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Pulmonary Lobe Segmentation With
Probabilistic Segmentation of the Fissures
and a Groupwise Fissure Prior

Felix J. S. Bragman,* Jamie R. McClelland, Joseph Jacob, John R. Hurst, and David J. Hawkes

Abstract— A fully automated, unsupervised lobe seg-
mentation algorithm is presented based on a probabilistic
segmentation of the fissures and the simultaneous con-
struction of a population model of the fissures. A two-class
probabilistic segmentation segments the lung into candi-
date fissure voxels and the surrounding parenchyma. This
was combined with anatomical information and a group-
wise fissure prior to drive non-parametric surface fitting
to obtain the final segmentation. The performance of our
fissure segmentation was validated on 30 patients from the
chronic obstructive pulmonary disease COPDGene cohort,
achieving a high median F{-score of 0.90 and showed
general insensitivity to filter parameters. We evaluated our
lobe segmentation algorithm on the Lobe and Lung Analysis
2011 dataset, which contains 55 cases at varying levels
of pathology. We achieved the highest score of 0.884 of
the automated algorithms. Our method was further tested
quantitatively and qualitatively on 80 patients from the
COPDgene study at varying levels of functional impairment.
Accurate segmentation of the lobes is shown at various
degrees of fissure incompleteness for 96% of all cases.
We also show the utility of including a groupwise prior
in segmenting the lobes in regions of grossly incomplete
fissures.

Index Terms— Lobe segmentation, fissure segmentation,
pulmonary image analysis.

|. INTRODUCTION

SEGMENTATION of the pulmonary lobes can facilitate
the localisation and quantification of respiratory diseases

Manuscript received January 16, 2017; revised March 17, 2017;
accepted March 21, 2017. Date of publication April 18, 2017; date of
current version July 30, 2017. This work was supported by the EPSRC
under Grant EP/H046410/1 and Grant EP/K502959/1. It was further
supported by the UCLH NIHR RCF Senior Investigator Award under
Grant RCF107/DH/2014. It used data (phs000179.v5.p2) generated by
the COPDGene study, supported by NIH Grant U01HL089856 and Grant
UO01HL0899897. Asterisk indicates corresponding author.

*F. J. S. Bragman is with the Centre for Medical Image Computing,
Department of Medical Physics and Bioengineering, University College
London, London WC1 6BT, U.K. (e-mail: f.bragman @ucl.ac.uk).

J. R. McClelland and D. J. Hawkes are with the Centre for Medical
Image Computing, Department of Medical Physics and Bioengineering,
University College London, London WC1 6BT, U.K.

J. Jacob is with the Centre for Medical Image Computing, Department
of Medical Physics and Bioengineering, University College London,
London WC1 6BT, UK., and also with the Department of Radiology,
Mayo Foundation for Medical Education and Research, Mayo Clinic,
Rochester, MN 55905 USA

J. R. Hurst is with the UCL Respiratory, University College London,
London WC1 6BT, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2017.2688377

and is of particular interest in Chronic Obstructive Pulmonary
Disease (COPD). COPD can alter the structure of the lung
through emphysematous destruction of lung parenchyma. The
speed with which local pulmonary damage evolves can vary
between patients with COPD [1], [2], yet the heterogeneity
of local disease progression [2] may not be captured in
lung physiologic indices that quantify function at a global
level [1]. CT-based lobe segmentation provides an anatomi-
cally consistent reference frame for the quantitative analysis
of parenchymal damage across large cohorts of patients and
negates the requirement of a groupwise space for analysis.
Knowledge of the underlying lobar distribution of disease may
allow the identification of subtle COPD phenotypes or help
identify patients that would benefit from interventions such as
lung volume reduction surgery [3].

To characterise CT disease extent on a lobar basis, it is
necessary to identify the pulmonary fissures. The fissures
consist of invaginations of visceral pleura, which extend from
the lung periphery to the lung hilum and separate the right
and left lung into five lobes. The oblique and horizontal
fissures divide the right lung into three lobes (upper, middle
and lower) whilst the left oblique fissure divides the left lung
into upper and lower lobes. When visible on CT, the fissures
appear as bright, solid lines. They represent two apposed
layers of visceral pleura, which are usually devoid of airways
and vascular structures [4]. However, the appearances of the
fissures on CT can be variable in the general population [5].
A developmental failure of pleural invaginations can result
in congenitally absent or incomplete fissures [4] (Fig. 1b).
Various pathological processes may damage the pleural sur-
faces disrupting the integrity of the fissures [4] (Fig. lc).

