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Abstract— This paper presents a novel method for line
restoration in speckle images. We address this as a sparse
estimation problem using both convex and non-convex
optimization techniques based on the Radon transform
and sparsity regularization. This breaks into subproblems,
which are solved using the alternating direction method of
multipliers, thereby achieving line detection and deconvo-
lution simultaneously. We include an additional deblurring
step in the Radon domain via a total variation blind decon-
volution to enhance line visualization and to improve line
recognition. We evaluate our approach on a real clinical
application: the identification of B-lines in lung ultrasound
images. Thus, an automatic B-line identification method is
proposed, using a simple local maxima technique in the
Radon transform domain, associated with known clinical
definitions of line artefacts. Using all initially detected lines
as a starting point, our approach then differentiates between
B-lines and other lines of no clinical significance, including
Z-lines and A-lines. We evaluated our techniques using as
ground truth lines identified visually by clinical experts.
The proposed approach achieves the best B-line detection
performance as measured by the F score when a non-
convex �p regularization is employed for both line detection
and deconvolution. The F scores as well as the receiver
operating characteristic (ROC) curves show that the pro-
posed approach outperforms the state-of-the-art methods
with improvements in B-line detection performance of 54%,
40%, and 33% for F0.5, F1, and F2, respectively, and of 24%
based on ROC curve evaluations.

Index Terms— Line detection, deconvolution, image
restoration, ultrasound, inverse problem, ADMM, sparsity
regularisation.

I. INTRODUCTION

L INES and boundaries in medical images frequently rep-
resent important structures as they can discriminate tissue

types, organs, and membranes. Although a number of image
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enhancement and segmentation methods have been proposed
to help detect lines, none of these have considered line arte-
facts, which are more difficult to visualise, yet are still mean-
ingful for clinical interpretation. One such clinical application
is the detection of B-line artefacts in lung ultrasound images.
The summation of these B-lines yields a score denoting the
extent of extravascular fluid in the lungs [1]–[3]. Notwith-
standing progress in dialysis techniques, volume overload
and cardiopulmonary congestion remain a major problem in
patients on hemodialysis and peritoneal dialysis.

Fluid status assessment is one of the challenging goals for
the nephrologist in patients on dialysis, characterized by a
profound impairment in the regulation of body fluid distribu-
tion. Various techniques have been employed to quantify fluid
overload in patients with end stage kidney disease, and among
them lung ultrasonography has attracted growing attention in
recent years [4]. B-lines are imaging artefacts which result
from subclinical transudate resulting in acoustic mismatch
between the lung parenchyma and adjacent pleura. Moderate
to severe lung congestion detected via quantification of B-lines
using lung ultrasound is a strong predictor of intradialytic
morbidity, death and cardiovascular events in adult dialysis
patients [5], [6]. The technique has also shown potential as
a superior predictor of fluid overload in infants and children
on dialysis when compared to other measures [2], [3]. Clin-
ical limitation when using lung ultrasound to quantify fluid
overload is that quantification of B-lines may not accurately
reflect generalised fluid overload in patients with conditions
such as interstitial lung disease or severe cardiac disease.
Moreover, the technique is operator dependent and requires
specialist training [7]. This limits the application of lung
ultrasound in the clinical setting, as only a small number
of trained individuals can reliably detect B-lines. Hence,
a small number of patients have access to lung ultrasound,
and it is not routinely used in paediatric practice. Therefore,
reliable image processing techniques that improve the visibility
of lines and facilitate line detection in speckle images are
essential. To the best of our knowledge, only two automatic
approaches [8], [9] and one semi-automatic approach [10] have
been proposed previously. The method in [8] employs angular
features and thresholding (AFT). A B-line is detected in a
particular image column if each feature exceeds a predefined
threshold. The method in [9] uses alternate sequential filter-
ing (ASF). A repeated sequential morphological opening and
closing approach is applied to the mask until potential B-lines
are separated. These methods are far from being sufficiently
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reliable to be used in clinical settings. This is particularly true
for paediatric ultrasound data due to the anatomical differences
between children and adults.

For line detection, the Hough transform is the most popular
algorithm due to its simplicity. The transform uses a parametric
representation of a line: r = x cos(θ) + y sin(θ), where r is
the shortest distance between the origin and the line, and θ is
an angle between the x axis and a vector perpendicular to
the line [11]. Applying the Hough transform is however not
straightforward in noisy images, particularly for multiplica-
tive speckle noise, as often encountered in medical images,
due to the multiple false peaks generated from collinear
noisy edge points. Several techniques have been proposed to
deal specifically with speckle noise [12], [13]. For example,
the method in [14] employs an adaptive-weighted bilateral
filtering (AWBF) to reduce speckle and preserve edge structure
by computing local entropy. Some techniques have focused
on line detection in noisy images [15], [16]. This includes
the method introduced by Czerwinski et al. [17] that uses
eight directional sticks as a rotating kernel transformation
to enhance lines and curves in ultrasound images. A review
of edge and line detection methods using different denoising
filters can be found in [18]. These techniques generally require
several predefined thresholds and parameters, and hence need
tuning for use with data collected in different settings.

A Radon transform was employed to avoid the binary
edge detection process in [19]. This is similar to the Hough
transform but it directly operates on grayscale images [20].
Aggarwal and Karl [21] proposed one such line detection
method based on the Radon transform and showed very
promising results. However, when they applied their method to
real images (e.g. aerial and SAR images), the grayscale images
were converted to binary gradient images, which means that a
predefined threshold is still required. Moreover, their method
does not consider blur that generally occurs due to imperfect
image acquisition, e.g. defocus, or machine limitations, such
as low resolution and slow shutter speed.

In this paper, we propose a novel solution to an inverse
problem for line detection in ultrasound images. This extends
from our previous work [22], where lines in noisy ultrasound
images were modelled via a Radon transform only and they
were estimated using �1 regularisation. Here, we combine
a Radon transform with the point spread function (PSF)
of the ultrasound acquisition system in a single equation
thereby achieving line detection and deconvolution simulta-
neously. This inverse problem is solved using the alternating
direction method of multipliers (ADMM) [23], offering a
fast convergence rate. We present solutions for various �p

regularisations, where p > 0 (small p leads to sparsity).
We subsequently show that the proposed method is suitable
for B-line detection in lung ultrasound images. The method
also detects Z-lines and A-lines in order to distinguish B-lines.
Z-lines also appear as vertical lines, but are not caused by
an increase in lung density so they must be discounted. The
A-lines, which are reflections of the pleural lines, help sepa-
rating B-lines and Z-lines. We specifically address images of
children as these are technically challenging due to chest size
and rib positions. These images are generally low-resolution

and show obvious rib shadows causing images to be low
contrast.

