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Guest Editorial
Low-Dose CT: What Has Been Done, and

What Challenges Remain?

I. INTRODUCTION

THE introduction of computed tomography (CT) in 1972
was among the most significant development in medical

imaging since the discovery of X-rays in 1895. In addition,
the innovation of computationally reconstructing tomographic
images from projection data significantly influenced the devel-
opment of other medical imaging modalities, such as magnetic
resonance imaging and single photon and positron emission
tomography. With the advent of helical and multi-detector-
row CT (MDCT) scanners in the 1990s and 2000s along
with innovations in cone-beam CT (CBCT) in many forms,
CT gained unmatched speed and adaptability for volumetric
imaging, leading to widespread use for diagnostic imaging,
emergency examination, image-guided interventions, treatment
planning, and monitoring of therapeutic response.

As the use of CT has grown, so has concern about the
associated radiation dose [item 1) in the Appendix]–[item 4)
in the Appendix], and while the biological risk associated with
low (mSv) levels of radiation is not established, the concern is
sufficient to motivate major efforts from academic, government
and industrial researchers to develop methodologies for pro-
ducing clinically useful images at the lowest doses possible,
hereafter called low mSv or low-dose CT (LdCT) [item 5)
in the Appendix]. This special issue aims to bring together
the expert opinions of CT researchers to review what has
been done in the past and what challenges await in the future
for LdCT.

II. REVIEW OF PAST EFFORT FOR LDCT DEVELOPMENT

For the purpose of simplifying the presentation of the
following sections, descriptions will be based on the flowchart
of Fig. 1 (left), which outlines the signal or information
processing in a typical CT system of Fig. 1 (right) from the
X-ray tube or emission source through to the output images.

Typical intermediate stages from the X-ray emission source
to the final output images may include the followings. (1) The
X-ray energy spectral shaping filter or an attenuating plate,
which aims to alter the X-ray tube output energy spectrum
for a specific clinical application [item 6) in the Appendix],
[item 7) in the Appendix]. (2) The X-ray flux modulator
(e.g., the bowtie filter) [item 8) in the Appendix], which
aims to alter the X-ray flux for a particular body anatomy

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.
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Fig. 1. A simplified flowchart showing the X-ray signal generation,
modulation and detection, as well as the processing of the acquired
data toward the output of the final CT images. The big arrow indicates
that the advancement of detection systems (e.g., the auto mAs or kVp
protocol, non-circular orbit rotation, sparse view data acquisition, limited
field-of-view data acquisition, etc.) will trigger research efforts to develop
corresponding image reconstruction algorithms, and vice versa the
innovation in image reconstruction strategies will provide insights to lead
the design of new detection systems.

part such as the head, chest, abdomen, etc. (3) Automatic
adjustment of the X-ray tube current (mAs) and/or the
X-ray tube voltage (kVp) values during the X-ray tube rotates
around the body [item 9) in the Appendix], [item 10) in the
Appendix]; which aims to deliver an adequate amount of X-ray
energy at a particular angle during the rotation according to
the body anatomy, e.g., more energy at the horizontal direction
and less energy at the vertical direction for the body shape
in Fig. 1 (right). (4) The scatter estimator on the transmitted
photons from the body toward the detector which can be a grid
plate hardware with holes allowing the X-rays from the tube
toward a detector bin on a straight line path or a computer
algorithm. (5) The detector array, which converts the X-ray
energy into electrical signals. (6) System calibration, which
ensures all the detector bins respond to input X-ray energy
uniformly, characterizes system electronic background noise
and outputs adequate X-ray transmission data (also called pre-
log projection data). (7) Additional system calibration, mainly
the operation of log transform from the pre-log projection data
to post-log projection data, also called sinogram data, which
reflect the line integral of attenuation coefficients through
the body, i.e., the well-known Radon transform. And (8)

0278-0062 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2410 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 12, DECEMBER 2017

tomographic reconstruction from the sinogram data, or invert-
ing mathematically the Radon transform, for CT images;
where the classic filtered back-projection (FBP) reconstruction
is a common choice in the situation when the sinogram data
are nearly noise free (high mSv dose level) and sampled ade-
quately around the patient, particularly for volumetric imaging
in MDCT or CBCT.

