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Automatic 2-D/3-D Vessel Enhancement in
Multiple Modality Images Using

a Weighted Symmetry Filter
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Abstract— Automated detection of vascular structures is
of great importance in understanding the mechanism, diag-
nosis, and treatment of many vascular pathologies. How-
ever, automatic vascular detection continues to be an open
issue because of difficulties posed by multiple factors, such
as poor contrast, inhomogeneous backgrounds,anatomical
variations, and the presence of noise during image acqui-
sition. In this paper, we propose a novel 2-D/3-D symme-
try filter to tackle these challenging issues for enhancing
vessels from different imaging modalities. The proposed
filter not only considers local phase features by using a
quadrature filter to distinguish between lines and edges, but
also uses the weighted geometric mean of the blurred and
shifted responsesof the quadrature filter, which allows more
tolerance of vessels with irregular appearance. As a result,
this filter shows a strong response to the vascular features
under typical imaging conditions. Results based on eight
publicly available datasets (six 2-D data sets, one 3-D data
set, and one 3-D synthetic data set) demonstrate its superior
performance to other state-of-the-art methods.

Index Terms— Symmetry filter, local phase, vascular,
enhancement, angiography.
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I. INTRODUCTION

VASCULAR diseases are among the most common pub-
lic health problems worldwide. Associated conditions

include diabetes, arteriosclerosis, cardiovascular diseases and
hypertension, to name only the most widely occurring ones.
The accurate detection and analysis of the vascular structure is
essential for many clinical applications to support early detec-
tion, diagnosis, optimal treatment, and neurosurgery planning
for vascular-related diseases.

Vascular imaging involves two-dimensional (2D) and three-
dimensional (3D) acquisition techniques for the diagnosis
of different diseases. These include color fundus imaging,
fluorescence angiogram (FA), magnetic resonance angiogra-
phy (MRA), computed tomography angiography (CTA) and
so on. Manual annotation of vascular structure is an exhaust-
ing task for graders, and computer-aided automatic/semi-
automatic vascular detection methods can speed up the task
significantly. However, computer-aided systems have yet to
completely solve the problems as posed by the high degree
of anatomical variation across the population, and the varying
scales of vessels within an image. Moreover, artefacts that
occur during image acquisition, such as noise, poor contrast
and low resolution, exacerbate these problems. As a result,
it has been proven very challenging to design a single vascular
enhancement or segmentation method that will work across a
variety of imaging modalities.

In general, we observe that laminar flow within blood
vessels causes blood flow velocity variations, which leads to
highly varying contrast distribution across different vascular
structures. In consequence, we see an increase in the non-
uniformity of the intensity distribution across a vascular net-
work during image acquisition. Recent years have witnessed
the rapidly increasing number of new methods for vessel
segmentation from different types of medical images, as evi-
denced by extensive reviews, such as a general review of
this topic [1] and a review of 3D vessel segmentation [2].
As blood vessels can be seen as linear structures distributed
at different orientations and scales in an image, various
enhancement or filtering methods have been proposed to
enhance the vascular structure: to remove undesired intensity
variations in the image, and to suppress non-vascular structures
and image noise, thereby easing the subsequent segmenta-
tion problem [3], [4]. The most well-known intensity-based
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filtering techniques include Hessian matrix-based filters [5]–
[7], wavelet [8], matched filters [9]–[11], flux-based [12], [13],
tensor-based filtering [14], [15], Gabor filters [16], and a more
recent trainable filter named the combination of shifted filter
responses (COSFIRE) [17], [18].

The Hessian analysis-based image filter mainly uses the
first and second order derivatives of image intensities and
enables differentiation between tubular and planar structures.
Several extensions have been made, such as the Weingarten
matrix [19], vessel enhancement diffusion [20], and the offset
medialness filter [21]. This approach has been widely used
for tasks including liver investigations [22], lung vessel seg-
mentation [23] in CTA, color fundus retinal vessel segmen-
tation [24], coronary vasculature detection in cryomicrotome
images [25], and cerebral vascular structure enhancement in
MRA [7]. Wavelet-based filters are utilized for retinal vessel
segmentation in [8], [24]. The wavelet-based filter is able
to separate vessels from clutter and bright, localized features,
as well as having the capacity to reduce noise.

The recent method proposed by Azzopardi et al. [17] con-
siders COSFIRE [17] to detect bar-shaped structures in retinal
images. This method is rotation invariant, and the orientation
selectivity is determined from given vessel-like structures. It is
worth noting that morphological filters such as path opening
in combination with multiscale Gaussian filters have also
shown some interesting results [26]. The main disadvantage of
morphological methods is that they do not consider the known
vessel cross-sectional shape information, and the use of an
overly long structuring element may cause difficulty in detect-
ing highly tortuous vessels [1]. Manniesing et al. reported on
the feasibility of an automated post-processing tool for the
segmentation of cerebral vessels from CTA using a level set
method [27]. However, the use of level set method is time-
consuming for the segmentation step. Hernandez et al. [28]
proposed a method based on non-parametric geodesic active
regions (GAR), and provided promising segmentation results
of the vasculature and aneurysms from 3D Rotational Angiog-
raphy (3DRA) and CTA. Cetin and Unal introduced a cylindri-
cal flux-based higher order tensor for vessel segmentation [14].
Quantitative validation of this method was performed on
both synthetic complex tubular structures and real cerebral
vasculature in MRA datasets, and in coronary arteries from
CTA volumes.

Whilst intensity-based filters are susceptible to intensity
inhomogeneity and will encounter further problems when they
are required to faithfully enhance vessels at different scales,
a local phase-based filter introduced by Lathen et al. [29]
appears to be superior to intensity based filters [5], [8]–[10],
[16], [24], [30] as it is resistant to intensity inhomogeneity
and is capable of faithfully enhancing vessels with different
widths [31], [32].

