is used (Nprecision = 4 bytes).
For dynamic reconstruction, D5-C10(S) has 3.4 million para-
meters, which occupies about 13.6MB.

At the training stage, more than three times of the num-
ber of parameters are required for computing the gradient.
In addition, all the intermediate activation maps need to be
stored to perform the backpropagation efficiently. For the
proposed architecture, the most of the activation maps are of
the convolution layer Ci ’s; hence, the sum can be roughly
estimated by Nbatch Nx Ny Nt N f nc(nd − 1)Nprecision. With the
input size Nbatch × Nx × Ny × Nt = 1 × 256 × 256 × 1,
the memory required for the activation maps of D5-C5 is
335MB. For the dynamic models, the memory requirement
further increases by the size of the temporal dimension
Nt = 30. Therefore, the aforementioned trick of cropping
the images along Ny is necessary to fit the model. For
D5-C10(S), with the input size 1×256× (256/8)×30, 2.4GB
is required for storing the activation maps alone. Finally,
to obtain the total memory consumption for the training stage,
this value needs to be further multiplied by factors based on
the implementation of backpropagation, operations including
convolution and FFT as well as any compilation optimisation
performed by the library. For example, most implementations
of backpropagation require twice the value above accounting
for forward- and backward-passes. We report that for our
Theano implementation of D5-C10(S), the largest mini-batch
size we could fit for the given input size on GeForce GTX
1080 (8GB) was 1.

At the testing stage, the memory requirement is much
less because the intermediate activation maps do not need to
be stored if only the forward pass needs to be performed.
In this case, the memory overhead is only the single largest
activation map, which is Ci , scaled by implementation-specific
factors. Note that as aforementioned, the patch extraction
cannot be used at test time. Nevertheless, we did not observe
any problem using D5-C10(S) for input size 1×256×256×30
on GeForce GTX 1080.

VIII. DISCUSSION AND CONCLUSION

In this work, we evaluated the applicability of CNNs for the
challenge of reconstructing undersampled cardiac MR image

data. The experiments presented show that using a network
with interleaved data consistency stages, it is feasible to obtain
a model which can reconstruct images well. The CS and low-
rank framework offers a mathematical guarantee for the signal
recovery, which makes the approach appealing in theory as
well as in practice even though the required sparsity cannot
generally be genuinely achieved in medical imaging. However,
even though this is not the case for CNNs, we have empirically
shown that a CNN-based approach can outperform them.
In addition, at very aggressive undersampling rates, the CNN
method was capable of reconstructing most of the anatomical
structures more accurately based on the learnt priors, while
classical methods do not guarantee such behaviour.

Note that remarkably, we were able to train the CNN on the
small dataset. We used several strategies to alleviate the issue
of overfitting: firstly, as we employed the iterative architecture,
each subnetwork has relatively small receptive field. As a
result, the network can only performs local transformations.
Secondly, we applied intensive data augmentation so the net-
work practically sees constantly sees a variation of the input,
which makes it more difficult to overfit to any specific patterns.
However, we speculate that given more training data, we can
drop the data augmentation and let the network learn coarse
features by incorporating, for example, dilated or strided
convolution, which could further improve the performance.

It is important to note that in the experiments presented the
data was produced by retrospective undersampling of back
transformed complex images (equivalent to single-coil data)
obtained through an original SENSE reconstruction. Although
the application of CNN reconstruction needs to be investigated
in the more practical scenario of full array coil data from
parallel MR, the results presented show a great potential to
apply deep learning for MR reconstruction. The additional
richness of array coil data has the potential to further improve
performance, although it will also add considerable complexity
to the required CNN architecture.

In this work, we were able to show that the network can be
trained using arbitrary Cartesian undersampling masks of fixed
sampling rate rather than selecting a fixed number of under-
sampling masks for training and testing. In addition, we were
able to pre-train the network on various undersampling rates
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before fine-tuning the network. This suggests that the net-
work was capable of learning a generic strategy to de-
alias the images. A further investigation should consider how
tolerant the network is for different undersampling patterns
such as radial and spiral trajectories. As these trajectories
provide different properties of aliasing artefacts, a further
validation is appropriate to determine the flexibility of our
approach. However, radial sampling naturally fits well with
the data sharing framework and therefore can be expected
to push the performance of the network further. The data
sharing approach may also make it feasible to adopt regular
undersampling patterns which are intrinsically more efficient.
Another interesting direction would be to jointly optimise the
undersampling mask using the learning framework.

To conclude, although CNNs can only learn local represen-
tations which should not affect global structure, it remains to
be determined how the CNN approach operates when there is
a pathology present in images, or other more variable content.
We have performed a cross-validation study to ensure that the
network can handle unseen data acquired through the same
acquisition protocol. Generalisation properties must be evalu-
ated carefully on a larger dataset. However, CNNs are flexible
in a way such that one can incorporate application specific pri-
ors to their objective functions to allocate more importance to
preserving features of interest in the reconstruction, provided
that such expert knowledge is available at training time. For
example, analysis of cardiac images in clinical settings often
employs segmentation and/or registration. Multi-task learning
is a promising approach to further improve the utility of
CNN-based MR reconstructions.
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