In the early development of CT, research efforts mainly
focused on acquiring complete and consistent line-integral
sinogram data around the patient, allowing for the inversion of
the Radon transform while achieving the highest image quality
possible. CT technology evolved through several generations,
ultimately allowing fast acquisition of single and then multiple
patient slices, providing adequate diagnostic images in real
time for almost every vital organ inside the human body.

As the use of CT increased, the associated X-ray radiation
exposure gradually became a concern, and so attracted more
research efforts seeking to reduce the radiation exposure level
while retaining high image quality [item 2) in the Appen-
dix], [item 3) in the Appendix], [item 5) in the Appendix],
[item 11) in the Appendix]. The research efforts have been
increased significantly in the past two decades, particularly due
to the demonstrated effectiveness of CT in screening [item 12)
in the Appendix], [item 13) in the Appendix] and in pediatric
imaging [item 1) in the Appendix], [item 11) in the Appendix],
[item 14) in the Appendix]. While a complete survey of the
literature cataloging these efforts is beyond the scope of this
Editorial, we employ two broad categories of work aimed at
reduction of CT dose: (1) dose-optimized CT detection system
design; and (2) dose-optimized image reconstruction algorithm
development, where the former will be briefly reviewed and
the later will be described in more detail.

A. Dose-Optimized CT Detection System Design

A typical CT detection system includes, see Fig. 1 (right),
three major components: X-ray source, X-ray modulator (for
spectral shaping, flux adaptive to body anatomy, scatter elim-
ination, etc.), and X-ray detector. The first task for dose-
optimized CT detection system design is to obtain an adequate
X-ray energy spectrum from the X-ray tube for a particular
clinical application. Given an X-ray tube, many X-ray spectral
shaping filters have been designed to yield a desired energy
spectrum [item 6) in the Appendix], [item 7) in the Appendix].
In this special issue, Makeev and Glick report an example of
using filter plates to optimize the spectral output of an X-ray
tube for fully three-dimensional (3D) breast imaging [Low-
dose contrast-enhanced breast CT using spectral shaping
filters: An experimental study]. In this report, many spectral-
shaping methods are cited and more spectral-shaping research
efforts are expected in the future to achieve dose-optimized
patient-specific clinical tasks.

The next task for dose-optimized CT detection system
design is to obtain an adequate X-ray flux across the detected
field of view (FOV), adaptive to the body shape by the use
of the bowtie filter. Recent advancements for this patient-
specific, dose-optimization detection system design can be
seen from the reports [item 15) in the Appendix], [item 16) in

the Appendix]. A similar approach to achieve the same task is
to modulate the X-ray tube mAs and/or kVp according to the
body shape when the X-ray tube is rotating around the patient,
so called automatic mAs/kVp [item 9) in the Appendix],
[item 10) in the Appendix]. Extending in-plane modulation
to the z-axis is further investigated in [item 17) in the
Appendix] and [item 18) in the Appendix]. In addition to these
efforts toward system design optimization, Gang, Siewerdsen
and Stayman have further refined the corresponding image
reconstruction strategy to realize the gain in dose reduction,
as reported in this special issue [Task-driven optimization
of fluence field and regularization for model-based iterative
reconstruction in CT].

At the typical kVp levels used in clinical CT, Comp-
ton scatter contributes noticeably and negatively to the
acquired data, particularly for fully 3D volumetric CT imaging
[item 19) in the Appendix]. The third task for dose-optimized
CT detection system design is to improve the anti-scatter grid
to reject the scattered counts and/or develop an effective scatter
estimation algorithm. Examples of this effort are reported in
[item 20) in the Appendix] and [item 21) in the Appendix].
It is expected the reconstruction strategy of Gang et al. in this
special issue can be further adapted to realize the gain in dose
reduction after the use of optimal system design for scatter
rejection.

While there are many other strategies for dose-optimized
CT detection system design, the most fruitful direction likely
involves the design of the X-ray detector, including new
detector materials (e.g., for photon counting) [item 22) in
the Appendix], new detector assemblies (e.g., axial multi-band
array, varying bin size for optimal sampling across the FOV),
and new detector geometries (e.g., flat panel, etc.) [item 23)
in the Appendix]. It is a challenge to cover this task in a
limited space and a brief review can be found in [item 8) in
the Appendix].