Although these aforementioned methods have been suc-
cessful in achieving performance close to a human expert,
there still exist many significant challenges: when the 3D
retinal vascular structures with varying depths are projected
onto 2D images such as retinal fundus images, it may cause
overlaps of the vascular structures, poor contrast of small
vessels; For both 2D and 3D vascular structure detection, most

existing methods mainly focus on segmenting large vessels.
It is still very challenging to extract thin vessels reliably due
to imaging artifacts, poor contrast and low resolution. The
same techniques might tend to over segment or miss-segment
due to the varying scales of vessels within an image. As a
result, it is desired to design a general enhancement method
with universal parameters across a variety of image data.

By contrast of our previous work [18], in this paper,
we propose a novel symmetry filter for vascular enhancement
applicable to both 2D and 3D images obtained from multiple
imaging modalities. It comprises two main steps. Quadrature-
enabled symmetry filters at different orientations at a given
scale are applied to the image and the real parts representing
linear structures are linearly combined and normalized to
produce the response at each pixel. To make sure that the
responses of the filter are invariant to structural direction, they
are calculated over multiple potential orientations, combined
together and normalized with their real parts being the final
responses of the filter. To make sure that the responses of the
filter are robust to variations in structural location and size,
they are further blurred and shifted and finally maximized over
neighboring pixels as a vesselness map, and the final vesselness
is produced by normalizing the response from multiple scales
so as to enhance vessels at different sizes. Note, the vesselness
map represents the probability of a given pixel being part of
a vessel.

This paper makes three contributions: i) The first contribu-
tion in theory is that the proposed method could be applied to
both 2D and 3D images. In sharp contrast, most works in the
literature are designed only for vessel enhancement on either
2D or 3D images. Only few methods could be applied to both
2D and 3D images such as Frangi’s vesselness filter (FVF) [5],
the isotropic undecimated wavelet filter (IUWF) [8], and
the Local Phase Filter (LPF) [31]. These 2D/3D applicable
methods (FVF, IUWF, and LPF) were selected for a com-
parative study in the paper and the results show that our
method achieves better performance in terms of evaluation
metrics such as area under the receiver operating characteristic
curve (AUC), and the dice coefficient (DC); ii) The second
contribution is that the proposed method has been rigorously
validated quantitatively using 8 publicly accessible datasets
with different imaging modalities, the results show that our
proposed filter is robust to variations in the location, size and
orientation of the vascular structures and the dimensionality,
inhomogeneity and modality of the data; and (iii) The third
contribution is that we have done manual annotations of
vessels for a publicly available cerebral MRA dataset, and this
annotation will be released for public access to facilitate other
researchers in the community to do research and development
on the same and related topics after the paper has been
accepted.

II. THE PROPOSED METHOD

In this section, we detail the proposed symmetry filter
with applications to both 2D and 3D images, respectively.
It includes two main steps. Firstly, we derive a symmetry
filter to enhance tubular structures in a given image; Secondly,
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we blur and shift the responses of the symmetry filter and
combine them with different weights at different scales and
orientations so that the vascular structures at different ori-
entations with different sizes can all be detected. The two
steps, applicable to 2D images, are described in Sections II-A
and II-B respectively and are then extended to 3D data in
Section II-C.

A. 2D Quadrature Filter

A quadrature filter is a useful tool for extracting local
structures in an image [33]. For instance, it can be used to
distinguish local phase, which is an intrinsic feature invariant
to changes in illumination. For a one-dimensional (1D) signal
f (x), the phase φ(x) at position x can be simply estimated
by the Hilbert transform under the concept of analytical
signal such as φ(x) = arctan

( f (x)
fH(x)

)
. However, in order to

enhance spatial localization and to avoid the effects of noise,
Boukerroui et al. [34] suggested that local phase should be
estimated by a quadrature filter. That is,

φ(x) = arctan
( E(x)

O(x)

)

= fe(x) ∗ f (x)

fo(x) ∗ f (x)
, (1)

where fe(x) is an even (symmetric) band-pass filter while
fo(x) = H( fe(x)) is the Hilbert transform of the even filter
fe(x), as such, the filter is in quadrature.

However, in order to avoid the problems posed by the
analytic signal for 2D or higher dimensions and the 2D Hilbert
transform [33], a quadrature filter with even-symmetric and
odd-symmetric parts is suggested by Boukerroui et al. [34].
In particular, the log-Gabor (log normal) filter is a commonly
used quadrature filter [35], [36]. An oriented log-Gabor filter
in the frequency domain is defined as:

LG(ω) = exp

(
−

log2
(

ω(p)
ω0

)

2log2
(

k
ω0

)
)

, (2)

where the bandwidth of the filter in the radial direction can be
determined by a scaling factor k, and ω0 is the center spatial
frequency of the filter. p is a pixel in the frequency domain,
and ω(p) = ‖p‖. The term k

ω0
should be a constant (ω0 =

0.35 in this paper) so as to achieve a constant shape-ratio
filter. The responses of even and odd quadrature pair filters to
an image can be estimated by:

E(x) = real(F−1(LG(ω) × F(I (x)))), (3)

O(x) = imag(F−1(LG(ω) × F(I (x)))), (4)

where F and F−1 denote the forward and inverse Fourier
transforms, respectively and I (x) is the intensity of a pixel x
in the given image.

O(x) has the maximal response at edges while E(x) is
almost 0, the filter response is purely imaginary, and the
filtered signal is strongly ‘edge-like’: while for lines, O(x)
is almost 0 and E(x) has the maximal response. The filter
response is purely real, and leads to a ‘line-like’ signal.