The novel contributions of this work are summarised as
follows:

1) We propose an innovative way of detecting lines in
speckle images by solving an inverse problem;

2) We address the issue of joint line detection and decon-
volution, with the latter component being essential for
the accuracy of the former;

3) We propose solutions to the above inverse problems
based on both convex and non-convex optimisation
approaches with fast rates of convergence;

4) We introduce an automatic robust approach to B-lines
identification amongst various line artefacts present in
lung ultrasound, which also include the pleural line,
A-lines and Z-lines.

The remaining part of this paper is organised as fol-
lows. In Section II we describe lung ultrasound imaging and
associated line artefacts. Then, the proposed line restoration
via an inverse problem solving is presented in Section III.
An enhanced method using an additional deblurring step is
described in Section IV. The B-line identification method,
which uses the set of previously restored lines, is presented
in Section V. The performance of the proposed methods is
evaluated on sets of both simulated and real ultrasound images
in Section VI. Finally, Section VII presents the conclusions of
the paper.

II. CHARACTERISATION OF LUNG ULTRASOUND IMAGES

A. Line Artefacts and Their Clinical Meaning

Lung ultrasound, is a non-invasive, easy-to-perform,
radiation-free, fast, cheap and highly reliable technique, which
is currently employed for objective monitoring of pulmonary
congestion [24]. The technique requires ultrasound scanning
of the anterior right and left chest, from the second to the fifth
intercostal space, in multiple intercostal spaces [25]. The soft
tissues of the chest wall and the aerated lung are separated by
a pleural line, which is thin, hyperechoic and curvilinear.

Linear artefacts are thought to arise from ultrasound rever-
berations generated by the water-thickened interlobular septa
and other subpleural structures [26]. These artefacts are
referred to as B-lines. When the air content decreases and lung
density increases due to the presence in the lung of transudate,
the acoustic mismatch between the lung and the surrounding
tissues is lowered, and the ultrasound beam can be partly
reflected at deeper zones and repeatedly. This phenomenon
creates discrete vertical hyperechoic reverberation artefacts
(B-lines), that arise from the pleural line [27]. The presence
of a few scattered B-lines can be a normal variant, found in
healthy subjects, especially in the lower intercostal spaces.
Multiple B-lines are considered sonographic sign of lung
interstitial syndrome, and their number increases along with
decreasing air content and increase in lung density [28]. Note
that the B-lines are counted as one if they originate from the
same point on the pleural line.

A-line artefacts are repetitive horizontal echoic lines with
equidistant intervals, which are also equal to the distance
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Fig. 1. Line artefacts in lung ultrasound images. B-mode images
(top row) and lines overlaid on them (bottom row). There are two, zero
and two B-lines in the image on the left, middle and right, respectively.
Red, yellow, blue and green lines represent the pleural lines, B-lines,
A-lines and Z-lines, respectively.

between skin and pleural line [1]. The A-lines indicate sub-
pleural air, which completely reflects the ultrasound beam. The
length of an A-line can be roughly the same as the pleural line,
but it can also be shorter, or even not visible because of sound
beam attenuation through the lung medium. Finally, Z-lines
are short vertical comet tail artefacts arising from the pleural
line but not reaching the distal edge of the screen. They are
found in normal persons as well as in those with an abnormal
collection of air in the pleural space. They do not erase the
A-lines and do not move with lung sliding. They are of no
clinical significance, so they should not be confused with the
B-lines. Fig. 1 shows various line artefacts in lung ultrasound
images, occurring in different machine settings.

B. Line Artefact Model

The simplest way of modelling lines in noisy images is by

y = Cx + n, (1)

where y(i, j) is the observed noisy image (h × w) in
the two-dimensional Euclidean plane, i ∈ (− h

2 , h
2 ],

j ∈ (−w
2 , w

2 ]. x(r, θ) is the line represented by a distance r
from the centre of y and a orientation θ from the the horizontal
axis of the image, and n is noise. C = R−1 is an inverse
Radon transform. In its general form without noise, a Radon
transform R is described in (2), where δ(•) is a delta function.
This is the integral of the image intensity over the hyperplane
perpendicular to θ , and projected on to a radial line oriented
at θ .

x(r, θ) =
∫

R2
y(i, j)δ(r − i cos θ − j sin θ)did j. (2)

An inverse Radon transform C can be obtained using the
filtered backprojection algorithm [29]. It comprises a filtering
part (with the filter |v| in the Fourier domain) and a backpro-
jection part, expressed in (3a) and (3b), respectively.

g(r, θ) = IFTv→r (|v| FTr→v (x(r, θ))) , (3a)

y(i, j) =
∫ π

0

∫
R

g(r, θ)δ(r − i cos θ − j sin θ)drdθ, (3b)

where v is the radius in Fourier domain, FTr→v is a for-
ward Fourier transform in the r to v direction, and IFTv→r

is an inverse Fourier transform from v to r . To oper-
ate with an image, R and C are discrete and can be
implemented as proposed in [30]. In this paper, we used
MATLAB functions radon and iradon to construct R and C,
respectively [31]. An example of l ung ultrasound i mage and
its Radon transform is shown in Fig. 2.

For ultrasound images in particular, the lines can be more
precisely described using the model

y = HCx + n, (4)

where H is a point spread function (PSF). The PSF of the
ultrasound system is spatially variant, particularly in the axial
direction of the ultrasound image. This spatial variation can be
compensated during the image acquisition or post-processing,
e.g. the time gain compensation (TGC) [32]. We therefore
employ the spatially invariant PSF, which can simply be
extended to the spatially variant case by applying overlapped
partition techniques [33], [34].

III. PROPOSED LINE RESTORATION IN SPECKLE IMAGES

To detect B-lines in lung ultrasound images, two major steps
are proposed: i) line restoration (Section III-A) using image
regularisation based on the Radon transform, and ii) B-line
identification (Section V-B), following the occurrence of line
artefacts in the ultrasonic domain [35].

A. Optimisation Problem

Equation (4) poses an inverse problem for finding x , and
can be seen as two separate subproblems which can be solved
with two optimisation processes. The first step is to restore the
image w from the blurred speckle image y = Hw by solving

ŵ = arg min
w

{||y − Hw||22 + α||w||p
p}, (5)

where p > 0 is related to the shape of the statistical
distribution of the ultrasound image. p = 1 and p = 2 are for
the Laplacian model and Gaussian model, respectively. p < 1
determines a non-convex penalty function, which achieves the
approximation of the ideal �0 case. The choice of p can be
related to an SαS distribution characterising ultrasound images
as shown in [36] and [37].