In addition to the efforts for improvement of each individual
component performance above, an innovative integration of all
the components for a particular clinical application will also
be an important task. Furthermore, the motion of each of the
hardware components or a combination of the components can
also reduce the dose while accomplishing a specific clinical
task [item 24) in the Appendix]. Two examples are reported
in this special issue: one is the work of Shamul and Joskowicz
[Radon space dose optimization in repeat CT scanning] and
the other is the work of Medan and Joskowicz [Reduced-dose
imageless needle and patient tracking in interventional CT
procedures].

B. Dose-Optimized Image Reconstruction
Algorithm Development

Approaches for dose-optimized image reconstruction algo-
rithm development can be reviewed according to how the
data were acquired: (1) low-mAs and/or kVp data acquisition;
(2) sparse-view data acquisition. Other data acquisition strate-
gies, such as limited FOV for reconstructing a small region and
limited angle for compensating metal insert inside the body,
are beyond the scope of this special issue and, therefore, will
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not be included here. The following presentation will focus on
the last three stages of Fig. 1, i.e., from the X-ray transmission
data and sinogram data to the output images.

1) Low-mAs or kVp Data Acquisition: This approach is a
relatively straightforward attempt to directly reduce the X-ray
radiation exposure, given an available CT scanner configura-
tion and image reconstruction algorithms, such as the well-
established FBP algorithm. By carefully performing the above
system design tasks and modulating the mAs and/or kVp
parameters for each individual patient and clinical application,
the FBP reconstruction can generally yield clinically useful
images at reduced radiation dose. However, when the radiation
exposure is further reduced to reach sub-mSv dose level [item
5) in the Appendix], the images reconstructed by FBP are
not only noisy but also include structural artifacts, where
the artifactual structures in the noisy images can bring much
higher interpretation risks than the noise [item 25) in the
Appendix], [item 26) in the Appendix] . To solve the asso-
ciated noise and artifact problems in the FBP reconstruction,
great efforts have been devoted to explore and develop alter-
native iterative algorithms to achieve desired image quality.
Many of these algorithms predate FBP, but computational and
algorithmic improvements have allowed them to find clinical
use in recent years. Recent efforts are not limited to the
iterative solution of the linear systems in the past, such as
algebraic reconstruction techniques (ART) [item 27) in the
Appendix] or its variants, e.g., simultaneous ART [item 28)
in the Appendix] and maximum likelihood (ML) expectation
maximization [item 29) in the Appendix], but also introduce
many knowledge-based models for both the acquired data and
the to-be-reconstructed images. In the following, two models
are reviewed within the framework of Bayesian statistics
inference, one is a data-fidelity model and the other is a prior-
knowledge model constraining the to-be-reconstructed image.
A reconstruction outcome within the Bayesian framework is
frequently called penalized ML solution (pML), or simply
penalized likelihood (PL). Other reconstruction methods for
a different framework solution will not be included here and
are referred to the reports [item 5) in the Appendix], [item 8)
in the Appendix], [item 11) in the Appendix].

The data-fidelity model typically includes both the X-ray
counting noise and the system electronic background noise
in both the pre-log X-ray transmission space [item 30) in
the Appendix], [item 31) in the Appendix] and the post-
log attenuation line-integral sinogram domain [item 32) in
the Appendix], [item 33) in the Appendix], where in order
to construct a numerically tractable data fidelity function,
the statistical distribution of the X-ray counts of a compound
Poisson nature [item 34) in the Appendix] is approximated
by the Poisson process and the background noise is usually
modeled by the Gaussian distribution [item 30) in the Appen-
dix]. Further approximation is made to replace the summation
of the Poisson and Gaussian distributions by a shift-Poisson
distribution for a numerically tractable data fidelity function
[item 35) in the Appendix]–[item 37) in the Appendix].
Despite the approximations, image reconstruction in the pre-
log transmission space is still quite computationally intensive
[item 38) in the Appendix], [item 39) in the Appendix],

compared to the reconstruction in the post-log line-integral
sinogram domain [item 40) in the Appendix], [item 41) in
the Appendix]. In this special issue, Wang, Zhou, Yu, et al.
developed a hybrid image reconstruction to take advantages of
each of the pre- and post-log data fidelity models respectively
[Hybrid pre-log and post-log image reconstruction for CT].