This suggests that image edges align with the zero crossing
of the real part of the phase map.

In practice, multiple orientations are needed to capture
structures running in different directions. Therefore, the filter
response qθ (x) at orientation θ is defined as:

qθ (x) = Eθ (x) + Oθ (x)i, i = √−1, (5)

where Eθ (x) and Oθ (x) are calculated as the sum of responses
of E(x) and O(x) over the pixels inside a kernel centered at
the pixel x of interest with a size of 16 × 16 at an orientation
of θ and normalized into the range of [0, 1] respectively.

The even filter is a line filter as the real part, and the
odd filter is an edge filter with the imaginary part. Thus,
we suggest that the real part of the response Eθ (x) and the
absolute value of the imaginary part Oθ (x) are used, with
a view to avoid confusion caused by changes in structural
direction. Hence, the filter response qθ (x) can be rewritten as
qθ (x) = Eθ (x) + |Oθ (x)|i. In order to achieve a rotationally
invariant response, filters in all directions are combined as
q(x) = ∑

θ∈� qθ (x), where � indicates the set of directions
under consideration: � = { π

16 , 2π
16 , 3π

16 , · · · , 15π
16 , π}. Since

the zero-crossing of the real part of q(x) indicates an edge,
the response �(x) of the quadrature filter to a pixel x in a given
image is defined through taking the real part of the normalized
q(x) as:

�(x) = real
{q(x) · |q(x)|
|q(x)|2 + a2

}
, (6)

where a is a small number a = 1e − 6 to avoid divided by
zero problem. Due to normalization, �(x) ∈ [0, 1] and thus
indicates the probability that a pixel lies on a vessel.

B. Blurring and Shifting

In order to allow for greater tolerance in the positions
and scales of the respective contours, blurring and shifting
operations are applied to the quadrature filter responses. While
the blurring operation is used to suppress the noise, the shifting
operation is used to enhance the response of the filter through
maximizing those of neighbors in the dark and low contrast
regions. As suggested by [17], we apply a Gaussian function
Gσ (u, v) to the responses of the proposed filter to achieve the
blurring operation:

σ = σ0 + αρ, (7)

where σ indicates the standard deviation of the function, σ0
and α are constants, and ρ is the radius parameter representing
a linear function of the distance from the center (u, v) of the
filter to its 11 × 11 neighbors. In this paper, σ0 = 2.5 and
α = 0.2. The value of ρ is related to the size and complexity
of the local structure.

Each blurred quadrature response �′ of the pixels will
then be shifted respectively by a distance ρi in the direction
opposite to φi . In Cartesian coordinates, the shift vector
in question is (�ui ,�vi ), where �ui = −ρi cosφi and
�vi = −ρi sinφi . Finally, the blurred and shifted responses
Sρi ,φi of the quadrature filter for each tuple (ρi , φi ) in the set
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Fig. 1. The main ideas of blurring and shifting operations. (a) The initial
position. (b) Gaussian blurring with a radius of 3σ. (c) Shifting specified
by (ρi, φi) on the blurred response.

S is defined as the maximum response �′ in a neighborhood
of the central pixel (u, v):

Sρi ,φi (u, v)

= max
u′,v ′ {�′(u − �ui − u′, v − �vi − v ′)Gσ (u′, v ′)}, (8)

where −3σ ≤ u′, v ′ ≤ −3σ . The above configuration process
represents a convolution of the weighting function Gσ with
respect to the filter center (u, v), which is blurred and shifted
by (u −�ui −u′, v −�vi −v ′), where the shift vector is deter-
mined by the sub-unit parameters (ρi , φi ). In consequence,
the shift operation is able to assemble all the responses at the
proposed filter center. Fig. 1 illustrates the main ideas of the
blurring and shifting operations.

The shifting operation proposed above can be denoted by a
tuple (ρi , φi ) of two parameters: S = {(ρi , φi )|i = 1, . . . , n},
where n indicates the number of quadrature responses. These
parameters are able to characterize the properties of the spec-
ified area of interest. The parameter values of S can be auto-
matically determined from the aforementioned filter settings of
the standard deviation of the filter responses, kernel size, and
orientations: ρi ∈ {0, 2, 4} and φi ∈ {0, 0.5π, π, 1.5π}. Fig. 2
shows the example responses of the original quadrature filter,
and its blurring and shifting operations respectively. After
these operations, the vascular structures are much clearer for
visualization and interpretation.

The response RS(u, v) of the proposed filter to a pixel at
position (u, v) in a given image is defined as a threshold t of
the power τ of a multiplication of Sρi ,φi (u, v) raised to the
power of ωi over the tuples (ρi , φi ) in the set S:

RS(u, v) =
∣
∣
∣
∣

( |S|∏

i=1

(Sρi ,φi (u, v)ωi )

)τ ∣∣
∣
∣
t

, (9)

where τ = 1∑|S|
i=1 ωi

, ωi = exp(− K∗ρ2
i

2σ 2 ), and σ =
1
3 max

i∈{1···|S|}{ρi }. Here, | · |t denotes thresholding the response at

a fraction t (0 ≤ t ≤ 1) of the maximum response. The multi-
plication operator is applied to ensure that a non-zero response
will be achieved only when all the responses of blurred
and shifted operations are greater than zero. In practice,
the exponent ωi achieves the maximum value ωi = 1 when
ρi = 0, while reaching the minimum value ω = ex p(−K/2)
if ρi = ρmax. K is the Gaussian parameter (K = 0.8 in this
work) that controls how heavily the ρi should be penalized.