The second process is to estimate the lines in the Radon
transform domain x from the image w = Cx , as shown in (6).
Here we strictly employ �q , 0 < q ≤ 1 norm in the regulariser
for enforcing sparsity as intuitively a collection of thin lines
determine a sparse dataset.

x̂ = arg min
x

{||ŵ − Cx ||22 + β||x ||qq}. (6)
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Solving two optimisation problems separately is computa-
tionally inefficient; therefore, we estimate x and w simultane-
ously by solving the following optimisation problem:

x̂ = arg min
x

{||y − HCx ||22 + α||Cx ||p
p + β||x ||qq}. (7)

If the step size for θ is large, e.g. �θ > 1◦, a smoothness
term γ ||∇Cx ||1 should be included in (7) to suppress the
quantisation noise, which is due to the discrete predefined
range of orientations 
 [22].

B. Implementation

The alternating direction method of multipli-
ers (ADMM) [23] is employed to solve the problem
in (7). It is a variant of the augmented Lagrangian scheme
that uses partial updates for the dual variables. It is easy
to implement by splitting a large problem into a series of
subproblems:

minimize f (u) + g(v)

subject to Au − Bv = 0. (8)

where

f (u) = ||y − Hu||22, u = w = Cx, (9a)

g(v) = α||w||p
p + β||x ||qq + γ ||∇Cx ||1, v = [w x]T, (9b)

A =
[ I
I

]
, B =

[ I 0
0 C

]
. (9c)

uT indicates the transpose of u, and I is the identity matrix
with the same size as y which is N × N . Then, the augmented
Lagrangian for (8) is

Lρ (u, v, z) = ||y − Hu||22 + α||w||p
p + β||x ||qq

+γ ||∇Cx ||1 + zT (Au − Bv) + ρ

2
||Au − Bv||22, (10)

where z = [z1 z2]T is the dual variable or Lagrange multiplier,
z1 ∈ R

N×N , z2 ∈ R
N×N . ρ > 0 is a penalty parameter.

To solve the case of non-convex problems, ρ is chosen to be
large and bounded as suggested in [38]. The ADMM technique
allows this problem to be solved approximately using the
following three-step iterations.

uk+1 := arg min
u

Lρ (u, vk , zk), (11a)

vk+1 := arg min
v

Lρ (uk+1, v, zk ), (11b)

zk+1 := zk + ρ (Auk+1 − Bvk+1). (11c)

where k is an internal iteration counter. As v = [w x]T ,
the problem in (11b) can be divided into two subproblems
to restore wk+1 and xk+1 independently. The algorithm stops
with the convergence criterion ||xk+1 − xk||/||xk|| < ε, where
ε is a very small number (ε = 10−3 in this paper). In the
following, we describe the ADMM algorithm for solving (11).

1) Solving u k+1: The problem in (11a) is a quadratic func-
tion about u, which can be solved as follows.

uk+1 = arg min
u

||y − Hu||22 + (zk)T (Au − Bvk)

+ρ

2
||Au − Bvk ||22,

= (2HTH + ρAT A)−1(2HT y + ρATBvk − (zk)T A),

= (2HTH + 2ρI)−1(2HT y + ρwk + ρCxk

−zk
1 − zk

2). (12)

2) Solving w k+1 in v k+1: We define λ1 = α/ρ and add
a constant offset ||zk

1/ρ||22. Consequently, this is a form of
proximal operator of λ1||w||p

p and wk+1 can be computed
depending on the value of p [39].

wk+1 = arg min
w

α||w||p
p + (zk

1)
T (uk+1 − w)

+ m
ρ

2
||uk+1 − w||22,

= arg min
w

λ1||w||p
p + 1

2
||uk+1 − w + zk

1

ρ
||22,

= proxλ1||.||p
p

(
uk+1 + zk

1

ρ

)
. (13)

If p = 1 (�1 norm), the proximal operator is a soft
thresholding described as

proxλ1||.||1(a) = sign(a) max(|a| − λ1, 0). (14)

If p = 2 (�2 norm or Euclidean norm), the proximal
operator is a block soft thresholding described as

proxλ1||.||2(a) = max(1 − λ1/||a||2, 0)a. (15)

If 0 < p < 1 (non-convex �p norm), we employ an iterative
algorithm of Generalized soft-thresholding (GST) [40], which
proceeds as follows.

proxτp||.||p (a) = T GST
p (a, λ1), (16a)

T GST
p (a, λ1) = sign(a) max(bt+1 − τp(λ1), 0), (16b)

bt+1 = |a| − λ1 p(bt)p−1, (16c)

τp(λ1) = (2λ1(1 − p))
1

2−p + λ1 p(2λ1(1 − p))
p−1
2−p ,

(16d)

where t is an internal iteration counter for the process of (16c)

and b0 = |a| = |uk+1 + zk
1
ρ |. We have found that satisfactory

results are achieved within 10 iterations (t ≤ 10).
3) Solving x k+1 in v k+1: We define λ2 = β/ρ, 0 < q ≤ 1.

xk+1 = arg min
x

β||x ||qq + (zk
2)

T (uk+1 − Cx)

+ ρ

2
||uk+1 − Cx ||22,

= arg min
x

λ2||x ||qq + 1

2
||uk+1 − Cx + zk

2

ρ
||22. (17)

If q = 1, this problem is �1-regularized and the ADMM
generally solves it using Lasso (least absolute shrinkage and
selection operator) [23]. However, factorizing C or computing
CT C is not straightforward because it involves explicitly form-
ing the matrix version of C. Therefore we employ the R and C
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transforms through a filtered back projection and Fourier
transform [41]. The problem in (17) is consequently solved
using two-step iterative shrinkage/thresholding (TwIST) [42].
This method offers fast convergence rate for ill-conditioned
problems (the condition number of C increases as the number
of projections decreases. An analysis of the ill-conditioned
nature of C can be found in [30]). Starting with x̆0 = xk ,
the iterative process proceeds as follows.

d = x̆ t + R
(

uk+1 − C x̆ t + zk
2

ρ

)
, (18a)

x̆ t+1 = (1 − �)x̆ t−1 − �x̆ t + 2�Sλ2(d), (18b)

Sλ2(d) = max(|d| − λ2, 0)

(max(|d| − λ2, 0) + λ2)
d, (18c)

where � is a two-step parameter, defined as in [42], t is
an internal iteration counter, and Sτ (•) is a soft-shrinkage
operator with a threshold λ2 > 0. The iteration process stops
when ||x̆ t+1 − x̆ t ||/||x̆ t || < ε, xk+1 = x̆ t f inal .