The most widely cited prior model for the to-be-
reconstructed images is reported in the classic paper of Geman
and Geman [item 42) in the Appendix], where a neighborhood
system of Markov random field (MRF) is specified using
pixel-by-pixel representation to encourage reconstruction of
a piece-wise smooth image. Expansion from the previous
pixel-by-pixel presentation to patch-by-patch description with
application to LdCT by the use of the non-local mean (NLM)
descriptors is detailed in the review paper [item 43) in the
Appendix]. Further exploration to include tissue-specific struc-
tural and textual information from previous diagnostic scans
into the MRF framework is reviewed in [item 44) in the
Appendix] and [item 45) in the Appendix]. There are many
other prior models, e.g., those which are constructed based
on the image total variation (TV) minimization [item 46)
in the Appendix]. Inspired by recent advancements, machine
learning was also adapted in the prior-model construction
for LdCT. Two examples of adapting the machine learn-
ing are reported in this special issue: one is the work of
Bai, Yan, Jia, et al. [Z-index parameterization for volumetric
CT image reconstruction via 3D dictionary learning], and the
other is the work of Wu, Kim, El Fakhri, et al. [Iterative
low-dose CT reconstruction with priors by artificial neural
network].

In addition to the reconstruction strategies from the acquired
data in either the pre-log data space or the post-log data
domain, another reconstruction strategy has also been attract-
ing significant research interest. This strategy aims to restore
the ideal line integral sinogram from the pre-log data with
consideration of the X-ray Poisson distribution and the elec-
tronic background Gaussian noise, as well as other factors such
as X-ray tube size, detector bin crosstalk, etc. It is followed
by a computationally efficient method for tomographic image
reconstruction from the restored line integral sinogram, such
as a FBP or ART type algorithm [item 31) in the Appendix],
[item 32) in the Appendix]. A straightforward approach is to
filter the sinogram noise, followed by a FBP image reconstruc-
tion [item 47) in the Appendix], [item 48) in the Appendix].
Examples of this alternative strategy, in this special issue,
are the work of Xie, Zeng, Zhao, et al. [Robust low-dose
CT sinogram preprocessing via exploiting noise-generating
mechanism] and the investigation of Liu, Ma, Zhang, et al.
[Discriminative feature representation to improve projection
data inconsistency for low-dose CT imaging].

While the image reconstruction strategies in either the pre-
or the post-log domain have shown a noticeable dose reduction
with adequate image quality for several clinical applications,
as seen from the above mentioned studies, further research
efforts on the reconstructed images by the use of sophisti-
cated image restoration methods in the image domain have
demonstrated variable gains in dose reduction with adequate
image quality for some specific clinical tasks [item 49) in the
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Appendix], [item 50) in the Appendix]. Of particular note are
the machine learning contributions of Zhang, Rong, Lu, et al.
[Low-dose lung CT image restoration using adaptive prior
features from full-dose training database], Chen, Zhang, Kalra,
et al. [Low-dose CT with a residual encoder-decoder convolu-
tional neural network], and Wolterink, Leiner, Viergever, et al.
[Generative adversarial networks for noise reduction in low-
dose CT].

These efforts for dose-optimized, task-dependent
approaches have been expanded to the case of multi-
frame dynamic scans in functional CT perfusion studies
and image-guided intervention, where the dose level can
be very high [item 2) in the Appendix]. Two examples of
dynamic CT imaging in this special issue are the low-dose
cerebral perfusion CT of Zeng, Xie, Cao, et al. [Low-dose
dynamic cerebral perfusion CT reconstruction via intrinsic
tensor sparsity regularization] and the low-dose myocardial
perfusion CT of Li, Speidel, Francois, et al. [Radiation
dose reduction in CT myocardial perfusion imaging using
SMART-RECON].