In practice, multiple scales will be needed in order to
enhance vessels of different sizes in an image. The final
response R(u, v) of the proposed filter is estimated as the
weighted average of RS(u, v) at a scale of m with the weight
defined as the βth power of the magnitude of the filter response
RS(u, v) at that scale:

R(u, v) =
∑M

m=1 Rm
S (u, v)|Rm

S (u, v)|β
∑M

m=1 |Rm
S (u, v)|β , (10)

where Rm
S (u, v) can be computed using Eq.(9) under a scale

of m, where m ∈ {1, · · · M}, and M denotes the number of
scales. At each scale m, the original given image is uniformly
down-sampled to 1/(m ∗ m) of its original size. In this study,
the scales used are 1 to 3. β is the order number of the power
of the magnitude of the filter response at each scale. Fig. 3
illustrates the individual response of the proposed filter under
scales 1 to 3 and the fused one, with β = 1. The proposed
filter is not only able to enhance the vascular structure with
clear edges, but also is capable of suppressing the background
in such a way as to permit vessels to be easily distinguished
from the background.

C. 3D Symmetry Filter

The quadrature filter proposed in the last two subsections
is applicable to 2D images. In this section, we extend it to
deal with 3D volumetric data by designing a 3D log-Gabor
filter. This filter in the frequency domain is constructed from
two components: a log-Gabor filter LG and a rotationally
symmetric angular Gaussian function G. The former filter is
able to control the frequencies to which the filter responds,
and the latter filter controls the orientation selectivity of the
filter. Therefore, the transfer function of the 3D log-Gabor
filter (LG3) is given as:

LG3 = LG × G

= exp

(
−

log2
(

ω(p)
ω0

)

2log2
(

k
ω0

)
)

×exp
(
− α(p,�1,�2)

2τ 2
α

))
(11)

where �1 and �2 are the azimuth and elevation angles for
the definition of the filtering sphere, α(p,�1,�2) is the
angle α(p,�1,�2) = arccos(p · ν

‖p‖ ) between the posi-
tion vector at a point p in the frequency domain and a
unit vector at point on the unit sphere defined as ν =
(sin�1cos�2, sin�1sin�2, cos�1), and τα is the standard
deviation (τα = 0.5 in this paper) of the Gaussian spreading
function in the angular direction and describes the angular
selectivity of the filter.

Similarly, the even filter E(u, v,w) = real(F−1(LG3 ×
F(I (u, v,w)))) and odd filter O(u, v,w) =
imag(F−1(LG3 × F(I (u, v,w)))) can be defined in 3D
space where F and F−1 denote the forward and inverse 3D
Fourier Transforms, I (u, v,w) indicates the intensity value
at location (u, v,w). In practice, multiple orientations are
again needed to capture structures at different directions, with
the intention of achieving a rotationally invariant response.
In 3D, two parameters, θ1 and θ2, are needed to specify
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Fig. 2. The responses of the original quadrature filter, its blurring and shifting operations, respectively at different orientations. (a) An example
image. (b) Green channel of (a). (c) Inverted green channel of (a). (d) Responses of the original quadrature filter. (e) Responses of blurring through
the Gaussian function applied to (d). (f) Responses of shifting to (e).

Fig. 3. The effectiveness of the responses by the proposed filter for the
left to right under scales 1 to 3, and the fused one, respectively.

the orientation of the kernel with a size of 16 × 16 × 16
where, as in the 2D case, θ1 ∈ { π

16 , 2π
16 , 3π

16 , · · · , 15π
16 , π} and

θ2 ∈ { 2π
16 , 4π

16 , 6π
16 , · · · , 30π

16 , 2π}.
Similar to the 2D case, the blurring and shifting operations

are also useful when the symmetry filter is applied to 3D data.
Therefore, Eqs. (8) and (9) can be rewritten as

Sρi ,φi ,γ (u, v,w) = max
u′,v ′,w′{�(u − �ui − u′, v − �vi − v ′,

w − �wi − w′)Gσ (u′, v ′, w′)}. (12)

RS(u, v,w) =
∣∣
∣
∣

( |S|∏

i=1

(Sρi ,φi ,γ (u, v,w)ωi )

)τ ∣∣
∣
∣
t

, (13)

where the shift vector (�ui ,�vi ,�wi ) is defined as �ui =
−ρi sinφi , �vi = −ρi sinφi , �wi = −ρi tanγ and γ = 45◦.
Then the overall response of the proposed 3D filter is estimated
as the weighted average in Eq.(10) of the responses of the
filter at different scales with the weight defined as the βth
power of the magnitude of the response of the filter at each
scale m.

III. EXPERIMENTAL RESULTS ON 2D IMAGES

In this section, the proposed 2D symmetry filter is rig-
orously validated for vessel enhancement and segmentation

in 2D images. A graph-cut-based model was employed to seg-
ment the vessels from the proposed enhanced vessel map [31].

A. Materials

The proposed enhancement method has been evaluated on
six publicly available retinal image datasets, including four
color fundus image datasets: DRIVE,1 STARE,2 ARIA,3 HRF4;
one Scanning Laser Ophthalmoscopy (SLO) technique based
dataset IOSTAR5; and one fluorescein angiogram (FA) dataset,
VAMPIRE.6 The corresponding details of these datasets are
summarized in Table I.

B. Evaluation Metrics

To compare the binary segmentation results with their
corresponding manually annotated ground truths, three com-
monly used quantitative measures were used to quantify the
performance of the competing methods in terms of pix-
els: sensitivity (SE) = T P/(T P + F N), specificity (SP) =
T N/(T N + F P), and accuracy (ACC) = (T P + T N)/(T P +
F P + T N + F N) where TP, TN, FP and FN indicate the true
positive (correctly identified vessel pixels), true negative (cor-
rectly identified background pixels), false positive (incorrectly
identified vessel pixels), and false negative (incorrectly iden-
tified background pixels), respectively.