Automated lobar segmentation is most reliable when fis-
sures are complete [6]. In cases with incomplete fissures,
various methods have been developed that draw information
from pulmonary anatomy and atlases. Lobe segmentation algo-
rithms can be broadly categorised as either supervised [7]-[12]
or unsupervised [13]-[16]. In our study, we extend the def-
inition of supervised methods to encompass any algorithm
that requires prior manual labelling to determine optimal
fissure properties or the construction of anatomical atlases.
Segmentation algorithms can be further subdivided on the
basis of the segmentation of auxiliary structures. Methods can
be dependent [7], [10], [13]-[17] or independent [12], [18]
of the information provided by the airway and vascular trees.
Algorithms can also be classified based on their dependence
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Fig. 1. Example in the variation of fissure integrity. Scans with
complete (a) and incomplete (b and c) fissures can be visualised. The
incomplete fissures are due to fusion of lung tissue (b) or pathology (c).
Slices are displayed in the intensity range Z € [-1024 HU,-600 HU].

on anatomical atlases [10]-[13], [18] or whether the method
is uniquely performed in the patient-space [7], [14].

Fissure segmentation can be classified as supervised when
posed as a classification task or unsupervised when applied
with a filter. A major shortcoming of filters is their reliance
on arbitrary thresholds for segmentation. The inclusion of
fixed segmentation thresholds may ignore potential fissure
voxels or include excessive false positive voxels. Such thresh-
olds are often compromised when lung attenuation values
themselves are variably influenced by a range of factors
including the CT reconstruction algorithm, CT slice thickness
and patient inspiratory effort. The issue of the removal of false-
positive voxels and its dependence on prior knowledge is a
further limitation of several algorithms [7], [12], [19], [20].
The likelihood function of Lassen and van Rikxoort [7]
requires prior knowledge of fissure Hessian eigenvalues and
may lead to an over-segmentation of fissure voxels that cannot
be corrected through post-processing techniques. The work
of Wiemker et al. [19] requires knowledge of the underly-
ing Hounsfield intensity distribution of the fissures with no
data-driven method presented to determine these parameters.
Ross et al. [12] sample the image domain to detect the most
likely fissure surface based on Hessian eigenvalues and a
maximum a posteriori estimation. Their technique requires a
lobe boundary shape model based on manually segmented data
to improve their fissure discrimination. The method is similar
to the formulation of van Rikxoort and van Ginneken [21],
which requires prior knowledge of manually labelled voxels
to build a classifier. Manual annotation of data is time con-
suming and impractical in routine clinical practice. Moreover,
it does not follow that a training dataset built on a single
set of scans will generalise to a new cohort derived using
different scanners, with varying reconstruction kernels. Such
a constraint is also apparent in the likelihood function of
Lassen and van Rikxoort [7]. Our technique however learns
the necessary model parameters from the volume being seg-
mented, permitting the development of a robust segmentation
tool, applicable across a broad range of datasets.

The use of prior knowledge derived from population
models has increased in popularity [10], [12], [13], [18].
Zhang et al. [13] perform lobe segmentation using a sin-
gle atlas search initialisation. The average fissure surface

from a training set is exploited in a fuzzy reasoning sys-
tem to segment the fissures and the lobes. An alternative
multi-atlas selection mechanism has been proposed by van
Rikxoort et al. [10]. This selects the most similar atlas to
the patient by comparing the patient fissure segmentation to
the atlas and exploits a transformation to combine atlas lobe
labels with an approximate lobe segmentation. Ross et al. [12]
exploit a deformable model in fissure surface extraction. The
ability to exploit prior knowledge is an implicit advantage
of atlases. However, if the training data is not large enough,
this may not correctly model the shape variation within the
population. These methods described all require complete
segmentations prior to model building, which is a laborious
task. We aim to build a simple population model of the fissures
negating the need for prior manual labelling without requiring
complete fissure segmentations.

The limitations associated with the dependence on manually
segmented data, either to train classifiers or build atlases was
a major motivation of the work presented. When considering
fissure segmentation, there is sufficient data within a sin-
gle scan to detect the fissures when visible whilst rejecting
most false-positives. In view of large-scale studies such as
COPDGene [22], CT scans can also be pooled together to
produce a prior, which negates the need for complete manual
segmentations.