2) Sparse-View Data Acquisition: Another approach for
reducing X-ray radiation exposure is acquiring a smaller num-
ber of projections, while retaining relatively high mAs/kVp
parameter setting for each projection, i.e., sparse-view data
acquisition. Such approaches maximize the signal-to-noise
ratio (SNR) in each view and reduce the total amount of
electronic readout noise in the dataset. The ability to recon-
struct images from sparse views is inspired by developments
in compressive sensing (CS) field for reconstruction of signals
that can be sparsely represented in some basis [item 51) in
the Appendix]–[item 53) in the Appendix]. While the mathe-
matical theory behind CS does not necessarily apply directly
to CT reconstruction, in practice many of the algorithmic
approaches from CS field produce visually high-quality images
in CT. A typical implementation realizing the potential of
sparse-view reconstruction for LdCT is the algorithm called
TV-POCS (total variation – projections on to convex sets)
[item 54) in the Appendix], [item 55) in the Appendix], where
each of the POCS forward- and back-projection cycles imposes
a subspace of feasible solutions in the image domain, where
all the possible feasible solutions in the sub-space satisfy the
constraints of the line integral projection data. The selection of
the TV solution among the feasible solutions in the sub-space
yields a unique reconstruction.

While the TV-based LdCT image reconstruction showed
impressive results, staircase or patch artifacts are sometimes
observed in subsequent investigations and some possible solu-
tions for reduction of the artifacts were suggested [item 56) in
the Appendix]–[item 59) in the Appendix]. Among these pos-
sible solutions, the theoretical TV-stokes model in [item 60)
in the Appendix] and [item 61) in the Appendix] is interesting
in the sense that it can explicitly consider the high sampling
rate across the detector elements (or bins) at each projection
view to recover any possible missing information between
two adjacent sparse views (from low sampling rate), thus its
robust performance is expected [item 62) in the Appendix],
[item 63) in the Appendix]. This special issue includes three
examples of adapting TV optimization for (1) regional LdCT

reconstruction by Zhang, Song, Chen, et al. [Limited-range
and detector few-view CT method for ROI reconstruction in
solitary lung nodules follow-up examination using histori-
cal image], (2) dual-energy LdCT image reconstruction by
Lee, Lee, Kim, et al. [A feasibility study of low-dose single-
scan dual-energy cone-beam CT in many-view under-sampling
framework], and (3) prior penalty model construction to elim-
inate unnecessary radiation in radiation oncology by Liu,
Li, Xiang, et al. [Low-dose CBCT reconstruction based on
Hessian Schatten penalty with different orders].

III. CHALLENGES IN THE FUTURE FOR LDCT

While significant progress has been made in the past
decades by the efforts reviewed above, challenges remain
for the long-term objective of low-mSv or LdCT to achieve
dose-optimized, clinical task-dependent and patient-specific
personal healthcare. The challenges may be reviewed along
the information processing path of X-ray signal generation,
data acquisition, and image reconstruction of Fig. 1.

A. X-Ray Signal Generation and Data Acquisition

As reviewed above, both the X-ray spectral-shaping filter
plate and flux-modulating bowtie filter play an important role
for dose-optimized, application-dependent, patient-specific CT
imaging. To achieve a real-time dynamic modulation of the
spectral shaping and flux profile at each projection angle
around the body remains a challenging task. The challenge
for real-time dynamic modulation also exists for the automated
mAs and/or kVp modulation operation during data acquisition,
although significant progress has been made. In addition, for
fully 3D volumetric MDCT and CBCT, the photon scatter
remains a major cause of degrading image quality and a
challenge for dose reduction.

It is clearly seen that more significant progress at the data-
acquisition stage relies on detector optimization [item 23) in
the Appendix]. Photon-counting detectors [item 22) in the
Appendix], for example, have the potential to eliminate the
electronic readout noise.

B. Image Reconstruction

The challenges for LdCT image reconstruction may be
reviewed along the following steps, starting from the output
of the detector array.

1) Reconstruction from Pre-Log Transmission Data Model:
It is desirable to start the image reconstruction from the
output of the detector where all the factors affecting X-ray
photons traversing the body and interacting with the detector
can be modeled by a mathematical formula. At present time,
the output data noise is modeled as comprising X-ray counting
statistics and electronic background noise. While the system
electronic background noise can be characterized as Gaussian
distribution (which is numerically tractable), the X-ray count-
ing statistics was shown to follow a compound Poisson dis-
tribution [item 34) in the Appendix], which is numerically
intractable and remains a challenge so far. It is hoped that
the advent of photon counting detector will eliminate this
challenge and the effect of the background noise as well.
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By the above mentioned approximations, which simplifies
the two parts of the detector output as Poisson statistics for the
X-ray counts and Gaussian statistics for the electronic back-
ground, the pre-log transmission data can be modeled as the
so-called shifted Poisson statistics [item 35) in the Appendix]–
[item 39) in the Appendix]. Despite the simplification, this
data fidelity model is still a severely non-linear function of
the line integral of the attenuation coefficient. Great numerical
challenges in calculating the optimal solution are observed
in the reports [item 38) in the Appendix], [item 39) in the
Appendix].