1http://www.isi.uu.nl/Research/Databases/DRIVE/
2http://www.ces.clemson.edu/ ahoover/stare/
3http://www.eyecharity.com/aria_online.html
4https://www5.cs.fau.de/research/data/fundus-images/
5http://www.retinacheck.org
6http://vampire.computing.dundee.ac.uk/tools.html
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TABLE I
THE DETAILS OF THE USED RETINAL IMAGE DATASETS, INCLUDING: THE NUMBER OF IMAGES, THE DIMENSION OF THE IMAGE,

THE FIELD OF VIEW IN DEGREES, THE CAMERA USED FOR DATA ACQUISITION, THE IMAGE TYPE,
AND THE MANUAL ANNOTATION USED AS GROUND TRUTH

Since the background usually dominates and returns rela-
tively higher SP values, a high SP value does not always mean
that accurate vascular structure segmentation results have been
obtained. In order to reflect the trade-offs between the sensi-
tivity and specificity and evaluate the quality of our vascular
enhancement results more reliably, AUC, G-mean (G), Dice
Coefficient (DC), and κ statistical analysis were also used.
The receiver operating characteristics (ROC) curve is com-
puted with true positive ratio (TPR) versus the false positive
ratio (FPR), the G-mean is computed as G = √

SE × S P [37].
The DC is computed as a comparison measure for determining
the degree of agreement between the manual annotations
and the results of the automated segmentation method. The
DC is defined as DC = 2(A∩B)/(A + B), where A is
the ground truth and B indicates the segmentation result.
A DC value higher than 0.70 generally indicates excellent
agreement [38]. Finally, the κ statistical analysis can measure
the agreement between two raters, and is more robust than
other percentage agreement measure, as it takes into account
the possibility of the agreement occurring by chance - κ
values between 0.81 to 1.00 indicate almost perfect agreement,
values between 0.61-0.80 exhibit substantial agreement, values
of 0.41-0.60 exhibit moderate agreement and values less than
0.40 exhibit poor to fair agreement.

C. Results

In our experiments, the green channel of color fundus
images and the original FA images were used while the
originals of the other datasets were used as it is. All the
experiments were carried out in MATLAB2015a on a PC with
an Intel Core i7-4790K CPU, 4.00GHz, and 16GB RAM.
Fig. 4 illustrates examples of vessel detection results from
six datasets. The following manual vessel segmentation results
were used as standard references: observer 2 of DRIVE and
STARE; observer DGP of ARIA; and observer 1 of IOSTAR,
HRF, and VAMPIRE.

Four other state-of-the-art vessel enhancement methods
were also selected for comparison purposes: the FVF [5],
IUWF [8], LPF [31] and COSFIRE [17]. For a fair compari-
son, their parameters were optimized for the best performance
as follows:

• FVF scales: 1-8, scale ratio: 2.
• IUWF scales: 2-3.
• LPF scales: 1-3, orientation: θ ∈ {π i

4 |i = 0, 1 · · · 3}.
• COSFIRE scales: 1-4, orientation: θ ∈ {π i

8 |i = 0, · · · 7},
threshold value: 0.35.

TABLE II
SEGMENTATION PERFORMANCE OF USING FOUR DIFFERENT

ENHANCEMENT METHODS (FVF, IUWF, LPF, COSRIRE) AND THE

PROPOSED SEGMENTATION MODEL ON SIX RETINAL IMAGE

DATASETS, IN TERMS OF SE, SP, ACC, AUC, DC
AND COMPUTATION TIME T (IN SECONDS)

Figure 5 show results of applying different enhancement
methods to an example image with a representative patch
containing multiple vascular bifurcations (red arrows), curva-
ture changes, intensity inhomogeneity on large vessels, and
low intensities on tiny vessels (yellow arrows). It can be
clearly seen that the FVF is only able to enhance vessels with
larger diameters, but misses most vessels with small diameters.
The IUWF also enhances background regions, which leads to
difficulties in identifying the vascular structures. As for the
LPF and COSFIRE, the vessel edges are clearly enhanced,
and these methods achieve better results in distinguishing
vessels from the background. However, the LPF also enhances
the artifacts surrounded by the vessel regions, and COSFIRE
yields relatively weak responses to bifurcations and crossovers
and misses the small vessels.
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Fig. 4. Illustrative enhancement results using the proposed method on images from 6 datasets: DRIVE, STARE, ARIA, IOSTAR, HRF, and VAMPIRE,
respectively. From top to bottom: original example images, enhanced results by the proposed method, and manual segmentation results.

Fig. 5. Illustrative enhancement effect on a randomly chosen image from the DRIVE dataset. Top: enhancement results produced by six different
vascular enhancement methods. Bottom: enhancement results on a selected region with vascular bifurcation/crossover (red arrows), and weak
vessels (yellow arrow).

In sharp contrast, the proposed method is not only able to
enhance the vessel regions so as to stand out more conspicu-
ously from the background, but also has the ability to suppress
noise and artifacts: stronger enhancement results on small
vessels, better responses to bifurcations, and more uniform
responses to both high and low intensities.

Analysis of variance (ANOVA) with Tukey post hoc analy-
sis was performed using the SPSS version 21.0 (SPSS Inc.,
Chicago, IL, USA). A p value of 0.05 is considered statisti-
cally significant. Statistical analysis results show that there is
a statistically significant difference in SE, SP, ACC, AUC, and
DC among the five filters (FVF, IUWF, LPF, COSFIRE, and
the proposed method) (ANOVA, all p < 0.001) over all 6 the
datasets. The DC value of the proposed method (p < 0.001)
is significantly higher than that of FVF, IUWF, LPF, or COS-
RIRE (p < 0.01, p < 0.01, p < 0.01, and p < 0.01
respectively).