If 0 < q < 1, we employ the TwIST method with the GST
defined in (16b)-(16d). Also, we include a gradient descent
step size ν

t > 0, where t is an internal iteration counter.
This leads to convergence for non-convex problems [43].
Consequently, the gradient addition step in (18a) and the
shrinkage/thresholding in (18c) become (19a) and (19b),
respectively.

d = x̆ t + ν

t
R

(
uk+1 − C x̆ t + zk

2

ρ

)
, (19a)

Sλ2(d) = |T GST
q (d, λ2)|

(|T GST
q (d, λ2)| + τq(λ2))

d. (19b)

4) Computing z k+1: The last step in each iteration is for
updating z, which is

zk+1
1 = zk

1 + ρ (uk+1 − wk+1), (20a)

zk+1
2 = zk

2 + ρ (uk+1 − Cxk+1). (20b)

IV. ENHANCED LINE RESTORATION WITH

EMBEDDED DEBLURRING

The lines in ultrasound images can appear blurred because
of low resolution, low frequency ultrasound or motion during
image acquisition. To enhance line detection performance and
the visualisation of restored lines, we include an additional
convolution factor in the Radon transform domain with an
unknown blurring kernel D. This has the effect of further
sharpening detected lines. The line model is hence modified
to

y = HCDx ′ + n. (21)

The estimated x ′ in (21) is expected to be sharper than x in (4)
leading to better accuracy of automatic line detection. The
complete deconvolution problem becomes (22), where J (•)
and G(•) are smoothness prior terms.

x̂ ′ = arg min
x ′ {||y − HCDx ′||22 + α′||CDx ′||p

p

+ β ′||Dx ′||qq + μ′
1 J (x ′) + μ′

2 G(D)}. (22)

Fig. 2. Example of lung ultrasound image y (Left column) and its Radon
transform R(y) (Right column), where the horizontal axis is θ varying from
−45° to 135°, the vertical axis is r varying from -rmax to rmax, and the
brighter intensity indicates higher magnitude of the Radon transform.

Using the ADMM approach, we then have

f (u) = ||y − Hu||22, u = w = Cx = CDx ′, (23a)

g(v) = α′||w||p
p + β ′||x ||qq + μ′

1 J (x ′) + μ′
2 G(D), (23b)

v ′ =
⎡
⎣ w

x
x ′

⎤
⎦ , A′ =

⎡
⎣ I
I
I

⎤
⎦ , B′ =

⎡
⎣I 0 0

0 C 0
0 0 CD

⎤
⎦ . (23c)

The Lagrange multiplier becomes z = [z1 z2 z3]T . We solve
u, w and x similarly to the implementation described in
Section III-B and x ′ is computed using (24), where λ3 =
μ′

1/ρ, λ4 = μ′
2/ρ and ϑ = uk+1 + zk

3/ρ.

x ′k+1 = arg min
x ′ λ3 J (x ′) + λ4 G(D) + 1

2
||ϑ − CDx ′||22.

(24)

The sharpened Radon transform domain x ′ is solved using
blind deconvolution because D is unknown. In addition, D is
spatially variant, so we process the areas around the local
peaks {PL ,
L} separately and merge them with a Gaussian
weight. We employ a total variation blind deconvolution [44]
to produce the results in this paper. We investigated several
blind deblurring techniques and found each with slightly
different results. We define a rectangular patch (we use the
size of 300×300 pixels in this paper), ωD is a Gaussian weight
with σ = 1 and η is a normalisation term, then the result of
a blind deconvolution of each patch x̃ ′ is combined as

x ′k+1 = 1

η

∑
∀{r,θ}∈{PL ,
L }

ωD x̃ ′{r,θ}. (25)

V. AUTOMATIC B-LINE DETECTION IN LUNG

ULTRASOUND IMAGES

This section presents the proposed scheme for identifying
the pleural line, A-lines, B-lines and Z-lines in the Radon
transform domain after all lines have been detected. The
scheme firstly detects the pleural line in order to locate the
lung space where line artefacts occur. Then, the local peaks
of the Radon transform are detected and line-type classifi-
cation is done following clinical definitions, in the spatial
image domain. A block diagram of the proposed automatic
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Fig. 3. Block diagram of the proposed automatic B-line detection method.

Fig. 4. Detected Pleural line (Red) with its estimated location Lp (straight
line) and the estimated positions of the A-lines (Green).

B-line detection method is shown in Fig. 3, including relevant
equations used at each step.

A. Pleural-Line Detection

The pleural line normally appears to be very bright, but it
is not always the brightest line in the image. This depends
on the ultrasound machine settings and the position of the
probe: when the chest wall and intercostal muscles may be
clearly visible as shown in Fig. 4 (right), this leads to incorrect
detection of the pleural line if the brightest line is used. The
pleural line is the border of lung parenchyma area, which
appears darker than the pleural line. We can consequently
exploit this as a constraint to detect the pleural line and limit

P to 
P ∈ {90◦ ± 20◦} as it is always nearly horizontal.

To reduce the probability of misdetection of the pleural
line, the brightness of the area above the pleural line should
be dimmed. We therefore apply a weight ωp to the Radon
representation x , as follows. Firstly, the areas in x with
possible strong lines are marked using a threshold τp , creating
Bp = 1 where x > τp . τp is defined following the observation
that the length of the pleural line is longer than half the
width of the ultrasound image, as in some cases the rib
is present in the image (Fig. 1 left and right), resulting in
the pleural line not showing across the width of the image
(cf Fig. 1 middle). Also, the intensity is always larger than
0.75 (the intensity of the ultrasound image is scaled from 0 to
1), so τp = 0.5 × 0.75 = 0.375. Then, the smallest radius rτ

on Bp is used as a boundary to apply the weight ωp(r) to
each r of x , according to

ωp(r) =
{

(r − rmax )/(rτ − rmax) if r > rτ

1 if r ≤ rτ ,
(26)

where rmax is the maximum radius, rmax = 1
2

√
h2 + w2.

The values of the area beyond rτ is suppressed by the
weight wp(r). Consequently, the pleural line location L p is
selected from the point (rp, θp) that has the largest value of
ωp(r)x(r, θ), r ∈ (−rmax , rmax ], θ ∈ 
p, which is

{rp, θp} = arg max
r,θ

ωp(r)x(r, θ), (27a)

L p = Cx(rp, θp). (27b)

Note that with τp = 0.375, the proposed scheme achieves
96% accuracy in detecting the pleural lines in 100 test lung
ultrasound images acquired with various scanners and settings
as detailed in Section VI-B.