Il. METHOD

We present an automatic lobe segmentation algorithm
(Fig.2) based on a probabilistic segmentation of the fis-
sures (Section II-B) and the construction of a groupwise fissure
model (Section II-C). Our study aimed to construct a fissure
model (Section II-C) using complete and incomplete fissures
to generate a confidence region based on a population. In the
context of routine clinical care, new scans can be iteratively
added if necessary to help strengthen the population model.

The main technical contributions of this paper are:
a) unsupervised probabilistic segmentation of the fissures with
iterative false-positive removal, b) the simultaneous construc-
tion of a groupwise prior without need for complete manual
segmentations and c) post-processing of the airway segmen-
tation to correct errors in seed labelling. An overview of the
segmentation is shown in Fig. 2. The lungs, vessel and airway
tree are first segmented. This is followed by a segmentation
of the fissures by considering the auxiliary tree structures as
anatomical priors in a probabilistic setting. The segmented
fissures are then combined using a groupwise registration
framework to produce a population prior. The anatomical
information, the segmented fissure and the groupwise fissure
prior are then combined as a cost image for a watershed
segmentation.

A. Data Pre-Processing

Lung masks are obtained with the algorithm of
Hu et al. [23]. The vasculature is segmented by considering
multiscale vessel filtering [24]. The airways are segmented
using region growing via evolution of a wavefront, which
iteratively corrects for leakage across the airway wall [14].
It is assumed that the remaining structures after segmentation
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Fig. 2. Lobe segmentation algorithm for processing a set of T patients, given by Z = {Z;,Z5,--- ,Z¢,--- , Z7}. The lung mask, airway and

vascular tree are segmented as preprocessing steps. Anatomical information (74 4, k = (fissure, tissue)) is derived from the airway and vascular tree.
A probabilistic segmentation of the fissures based on afilter (F;) exploits the derived anatomical information. This yields fissure segmentations (S;) for
each patient t. For a given cohort (Z = {Z7, I, - - - , Z1}), a groupwise space is constructed yielding the set of transformations Y1,z to the common

space Z. This space is exploited to construct an average model of the fissures (§avg). This is combined with the segmented fissures S; and the
patient-specific anatomical information (7 4) in a cost function for non-parametric surface fitting. Final lobe segmentations (£ = {L1, Lo, .-+, LT})

are obtained for each patient (f) in the cohort (Z = {Z1,Z>, - -- , Z7}).

are the fissures and the parenchyma. A skeletonisation of the
airways reveals the branching structure, used to label the lobar
bronchi to generate surface fitting seeds. All pre-processing
is performed using the Pulmonary Toolkit!with standard
parameter settings.

B. Probabilistic Fissure Segmentation

We propose an unsupervised fissure segmentation frame-
work that does not require any training data to classify fissure-
voxels whilst negating the need to empirically determine
algorithm parameters. We present a simple fissure enhance-
ment filter that does not require any manual observations to set
the parameters. We then construct a probabilistic framework
to segment the fissures based on this enhancement filter.
We assume a generative model between the observed filter
result and the underlying segmentation of the lung and that
these hidden segmentations exhibit separate Gaussian distrib-
utions. The proposed model assumes that the filtered image is
generated by a two-class Gaussian mixture model (GMM),
where the fissures and the parenchyma are the hidden
segmentations that have generated the observed enhancement
filter. Parameters of the GMM and the underlying segmenta-
tion are determined through application of the Expectation-
Maximisation (EM) algorithm.

1) Multi-Scale Fissure Enhancement Filter: This filter aims
to distinguish fissure-like voxels from surrounding structures.
If we consider an image volume Z; from the set of images
T =1{11,1,,--- ,Zr}, the Hessian matrix (H;) at a scale o is
obtained by considering the second derivative of Z; convolved
with a Gaussian kernel G (o).

1https ://github.com/tomdoel /pulmonarytoolkit

The width of the pleural cavity is likely to vary. The
filter is embedded in a multi-scale framework to capture this
variation. A voxel-wise eigen-analysis of H; (Z;; o) yields
scale-dependent eigenvalues 41, 42 and A3, which are, ordered
based on their magnitude such that |A;] < [A3] < [43], with
respective eigenvectors 6, iy and tiz. We adapt the vesselness
filter of Frangi et al [24] to capture voxels exhibiting a fissure-
like shape.