For most vesselness filters in the literature [5], [8], [17],
[31], their responses usually disconnect the bifurcations from

the main vessel, and this adversely affects the sensitivity and
accuracy of the final extraction of the vascular structure. The
above observations are also confirmed by TABLE II.

The proposed method performs best on all the six datasets
in terms of ACC, AUC and DC. In addition, the computation
time of the proposed method is only slightly slower than the
LPF. Additionally, as evidenced in the ROC curves in Fig. 6,
the yielded results of the proposed method are very close to
those of the second human observer in the DRIVE and STARE
data sets (due to page limitations, the ROC curves from these
two datasets are used only for illustration). Such properties are
due to the proposed filter retaining the intrinsic information of
features in the image that are invariant to changes in intensity,
location and scale, which permit better detection of the vessels
under varying conditions.

To reveal the relative performance of our proposed
method, we also compared it with six existing state-of-
the-art supervised and unsupervised methods (published in
the last three years) on the most popular public datasets:
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TABLE III
PERFORMANCE OF DIFFERENT SEGMENTATION METHODS, IN TERMS OF SE, SP, ACC, AUC, G-MEAN,

AND κ ON THE DRIVE AND STARE DATASETS

Fig. 6. ROC curves for DRIVE and STARE data sets. The results from
the second observer are also reported.

DRIVE and STARE. These six methods are adaptive
thresholding (AT) [39], bar-COSFIRE (B-COSFIRE) [17],
infinite active contour (IAC) [32], locally adaptive deriv-
ative frame (LADF) [40], cross-modality data transforma-
tion (CMDT) [41] and discriminatively trained fully connected
conditional random field (DT-FCCRF) [37]. While the last
two methods are supervised, the others are unsupervised. The
results are presented in TABLE III. As can be observed,
the proposed method outperforms all the state-of-the-art meth-
ods on both the DRIVE and STARE datasets in terms of
accuracy, and AUC. For the DRIVE dataset, the proposed
method yielded a lower SE=0.774, but higher SP=0.979,
leading to a higher score of ACC, than the method proposed
by [32]. The results of the proposed method on the STARE
dataset show that its achieved SP is lower than those of the
methods in [39], [32], and [41],which have sacrificed their SE
score to exchange for a relatively high SP. Our method has an
advantage of 0.056 in SE over the method in [39] with the
highest SP=0.984.

G-mean is capable of measuring the balance between sen-
sitivity and specificity by taking their geometric mean, and
returning a value between 0 and 1. It can be observed that
the G-mean of the proposed method is 0.882 for the STARE
dataset, which achieves the best performance amongst all the
methods. Good agreements were achieved for both DRIVE
and STARE dataset: κ = 0.81, and κ = 0.83, respectively. The
κ analysis further confirms that there is a good agreement
between two sets of segmentation results.

IV. EXPERIMENTAL RESULTS ON 3D DATA

To further demonstrate the wide applicability of the pro-
posed method for the enhancement of the data with different

Fig. 7. Manual annotations. (a) Manually annotated landmarks displayed
on one axial slice. (b) Landmarks displayed on MIP. (c) Landmarks dis-
played on the proposed segmentation result. Red: non-vascular region;
Green: vascular region.

dimensions and modalities, we validate it over 3D data with
two different imaging modalities: TOF-MRA, and synthetic
images.

A. Cerebral 3D TOF-MRA Images

We first evaluate the proposed method based on a publicly
available dataset - MIDAS ToF MRA images.7 The images
were acquired from 25 male and 25 female healthy volunteers,
aged from 18 to 60+ years. These images were captured by
a 3T MRI scanner under standardized protocols, with a voxel
size of 0.5×0.5×0.8 mm3, and the images were reconstructed
as a 448 × 448 × 128 matrix. All subjects provided signed
consent allowing the images to be made publicly available as
open data.

In order to quantitatively evaluate the performance of the
proposed method, two types of reference standard were pro-
vided in this work.

1) Manual Annotation: As in the annotations of the
Grand Challenge of VESsel SEgmentation in Lung (VES-
SEL12) [23], we asked two graders to annotate four axial
slices of each case. ∼ 1600 landmarks were labeled in
each case, of which ∼1000 and ∼600 were annotations on
vascular and non-vascular regions, respectively. The points
located at the vessel bifurcations, bent vessels, or regions
were annotated as vascular landmarks. Four slices which
contain a high proportion of the Circle of Willis (CoW), large,
and small vessels respectively were selected for annotation.
A consensus between the two graders was used as the final
reference standard. The manual annotation of 20 MIDAS-
MRA images (MMM dataset) can be downloaded from the

7http://hdl.handle.net/1926/594
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Fig. 8. Semi-manual annotations. (a) MIP view of a sample MRA:
the selected region indicates the region of the CoW. (b) Semi-manual
annotation on the CoW by the method of Bogunovic et al. [42]. (c) The
performance of our method.

link below.8 Fig. 7 illustrates manual annotated landmarks
imposed on 2D, 3D and maximum intensity projection (MIP)
images, and automated segmentation results.

2) Semi-Manual Annotation: Bogunovic et al. [42] employed
an open source tool kit, TubeTK [43], to generate an almost-
manual annotation of the same dataset, by tracing the center-
lines of the vessel, and the vessel surface was extracted using
the geodesic active contour method [44], as shown as Fig. 8(b).
It should be noted that this annotation concentrates on the
vessels located in the region of the CoW only: accordingly,
we used this annotation to validate the performance of the
proposed method on it.