B. B-Line Identification

1) Vertical Line Detection: The procedure for B-line identi-
fication starts with detecting the vertical lines in the image by
limiting 
V ∈ {±20◦}. These detected vertical lines can be
either B-lines or Z-lines. Therefore, the B-line definitions are
applied in order to distinguish between them. The constraints
of the B-lines are i) not being erased by the A-lines, and
ii) having long length. Although the definition of B-lines
states that the comet artefacts continue to the bottom of
the ultrasound image, for in vivo ultrasound images, this
condition might not be always true because of amplitude
attenuation, which is not compensated perfectly. According
to these constraints, we create a binary mask ωB using a
threshold τB , which allows the line brightness in the image
domain to attenuate approximately linearly from 1 at the
pleural line to 0 at the bottom of the image (the distance
between the pleural line and the bottom of the image is hlung ).
That means, τB = hlung/2 and

ωB(r, θ) =
{

1 if x (r, θ) > τB

0 otherwise.
(28)

This threshold is set to account for the case of low-quality
image, where the brightness at the bottom of the image is
lower than that at the top of the image. Then, the vertical
lines LV are detected as follows.

{PV ,
V } = L (ωB(r, θ)x(r, θ), τL) , θ ∈ 
B, (29a)

LV = Cx(PV ,
V )Cx . (29b)

where L(•) is a local-maximum operator which gives a list of
positions {X, Y } where local peaks occur within the radius τL .
PV and 
V are a list of r and a list of θ , respectively.
We employ a grayscale dilation with a flat structuring element
for the function L(•) [45]. τL is defined using the smallest
distance between the blobs on the pleural line, since the
vertical lines originate at the pleural line.

2) A-Line Identification: The A-lines – physiological hor-
izontal lines below the pleural line – are detected using

A = 
P , using the fact that they are equidistant, and
the distance between them is equal to the distance between
skin and pleural line, denoted gA. This distance is defined as
gA = ¯i p, i p ∈ L p , where i p is a position in the vertical axis
of the image and ¯i p represents mean value. In Fig. 4 the green
dots demonstrate the equidistant reflections at intervals equal
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TABLE I
LINE DETECTION PERFORMANCE (%) AVERAGED FROM 50 SIMULATED ULTRASOUND IMAGES∗

to the gap between the top border of the image (skin) and
the pleural line. These can consequently be used for limiting
the possible A-line occurrences. Fig. 4 (right) also shows the
echoic lines of intercostal muscles between the pleural line and
the first A-line. The B-lines delete these echoic lines as well,
hence we also employ them to distinguish between B-lines
and Z-lines. We create a binary map of the possible areas of
the A-lines ωA , defined as

ωA(i, j) =

⎧⎪⎨
⎪⎩

1 if i ∈ [ h
2 − gA, h

2 − 2 gA]
1 if i ∈ [ h

2 − kgA − τg, h
2 − kgA + τg]

0 otherwise

(30)

where k is a counter, k = {2, 3, . . . ,
⌊

hlung
gA

⌋
} and τg is half

the possible A-line width (we found that τg=3 pixels give the
best result. The variation of τg does not significantly affect
the results as long as the thickness of the A-lines is smaller
than the gap between them). Then, the A-line location L A is
computed as follows:

x A = RωA (31a)

{PA,
A} = L (x(r, θ), gA) , r ∈ x A, θ ∈ x A ∩ 
A (31b)

L A = Cx(PA,
A)Cx . (31c)

3) Z-Line Identification: The A-lines are erased by the
B-lines, so any vertical artefacts in the presence of the A-lines
are defined as Z-lines which have no use for diagnosis.
Therefore, the Z-line position L Z can be identified as

L Z = C{R(LV ∩ L A), θ}Cx, θ ∈ 
B . (32)

4) B-Line Identification: Finally, B-line positions L B can
be obtained by subtracting the Z-lines from the previously
detected vertical lines.

L B = LV − L Z . (33)

VI. RESULTS AND DISCUSSION

A. Simulated Ultrasound Images

We tested our proposed method on 50 simulated images,
degraded by convolution with a simulated ultrasound PSF as
in [32]. Different size images were generated varying from
250×250 pixels to 600×600 pixels to induce and evaluate
different characteristics in the Radon transform domain. The
simulated images were first created from 6-10 lines with
different thickness (1-2 0 pixels), angles (0-90 degrees) and
positions (similar to lines in lung ultrasound images). Then,
they were blurred using a Gaussian low-pass filter with σ = 1.
Next, a random multiplicative noise was added and convolu-
tion with the simulated ultrasound PSF was performed on this
speckle result. An example simulated image is shown in Fig. 5,

Fig. 5. Simulated ultrasound image. (Left) Line image. (Middle) B-mode
image. (Right) Radon transform image with Θ ∈ {±25◦,90◦ ± 15◦}.

where the line structure, the corresponding B-mode image and
its Radon transform representation are shown from left to right,
respectively.

The results of line restoration for the image of Fig. 5 are
shown in Fig. 6 with various values of p and q . It is obvious
that small p and q remove most noise thereby producing
sparser results. However, too small values may attenuate peak
values in the Radon transform domain, causing some weak
lines to go undetected. The precision and recall values for line
detection are shown in Table I. The precision was computed
from the total number of correctly detected B-lines divided by
the number of all detected B-lines. The recall was computed
from the total number of correctly detected B-lines divided
by the total number of true B-lines. High precision means
that lines are rarely misidentified, whilst high recall (or true
positive rate) means most true lines are correctly identified.
The best harmonic mean of precision and recall are obtained
for p = 1 and q = 0.1, followed by slightly lower value at
p = 0.5 and q = 0.5.

B. In Vivo Ultrasound B-Mode Images

The ultrasound images used in this work were acquired
at the bedside with a commercially available portable
device (SonoSite S-ICU C60; SonoSite; Bothell, WA)
equipped with a 6- to 13-MHz linear probe (L25x; SonoSite)
in B-mode. These images have already been used in two
previous clinical studies [2], [3], were information on the
patient cohort was extensively detailed. The images were
acquired from 23 children aged 0.8-18 (8 patients with acute
kidney injury (AKI), 15 patients with end-stage renal dis-
ease (ESRD)). Note that real ultrasound images are generally
acquired with two types of transducers, either linear or convex.
Convex transducers produce a wider field of view, but can
make line detection more difficult. We therefore transform
these curved images to rectangular ones before applying our
proposed method. This can be done automatically by detecting
straight side edges and applying an affine transform. The
blurring kernel is unknown in the in vivo study, hence we
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Fig. 6. Results of Cx and x (Θ ∈ {±25◦,90◦ ± 15◦}) when p = 2 (top row), p = 1 (middle row), p = 0.5 (bottom row), and q = 1 (colume 1-2),
q = 0.5 (colume 3-4), q = 0.1 (colume 5-6).