As a sheet-like structure, a candidate fissure voxel will
ideally be represented by a very large |A3] >> 0 with 4, ~
A1 &~ 0. We aim to enhance voxels with this relationship whilst
suppressing other auxiliary structures using the following
parameters:

| 41] | 42]
Ra=—F——=, Rp=1~ 1)
VI4243] 143

The parameter R, helps differentiate spherical structures
from plate-like and tubular structures. To differentiate plates
from tubes, R, is combined with the parameter Rj;, which
seeks to enhance structures exhibiting a plate-like aspect ratio.
A scale dependent filter (Eq. 2) is obtained by combining both
terms:

Filo) = 1(43(0))

Ra(a)* Rp(0)?
e _9)

Jexp(——2—)} )

where [(13(0)) is an indicator function such that I(13(c)) = 0
when A3(0) > 0 to seek only bright features. The parameters
A and B control the sensitivity of each parameter R, . Small
values of A and B (= 0) will only be sensitive to voxels
with ideal values for the filter parameters (R,,, — 0). Larger

{exp(—
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values for A and B (— 0.5) will enhance voxels with less
ideal relationships with the caveat of enhancing more false
positives (Section IV-A). A final value of F; is found by
computing the scale ¢ which maximises F; at a voxel x:

Fi(x) = F(x;0). 3)

max
Omin =0 = Omax

There is a deviation from the ideal plate-like eigenvalue
relationship in the presence of partial-volume effects, image
noise and patient motion, which may result in a loss in the
discriminating power of F;. We assume that both tissue classes
are hidden segmentations that generate a range of values
stemming from Gaussian distributions. We aim to capture
these class distributions to accurately segment the fissures,
even when the filter response is poor at a fissure voxel by
considering local neighbourhood properties.

2) Fissure Segmentation Using a Gaussian Mixture Model:
The output of the filter F; is parameterised by a two-class
GMM. The two underlying distributions in the signal cor-
respond to the fissures and all other remaining structures.
We assume that the fissures and lung tissue are hidden seg-
mentations (z) that give rise to the observed values y of F;.
The segmentation can be modelled as a random process with a
probability density function f(z | ®;) with parameters @,. The
total filter signal has a probability density function f(y |z, ®y)
parameterised by the model parameters ®,. The goal is to
estimate the segmentation z by the parameters ® = {®,, ®,}.
This is performed using the EM algorithm by estimating the
maximum-likelihood parameters ® via maximisation of the
log-likelihood

= arg max log f (v | ®) )

We consider the image model of Van Leemput et al. [25].
The index of a voxel x is i € {1,2,...,n} where n is the
number of voxels within the lung mask. There are K = 2
classes (fissure and tissue). The class of the i’" voxel is defined
as z; = e. The variable e, represents the class membership
e.g. ex=1 defines the fissure class and e;—; is the surrounding
lung parenchyma. The response of the filter at voxel x; is y;.
The filter values belonging to each class k are assumed to be
normally distributed after log transformation with mean
and standard deviation oy such that ¢y = {u, or}. The vector
@y = {¢r=1, pr=2} represents the model parameters for both
tissue classes. The overall probability density for y; is defined
as a mixture of normal distributions,

f (il ®y) =" Gy (i — i) f(zi = ex) 5)
k

where Gy, represents the k' class zero-mean normal distrib-
ution with standard deviation o; and f(z; = eg) is the class
prior probability of a voxel x;. By assuming statistical inde-
pendence over all voxels x € Z, the overall joint probability
density is given by

fo1o) =[] rGiley) 6)

The maximum-likelihood estimates for @, are found using
Eq. 4 by seeking the parameters that maximise Eq. 6, giving
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the following update equations for the model parameters
1
e _ i (1)
2
1 1
( n\? _ 2 p(m+)( - " )> ®
k ) (1)
> i
where
(m)
f(yi|Zi = ey, Dy )f(Zi = er)
it = ©)

Zf:lf()’ilZi =6j,(D§vm))f(zi =ej)

is a probabilistic estimation of the hidden data z; of class k at
voxel x; given the filter value y;. The class k is iterated with
the class index j and m denotes the EM iteration number.