The top row of Fig. 9 shows an example slice from an MRA
scan, and the results after having applied three state-of-the-art
3D vascular enhancement methods: the 3D FVF [5], the 3D
IUWF [8], and the 3D LPF [29], as well as the proposed
method. Their parameters were again optimized for the best
performance for a fair comparison:

• FVF scales: 1-8, scale ratio: 2.
• IUWF scales: 1-3.
• LPF scales: 2-4, orientation: θ ∈ {π i

16 |i = 0, 1 · · · 15}.
Overall, all the methods demonstrate similar perfor-

mance on the large vessels. But careful observation shows
that the proposed method provides relatively stronger
responses to small vessels than other enhancement methods.
This observation has been confirmed by the middle row
of Fig. 9 - the corresponding MIP results. The proposed
method provides brighter results compared to other methods
and demonstrates better performance in enhancing the small
vessels indicated by the green arrow at the bottom right of
the figures. The bottom row of Fig. 9 shows the segmentation
results obtained using different methods: visually, it reveals
that our method has successfully detected more small vessels.

As it is difficult to demonstrate conclusively the superiority
of the proposed method over other enhancement methods
purely by visual inspection, a more objective evaluation was
undertaken. First, Table IV shows the results of the obtained
filter responses performed on the manual annotation, across
over 50 cerebral MRA images, in terms of TP, FN, FP, and
DC. Overall, the proposed method achieves the best scores
in each of the metrics, with TP= 95.78%, FN= 4.42%,
FP= 6.62%, and DC= 95.01%. In order to assess vessel
detection performance over different diameters/levels/scales,
the segmentation results with regard to different levels and
sizes of vessels are also presented. The evaluation scores of

8http://imed.nimte.ac.cn/en-resources.html

TABLE IV
SEGMENTATION PERFORMANCE OF THREE DIFFERENT LEVELS OF

VESSELS: SMALL VESSELS, LARGE VESSELS, COW, AND OVERALL

PERFORMANCE IN TERMS OF TP, FN, FP, DC,
AND RUNNING TIME T (IN MINUTES)

TABLE V
SEGMENTATION RESULTS OBTAINED ON THE CIRCLE OF

WILLIS BY USING DIFFERENT CEREBRAL VASCULAR

SEGMENTATION METHODS

our method are slightly higher at the level of the CoW and
large vessels. However, on small vessels, our method offers
significant improvements over the other three enhancement
methods by 10.49%, 5,35% and 3.41% in TP respectively.
Statistical analysis results show that there is a statistically
significant difference in TP, FN, FP, and DC among the
four filters (FVF, IUWF, LPF, and the proposed method)
(ANOVA, all p<0.005) for three different levels of vessels,
and overall performance. The DC value of the proposed
method (p < 0.005) is significantly higher than that of the
FVF, IUWF, or LPF ( p < 0.02, p < 0.01, and p < 0.01
respectively).

In addition, evaluations of performance on segmenting
the CoW were obtained based on semi-manual annotation
provided by Bogunovic et al. [42], and compared with three
state-of-the-art cerebral vessel segmentation methods: Higher
Order Orthogonal Iteration (HOOI) [14], Finding Rank-
1Approximation (RAnk-1 Approx) [15], and Intensity-based
Tensor Model (ITM) [13], as shown in TABLE V. The results
show that our method achieves results competitive with those
obtained by inter-observer manual annotation, and achieves
the best overall performance among these methods, with TP=
96.24 ± 0.88%, FN= 3.87 ± 0.61%, FP= 5.91 ± 1.32%, and
DC= 95.53 ± 2.87% respectively.

B. Synthetic Vascular Images

We also evaluate the proposed vessel enhancement method
on 3D synthetic vascular images with known ground truth:
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Fig. 9. Performances of different vessel detection methods on both 2D and 3D images. From top to bottom: enhancement results on one axial slice;
enhanced results visualized in 3D by MIP; vascular segmentation results.

Fig. 10. Segmented vascular structure by different enhancement
methods over the VascuSynth dataset 1, and the original input data
(a) was corrupted by Gaussian noise of σ2 = 60 and displayed in MIP
view. (b) Ground truth. (c) FVF. (d) IUWF. (e) LPF. (f) Proposed method.

the VascuSynth vascular database [45]. This dataset aims to
provide an abundance of 3D images for automated analysis
of tree-like structures, which include vessel segmentation
and detection of bifurcation points using the VascuSynth
Software [46]. It simulates volumetric images (volume size
10×100×100 voxels) of vascular trees and generates the cor-
responding ground truth segmentation, bifurcation locations,
branch properties, and tree hierarchy. As in the previous case
of cerebral vessel segmentation, the evaluation metrics TP, FN,
FP, and DC were used for validation.

In order to demonstrate the superiority of the proposed
filter with application to 3D segmentation, Gaussian noise
with a standard variance (σ 2 = 60) was added here to mimic
imaging artifacts, as shown in Fig. 10. It shows an example
MIP view from VascuSynth and the comparative results of
four filters: FVF, IUWT, LPF, and the proposed filter. Overall,
all methods are capable of detecting large vessels. However,

TABLE VI
SEGMENTATION PERFORMANCE ON THE SYNTHETIC IMAGES BY

DIFFERENT METHODS IN TERMS OF TP, FN, FP, DC,
AND RUNNING TIME T IN MINUTES

careful observation at the location indicated by the green
arrow shows that the proposed method has an advantage in
enhancing the small vessels and the vessels in the dark and
low contrast regions. This observation is confirmed by the
results in TABLE VI- the proposed method achieves the best
performance in terms of TP, FN, FP, and DC. Statistical
analysis shows that there is a statistically significant difference
in TP, FN, FP, and DC among four filters (FVF, IUWF, LPF,
and the proposed method) (ANOVA, all p<0.002). The DC
value of the proposed method (p < 0.005) is significantly
higher than that of the FVF, IUWF, or LPF (p < 0.02,
p < 0.01, and p < 0.008 respectively).