Fig. 7. Restored lines of the in vivo aerated lung ultrasound images,
containing four B-lines (left), using p = 0.5, q = 0.5 (middle) and p = 1,
q = 0.1 (right). (Top row) lines in B-mode images. (Bottom row) Radon
transform domains.

estimate it by adopting a method originally proposed in [13]
for the PSF of the RF data, and applying it on our actual
B-mode ultrasound images. The maximum magnitudes of
the estimated blurring kernel are in the range 0-0.2 and the
shape of its distribution is not isotropic. Let us note here
that we simply estimate a generic blurring kernel, routinely
encountered in any imaging modality and due to the limited
bandwidth of imaging devices. However, our entire framework
can be employed with no alterations on the RF data, in which
case, the estimated blurring kernel would correspond to the
PSF in the standard convolutive ultrasound image formation
model. We believe this to contribute to the versatility of our
proposed framework, making it applicable in general, of course

Fig. 8. Restored lines when the deblurring is included, using p = 1,
q = 0.5 (left), p = 0.5, q = 0.5 (middle), and p = 1, q = 0.1 (right).
(Top row) line positions. (Bottom row) deblurred Radon transform
domains.

after minor adaptations, to other types of imaging modalities
where line detection is necessary.

Fig. 7 and Fig. 8 show a cropped area under the pleural
line of a lung ultrasound image containing four B-lines, with
and without the enhanced method (described in Section IV),
respectively. Five and four vertical lines were detected in
Fig. 7 and Fig. 8, respectively. Four of these vertical lines
were correctly identified as B-lines. One vertical line in Fig. 7
was discounted because of the detected A-line. The results
of the deblurring enhancement obviously shows better line
structures, but all textures, which might be useful for clinical
assessment, are also removed.

We investigated image enhancement performance, which
was the by-product of the deconvolution process, using a
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Fig. 9. Original B-mode ultrasound image (top row), detected lines (middle row) and Radon transform domain representation of the restored B-mode
images using p = q = 0.5 (bottom row). Red, yellow, blue and green lines represent the pleural lines, B-lines, A-lines and Z-lines, respectively.

TABLE II
CNR ASSESSMENT FOR IN VIVO DATA∗

contrast-to-noise ratio (CNR) as the true tissue reflectiv-
ity function is unknown. The CNR is defined as (|μ1 −
μ2|)/

√
σ 2

1 + σ 2
2 , where μ1 and μ2 are the mean of pixels

located in two regions, while σ 2
1 and σ 2

2 are the variances of
these two regions [46]. We selected the first region as the area
where the lines were and the second region as the area around
the first region. We compared our proposed method with three
existing techniques: i) line detection using eight sticks as a
rotating kernel transformation (STICKS) [17], ii) line detec-
tion with log regularised Hough transform (HOUGH) [21],
and iii) despeckling approach with AWBF [14] followed by
Radon transform. The results of the average of 100 B-mode
ultrasound images are shown in Table II. The proposed method
with deblurring achieves the best CNR and outperforms the
existing methods by up to approximately 80%.

C. B-Line Identification

We tested our proposed automatic B-line detection
method (described in Section V-B) on 100 in vivo ultra-
sound B-mode images of children. The lines in each

image were restored using the method described in
Section III and Section IV and HOUGH [21]. We also
applied our B-line identification method to the results of
STICKS [17] and AWBF [14]. We evaluated these techniques
using as ground truth lines identified visually by clinical
experts.

We compared our method with two existing approaches for
automatic B-line detection, which are i) summation of angular
features and thresholding (AFT) [8] and ii) alternate sequen-
tial filtering and iterative morphological process (ASF) [9].
Table III shows the B-line detection performance measured
using Fβ score, where β is a weight. The F-score measures the
accuracy of binary data retrieval by considering the precision
and the recall:

Fβ = (1 + β2)
precision · recall

β2precision + recall
. (34)

The balanced F1-score is the harmonic mean of precision
and recall. We also included the F0.5-score and F2-score to
demonstrate the performance when the precision was weighted
higher than the recall, and vice versa, respectively. When the
precision and the recall were weighted equally, our method
with the restored lines using p = q = 0.5 gave the best
result, achieving up to 35% improvement over the existing
methods.

When the precision was weighted higher than the
recall – ensuring that the detected B-lines were actually
the true B-lines, our method applied to our enhanced line
restorations (with D) using p = q = 0.5 and using p = 1,
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TABLE III
B-LINE IDENTIFICATION PERFORMANCE∗

q = 0.1 outperform the others by up to 50%. The AFT and
ASF approaches overestimate the number of B-lines when it is
between 0-3, since A-lines are not taken into account, resulting
in Z-lines being misclassified. When the recall was weighted
higher than the precision – ensuring that all B-lines are
detected, our method (applied to our enhanced line restoration
methods (without D)) using p = q = 0.5 and using p = 1,
q = 0.1 outperforms the others by up to 33%. AFT and ASF
underestimate when the number of B-lines is more than 2,
since the shadow of the ribs in children cause unclear/fade
laser-like artefacts, unlike those in the adult cases.

The results in Table III reveal that the enhanced line
restoration improves B-line identification performance by
up to 14% when convex optimisation approaches are
employed ( p ≥1 and q ≥1). The enhanced method however
improves only the F0.5-score results when non-convex optimi-
sation approaches are used. This is because when p and q are
very small, applying deblurring (D) could decrease the ampli-
tudes of the weak lines in the Radon transform domain and
causes false negatives. Table III also shows that when testing
the B-line detection with the enhanced lines in the ultrasound
images by STICK, HOUGH and AWBF, our B-line detection
methods also outperform the AFT and ASF techniques. This
confirms the robustness of our approach.

Fig. 9 shows the line detection results for different ultra-
sound settings, i.e. different frequencies, different acquisition
modes and different time-gain compensations. The detected
pleural lines (red), A-lines (blue), B-lines (yellow) and
Z-lines (green) were drawn on the original speckle ultrasound
B-mode images. The second row of the figure shows the
restored lines x ′ using p = q = 0.5 with deblurring D.
For the images with high levels of speckle, the detection
approach can possibly give incorrect results if all local-
maximum points are included without clinical insight. For
example, the fourth and seventh images in Fig. 9 exhibit high
noise around the bottom of the images resulting in high values
of the Radon transforms indicating the presence of horizontal
lines. However, the locations of these horizontal lines do
not correspond to those of the possible A-lines, so they are
discounted. This is a further reason why our automatic B-line
detection approach performs better than the state of the art
methods.