To increase the details viewed in the reconstructed images,
modeling (1) the finite sizes of X-ray tube and detector bins,
(2) the effect of beam hardening, (3) the detector cross talk,
etc. [item 31) in the Appendix], into the image reconstruction
may become necessary.

2) Reconstruction from Post-Log Line-Integral Sinogram Data
Model: One way to get around the numerical challenges is
the use of a sinogram-restoration strategy [item 31) in the
Appendix]. Other alternatives are to take only the most impor-
tant first- and second-order statistical moments into consider-
ation and ignore higher orders [item 32) in the Appendix],
[item 33) in the Appendix].

Since the models in both (3.2.1) and (3.2.2) sections require
iterative means to approach optimal reconstructions, the asso-
ciated computation can be a very costly burden.

3) Incorporation of Prior Knowledge Model for Dose-
Optimized LdCT Image Reconstruction: While a piece-wise
smooth image constraint in the prior models for the to-be-
reconstructed images can reduce the dose significantly while
retaining the image’s SNR and edge sharpness by the widely-
cited pixel-based MRF Huber model [item 64) in the Appen-
dix] and the patch-based NLM expansion [item 43) in the
Appendix], image texture is gaining more attention as a source
of clinical information [item 65) in the Appendix], [item
66) in the Appendix]. Recent advancements in incorporating
tissue textures from previous high-quality images into current
LdCT image reconstruction demonstrated great potential to
achieve dose-optimized LdCT image reconstruction [item 45)
in the Appendix]. It is expected that recent research interest
in machine (deep) learning will rapidly progress the extraction
of the texture information from previous high-quality images
into current LdCT image reconstruction. However, severe
challenges are expected.

4) Restoration of Reconstructed Images in the Image Domain:
Filtering images is a well-established field, and various
point spread functions and noise-filtration methods have been
explored to restore a desired image from a distorted and noise-
contaminated image. The approach continues to attract atten-
tion for LdCT because of its high speed and the convenience
of working with readily available reconstructed images as
opposed to the less accessible sinogram data [item 67) in the
Appendix], [item 68) in the Appendix]. As mentioned before,
the photon starvation streak artifacts are very hard to remove,
although filtering the random noise could be less challenging
[item 26) in the Appendix].

5) Modulation of Multiple Scans for Dynamic Study and
Image-Guided Applications: As CT is expanded rapidly into

multiple scans for dynamic function studies and image-guided
interventional operations, innovation in data acquisition and
image reconstruction is clearly desired [item 69) in the
Appendix]. Examples of this kind of innovations are illustrated
by the dynamical cerebral perfusion CT studs of Zeng, et al.,
the myocardial perfusion study of Li, et al., and the two reports
from Joskowicz’s group in this issue.

6) Spectral LdCT Image Reconstruction: X-ray energy plays
an essential role in modulating the image contrasts in CT
imaging, particularly among soft tissues. Since the clinically-
desired image textures heavily depend on the contrasts,
accurate reconstruction of a series of images at different energy
intervals will have significant impact on expansion of LdCT
applications to more clinical tasks. This would open a new path
to explore computer-aided detection and diagnosis in a low-
dose CT setting for screening many cancer precursors in the
colon, lung and other vital organs [item 70) in the Appendix].
With advancement of photon counting detection system,
reconstructing a series of spectral LdCT images will become
more feasible, although challenges await on the path ahead.

IV. CONCLUSION AND OUTLOOK

The objective of this special issue is to bring the expert
opinions of CT researchers together to review what has been
done in the past development of low-mSv or LdCT and what
challenges await in the future for further advancement of
LdCT. While the authors of the papers in this special issue
contributed their original research materials, the reviewers
added great insights in polishing the research ideas and
refining the experimental outcomes. We, the guest editors and
the editor-in-chief of this great journal of IEEE Transactions
on Medical Imaging, believe the hard work of the reviewers
and the authors have made a successful achievement to the
objective, and the hard work is greatly appreciated.
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