TABLE VII depicts the comparison of our method and the
other state-of-the-art segmentation methods. For simplicity,
Intensity based Tensor Model (ITM) [13] and Constrained
B-Snake (CBS) [47] were selected for the comparative study,
because they also reported the evaluation results over the data
under varying levels of noise corruption (σ 2 = 20, σ 2 = 60).
The superiority in the scores of the proposed method over the
other methods can be observed in all measures - our method
outperforms the two competitors at both low and high noise
levels, showing that it is resistant to imaging noise for vascular
structure segmentation.
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TABLE VII
PERFORMANCE OF THREE DIFFERENT SEGMENTATION METHODS ON

THE SYNTHETIC DATASET IN THE PRESENCE OF TWO LEVELS OF

GAUSSIAN NOISE: σ1 = σ2 = 20, σ2 = σ2 = 60

Fig. 11. Enhancement performance in the presence of weak vessels
and vessel bifurcation / crossover.

V. DISCUSSION AND CONCLUSIONS

In general, bifurcation and crossover of vessels, small
vessels and highly curved vessels are the most challenging
ones in retinal vessel segmentation. In this work, to detect
small vessels, we exploited the advantages of a quadrature
and symmetry filter, which retains the intrinsic information
of features in the image that are invariant to changes in
amplitude and phase, as a way of dealing with intensity
inhomogeneity. The multi-scale approach was also used to
handle the wide range of vessel calibers. Furthermore, the filter
output was then calculated as the product of the blurred and
shifted quadrature filter responses, so as to resolve the weak
response to vessel bifurcation and crossover yielded by the
most filter-based methods. It can be observed in Fig. 11
that the proposed method is able to preserve most of the
small vessel structures (yellow arrows), and additionally that
strong responses are achieved at bifurcations and in crossover
regions (red arrows).

A further major advantage of the proposed work is that
it is well-suited to 3D medical image data. The proposed

method has been tested on MRA, and noise-degraded synthetic
images. It is worth noting that we have also released a man-
ual annotation on cerebral 3D TOF-MRA images for vessel
segmentation - MMM dataset. The landmarks were not only
graded from vascular structures, such as bifurcations and
highly curved vessels, but were also classified into groups
based on vessel diameters, to provide clinicians with more
information about abnormalities at different levels of vessel
segments. A fine segmentation is extremely desirable for
diagnostics and surgery, e.g., embolization surgical planning.
Such surgery requires accurate estimation of the geometry
and volume of vessels/aneurysms. For instance, the CoW
is known to be the most common site of pathologies, its
rupture or leakage can result in a sub-arachnoid hemorrhagic
stroke. Therefore, in order to assess the vessel detection perfor-
mance of the framework over different diameters/levels/scales,
the slices which contain a high proportion of the CoW, large,
and small vessels were selected for annotation.

In addition, we followed Bogunovic’s strategy [42], [44],
and extended the semi-manual annotation to the entire vascular
network, rather than the CoW only. Fig. 12 depicts the visual
comparison of two reference standards (manual and semi-
manual annotation) with automated segmentation results and
an MIP view of an example MRA scan. Fig. 12 (a) shows the
manual annotated landmarks superimposed on an MIP view:
the green dots indicate the vessel areas while the red dots
indicate the non-vessel regions. Fig. 12 (b) shows the manually
annotated landmarks plotted on the semi-manual annotated
vascular structure. Fig. 12 (c) compares the results of man-
ual annotation and that automated by the proposed method.
Fig. 12 (d) contrasts the semi-manual annotated vascular
structure with the proposed automated segmentation method.
It can be seen from Fig. 12 (b) that many thin vessels are
unannotated, because the semi-manual annotation of vessels
was detected by the geodesic active contour model [42], and
this model yields relatively poor performance in dark regions.
Fig. 12 (c) and (d) reveal the superior performance of the
proposed method: the final segmentation reveals many vessels,
as the vessel structure in the low-contrast and dark regions
have also been successfully detected.

The thresholding parameter t in Eq.(9) controls the final
responses of the proposed filter. In this case, there is a
concern that it might affect the final filtering results of vessel
segmentation. To address this concern, we experimentally
investigate its setup - by varying the threshold t from 0 to 1 in
increments of 0.05, as shown in Fig. 13. (Left: the average
AUC performance on six retinal image datasets with standard
deviation. Right: the average DC performance on 3D cerebral
MRA and synthetic images with standard deviation.) The
optimal values, t = 0.75 and t = 0.70 yielded the best
performance in 2D and 3D data, respectively.

In conclusion, we have described and evaluated our new
filter-based technique for vessel enhancement and detection
for both 2D and 3D images. By means of a quadrature and
symmetry filter combined with blurring and shifting operation,
quantitative evaluations on publicly-accessible datasets show
that, compared to the state-of-the-art methods, the proposed
filter achieves better vessel segmentation results, especially
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Fig. 12. Comparison of (a) MIP view and manual annotation; (b) Manual
and semi-manual annotation; (c) Manual annotation and automated seg-
mentation; (d) Semi-manual annotation and automated segmentation.

Fig. 13. The AUC and DC value of the proposed method with the
threshold t taking different values in 2D and 3D data, respectively.

in the dark and low contrast regions. There has been an
increasing use of 3D images in clinical settings, we foresee
that the proposed framework will be readily extended to other
3D images, such as Digital Subtraction Angiography (DSA).
We expect that this framework will become a powerful tool
in the analysis of vasculatures for the management of a wide
spectrum of vascular-related diseases.
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