In Fig. 10, we show a receiver operating characteristic
curve (ROC curve), which illustrates the performances of the
B-line identification methods via true positive rates (TPR)
and false positive rates (FPR) by varying thresholds.

Fig. 10. Performance comparison of the B-line identification methods
through a receiver operating characteristic curve (ROC curve).

TABLE IV
PARAMETERS USED IN THE PROPOSED LINE RESTORATION

AND B-LINE IDENTIFICATION

We considered the existence of B-lines and the non-existence
of B-lines as positive and negative classes, respectively. For
our B-line identification method, we varied τB in (28) and τL

in (29) to plot the ROC curves of STICK, HOUGH, AWBF,
and our proposed line restoration with p = q = 0.5. For
creating the ROC curves of AFT and AFS, the thresholds used
with angular features and for creating a binary mask were
varied, respectively. The ROC curve shows that our proposed
method significantly outperforms existing ones, particular the
AFS, where the binary mask cannot be used to discriminate B-
lines when the threshold is too low. This also confirms that the
proposed method is robust, because it achieves high sensitivity
regardless of values of the thresholds.

For reproducibility of results, Table IV shows all parameters
and their corresponding values as used in our implementation.
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Note that increasing the values of α, β, μ1 and μ2 will
speed up the iterative process, but the results might not be
optimal because of large step size. We fixed the value of
ρ to 1, which gave good results as shown in Section VI.
However, ρ can be set adaptively for each iteration to
improve the convergence and to reduce the effect of the
initialisation on overall performance [23]. With the parameters
in Table IV, using MATLAB R2016a with 64-bit OS i7-3770S
CPU the computational times per image are approximately
45 and 0.75 seconds for the line restoration and subsequent
B-line identification processes, respectively. This is faster
than when performed by clinical experts, which generally
take 3-10 min, depending on age and compliance of the
patient.

VII. CONCLUSIONS

Currently, B-line identification requires specific training and
it is operator dependent. Automating the detection of B-lines
would widen the application of lung ultrasound and benefit
dialysis nurses, patients and their families. Improving the
accessibility of the technique will broaden its accessibility,
with anticipated clinical benefits in improved fluid manage-
ment for both children and adults on dialysis.

This paper presents a novel line detection procedure for
speckle images. Lines are restored by solving an inverse
problem consisting of joint deconvolution and line detection.
The problem is solved based on �p regularisation and Radon
transform. The method offers a simple and fast implementation
via the alternating direction method of multipliers (ADMM)
which divides a large problem into a series of subproblems.
We offer solutions for both convex and non-convex problems.
Additionally, we include a blind deconvolution step in the
Radon transform domain to enhance visualisation and improve
line detection performance, particularly when convex optimi-
sation techniques are employed to restore lines.

Based on accurate line detection results, we are able to
identify B-lines in lung ultrasound images automatically.
This is achieved using local maxima in the Radon trans-
form domain with additional constraints based on clinical
definitions. Subjective results show accurately restored lines
and objective results demonstrate that the proposed method
outperforms existing approaches for B-line detection in lung
ultrasound images by up to 50%. With very little adaptation,
the techniques described in this work could be applied to other
ultrasound applications, as well as to other medical imaging
modalities where line detection can help diagnosis.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Basarab from Paul
Sabatier University in Toulouse, for many useful discussions
and for offering the code for simulating ultrasound images.

REFERENCES

[1] D. A. Lichtenstein, G. A. Mezière, J.-F. Lagoueyte, P. Biderman,
I. Goldstein, and A. Gepner, “A-lines and B-lines: Lung ultrasound as
a bedside tool for predicting pulmonary artery occlusion pressure in the
critically ill,” Chest, vol. 136, no. 4, pp. 1014–1020, 2009.

[2] M. Allinovi, M. Saleem, O. Burgess, C. Armstrong, and W. Hayes,
“Finding covert fluid: Methods for detecting volume overload in children
on dialysis,” Pediatr Nephrol., vol. 31, no. 12, pp. 2327–2335, 2016.

[3] M. Allinovi, M. Saleem, P. Romagnani, P. Nazerian, and W. Hayes,
“Lung ultrasound: A novel technique for detecting fluid overload in
children on dialysis,” Nephrol. Dialysis Transplantation, vol. 32, no. 3,
pp. 541–547, 2017.

[4] P. D. Nicolò, G. Magnoni, and A. Granata, “Lung ultrasound in
hemodialysis: A card to be played?” Blood Purif, vol. 44, no. 1, pp. 1–7,
2017.

[5] C. Zoccali et al., “Pulmonary congestion predicts cardiac events
and mortality in ESRD,” J. Amer. Soc. Nephrol., vol. 24, no. 4,
pp. 639–646, 2013.

[6] D. Siriopol et al., “Predicting mortality in haemodialysis patients:
A comparison between lung ultrasonography, bioimpedance data
and echocardiography parameters,” Nephrol. Dialysis Transplantation,
vol. 28, no. 11, pp. 2851–2859, 2013.

[7] L. Gargani et al., “Efficacy of a remote Web-based lung ultrasound
training for nephrologists and cardiologists: A LUST trial sub-project,”
Nephrol. Dialysis Transplantation, vol. 31, no. 12, pp. 1982–1988, 2016.

[8] L. J. Brattain, B. A. Telfer, A. S. Liteplo, and V. E. Noble, “Automated
B-line scoring on thoracic sonography,” J. Ultrasound Med., vol. 32,
no. 12, pp. 2185–2190, Dec. 2013.

[9] R. Moshavegh et al., “Novel automatic detection of pleura and
B-lines (comet-tail artifacts) on in vivo lung ultrasound scans,” Proc.
SPIE, vol. 9790, pp. 1–7, Apr. 2016.

[10] W. F. Weitzel et al., “Quantitative lung ultrasound comet measurement:
Method and initial clinical results,” Blood Purif, vol. 39, pp. 37–44,
Jan. 2015.

[11] R. O. Duda and R. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15,
Jan. 1972.

[12] A. Achim, A. Bezerianos, and P. Tsakalides, “Novel Bayesian multiscale
method for speckle removal in medical ultrasound images,” IEEE Trans.
Med. Imag., vol. 20, no. 8, pp. 772–783, Aug. 2001.

[13] O. V. Michailovich and A. Tannenbaum, “Despeckling of medical
ultrasound images,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,
vol. 53, no. 1, pp. 64–78, Jan. 2006.

[14] N. Anantrasirichai et al., “Adaptive-weighted bilateral filtering and
other pre-processing techniques for optical coherence tomography,”
Computerized Med. Imag. Graph., vol. 38, no. 6, pp. 526–539,
Sep. 2014.

[15] J.-W. Lee and I.-S. Kweon, “Extraction of line features in a noisy image,”
Pattern Recognit., vol. 30, pp. 1651–1660, 1997.

[16] W. Gao, X. Zhang, L. Yang, and H. Liu, “An improved sobel edge
detection,” in Proc. IEEE Int. Conf. Comput. Sci. Inf. Technol., vol. 5,
Jul. 2010, pp. 67–71.

[17] R. N. Czerwinski, D. L. Jones, and W. D. O’Brien, “Detection of lines
and boundaries in speckle images-application to medical ultrasound,”
IEEE Trans. Med. Imag., vol. 18, no. 2, pp. 126–136, Feb. 1999.

[18] G. Papari and N. Petkov, “Edge and line oriented contour detection:
State of the art,” Image Vis. Comput., vol. 29, nos. 2–3, pp. 79–103,
2011.

[19] E. Magli, L. Lo Presti, and G. Olmo, “A pattern detection and com-
pression algorithm based on the joint wavelet and Radon transform,” in
Proc. 13th Int. Conf. Digit. Signal Process. (DSP), vol. 2. Jul. 1997,
pp. 559–562.

[20] S. R. Deans, “Hough transform from the Radon transform,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 3, no. 2, pp. 185–188, Mar. 1981.

[21] N. Aggarwal and W. C. Karl, “Line detection in images through
regularized hough transform,” IEEE Trans. Image Process., vol. 15,
no. 3, pp. 582–591, Mar. 2006.

[22] N. Anantrasirichai, M. Allinovi, W. Hayes, and A. Achim, “Automatic
B-line detection in paediatric lung ultrasound,” in Proc. IEEE Int.
Ultrason. Symp., Sep. 2016, pp. 1–4.

[23] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[24] R. Sherman, “Crackles and comets: Lung ultrasound to detect pulmonary
congestion in patients on dialysis is coming of age,” Clin. J. Amer. Soc.
Nephrol., vol. 11, no. 11, pp. 1924–1926, Sep. 2016.

[25] Z. Jambrik et al., “Usefulness of ultrasound lung comets as a nonra-
diologic sign of extravascular lung water,” Amer. J. Cardiol., vol. 93,
no. 10, pp. 1265–1270, May 2006.



2056 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 10, OCTOBER 2017

[26] F. Mallamaci et al., “Detection of pulmonary congestion by chest
ultrasound in dialysis patients,” JACC, Cardiovascular Imag., vol. 3,
no. 6, pp. 586–594, Jun. 2010.

[27] L. Gargani and G. Volpicelli, “How I do it: Lung ultrasound,” Cardio-
vascular Ultrasound, vol. 12, no. 25, p. 25, 2014.

[28] M. Trezzi et al., “Lung ultrasonography for the assessment of rapid
extravascular water variation: Evidence from hemodialysis patients,”
Internal Emergency Med., vol. 8, no. 5, pp. 409–415, 2013.

[29] A. Kak and M. Slaney, Principles of Computerized Tomographic Imag-
ing. New York, NY, USA: IEEE Press, 1988.

[30] B. T. Kelley and V. K. Madisetti, “The fast discrete Radon transform.
I. Theory,” IEEE Trans. Image Process., vol. 2, no. 3, pp. 382–400,
Jul. 1993.

[31] MathWorks. Radon Transform, accessed on Jan. 8, 2017. [Online].
Available: http://mathworks.com/help/images/ref/radon.html

[32] Z. Chen, A. Basarab, and D. Kouamé, “Compressive deconvolution in
medical ultrasound imaging,” IEEE Trans. Med. Imag., vol. 35, no. 3,
pp. 728–737, Mar. 2016.

[33] O. V. Michailovich and D. Adam, “A novel approach to the 2-D blind
deconvolution problem in medical ultrasound,” IEEE Trans. Med. Imag.,
vol. 24, no. 1, pp. 86–104, Jan. 2005.

[34] N. Anantrasirichai, J. Burn, and D. R. Bull, “Projective image restoration
using sparsity regularization,” in Proc. 20th IEEE Int. Conf. Image
Process. (ICIP), Sep. 2013, pp. 1080–1084.

[35] A. Zanforlin et al., “B-lines: To count or not to count?” JACC,
Cardiovascular Imag., vol. 7, no. 6, pp. 635–636, Jun. 2014.

[36] A. Achim, B. Buxton, G. Tzagkarakis, and P. Tsakalides, “Compressive
sensing for ultrasound RF echoes using a-stable distributions,” in Proc.
Int. Conf. IEEE Eng. Med. Biol., Aug. 2010, pp. 4304–4307.

[37] A. Achim, A. Basarab, G. Tzagkarakis, P. Tsakalides, and D. Kouamè,
“Reconstruction of ultrasound RF echoes modeled as stable random
variables,” IEEE Trans. Comput. Imag., vol. 1, no. 2, pp. 86–95,
Jun. 2015.

[38] M. Hong, Z.-Q. Luo, and M. Razaviyayn. (Oct. 2014). “Con-
vergence analysis of alternating direction method of multipli-
ers for a family of nonconvex problems.” [online]. Available:
https://arxiv.org/abs/1410.1390

[39] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 123–231, 2013.

[40] W. Zuo, D. Meng, L. Zhang, X. Feng, and D. Zhang, “A generalized
iterated shrinkage algorithm for non-convex sparse coding,” in Proc.
IEEE Int. Conf. Comput. Vis., Sydney, NSW, Australia, Dec. 2013,
pp. 217–224.

[41] A. Brandt, J. Mann, M. Brodski, and M. Galun, “A fast and accurate
multilevel inversion of the Radon transform,” SIAM J. Appl. Math.,
vol. 60, no. 2, pp. 437–462, 1999.

[42] J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST:
Two-step iterative shrinkage/thresholding algorithms for image restora-
tion,” IEEE Trans. Image Process., vol. 16, no. 12, pp. 2992–3004,
Dec. 2007.

[43] M. Chiang, “Nonconvex optimization for communication networks,”
Adv. Appl. Math. Global Optim., vol. 17, pp. 137–196, Feb. 2009.

[44] T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE
Trans. Image Process., vol. 7, no. 3, pp. 370–375, Mar. 1998.

[45] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Process-
ing Using MATLAB. Knoxville, USA: Gatesmark Publishing, 2009.

[46] A. Lyshchik et al., “Elastic moduli of thyroid tissues under compres-
sion,” Ultrason. Imag., vol. 27, no. 2, pp. 101–110, 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