The segmentation resulting from Eq. 9 can be sensitive to
noise, image artefacts and false positives as the segmentation
is only based on y. Priors (7, ;) that incorporate probabilistic
information about the segmentation are typically added to the
model [25], [26]. In the context of this work, we can quantify
the likelihood of the fissure location (Fig. 4b) based on the ves-
sel and airway tree. We quantify the vessel density (vg) [14],
which is obtained by applying a strong (10mm isotropic)
Gaussian filter to the vesselness filter of Frangi et al. [24].
This measure is inverted and scaled in the range [0, 1] using
min-max scaling such that regions of low vessel density are
close to 1. Airway density (ag) is estimated by computing
the Euclidean distance transform to the airway segmentation
and is normalised using min-max scaling to the range [0, 1]
such that regions of high distance to the airways are close
to 1. The fissure likelihood measure is defined as 7; k=1 =
(aq + v4)/2 and the tissue likelihood is 7/ jx=2 = 1 — 7 jk=1.
The subscript ¢ is dropped in Eq. 10 and 11 for convenience.
The anatomical information is integrated into Eq. 5 by setting
fzi = er) = mix.

Information about lung structure, spatial smoothness and
morphology can be also be enforced by considering a Markov
Random Field (MRF) regularisation term (Umrr). The proba-
bility of a voxel i belonging to tissue class k is now dependent
on the first-order neighbours N;. The neighbourhood system
at a voxel x; is defined as N; = {./\/i",./\/iy , N7} in the face-
connected neighbourhood. The likelihood term (z) is now
augmented with an MRF that is dependent on the probability
and curvature of neighbouring voxels. By employing the
formulation of Van Leemput et al. [25], Eq. 9 is updated to

(m+1)
Pik

f (yi |zi = ex, CD§~'")) S (Zi = e | PXZ), CD;")
St (e ) £ o= .05

i

(10)
with
f(z- = el Py, CD(’"))
n'ke_ﬁ' Umrr (€k I P(m) CD(m))
- : .o an
ZK e ﬁzUMRF(e | Prr> P2 )
j=17ij
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centre of neighbouring voxels. Closer voxels will yield higher
Uz, e, mo 1 1 1
3\:x ! So+ Faot (@1, 1); - Par, weights in the MRE. The total energy (Upyrr) (Fig. 3) fgr
| o a face-connected neighbourhood A; centered at voxel x; in
e, w, ! Uapyen, | ~1 Eq. 11 is defined as
.\:x\\,‘(” XQEJ'IEJV’W ‘\}" \" l
L z; ] i Pay, . z; UMRF (ek | p/(\’g)’ q)z(m))
e
Sy x’—rﬂ/' T Sz K
| 1 Uy e, e .
wl o =D Gy se faul,i)j - prj
A Sz j=1 IE./\/;X
(@) (b) + Z Sy + faor (1, 1)) - pu1,j
. . . . leN}
Fig. 3. lllustration of the local neighbourhood A/ used in Eq. 13. The !
index / iterates over each component in N whilst j is the tissue class + Z sz - faor(d, i)j-pLj) (13)
iterator. The real-world distances are represented by sx and sy, both Y
eN?

measured in mm. (a) Two-dimensional neighbourhood N;. (b) Features

used in the MRF energy for a component (/1) in J\/,.X.
(b) (d)

Fig. 4. Given a patient Z; (a), an anatomical prior () (b) is derived from
the vessel density and airway tree distance transform. A multi-scale filter
is applied to Z; to yield F; (c). Gaussian mixture modelling with an MRF
yields a probabilistic segmentation (d) of the fissures P fissyre-

(a) ©)

where the MRF term Upgr (zi | pa;, @) is an energy func-
tion dependent on ®, = {G} and the MRF weight f; is kept
constant for all voxels i.

Structure in the segmentation is enforced by considering
neighbourhood probabilities (par) and constraints on the cur-
vature of the surface (fyo,) (Fig. 3b). The fissure surface
exhibits low local curvature, which will be captured in the
eigenvector ti3. A weight in the MRF energy term is introduced
based on the dot product of the eigenvectors of a neighbouring
voxel x; with the center voxel x; such that

1 (‘ﬁX/,3'ﬁx;,3|)6 . _
—exp (-t ) ik =1

Jaor (x1, Xi)k = (18,30 31)°
exp (—7”’(3).2’5”’3 ) if k=2

(12)

When considering the fissure class (k = 1), the weight will
tend to O as dissimilarity in the local curvature increases (1 —
exp (—[0;3 - G;3]) — 0). If neighbouring voxels x; and x;
have similar curvature, fz,;(x;, x;i)x=1 will tend to 1. The goal
of this function is to force candidate fissure voxels to have
approximately equal curvature whilst negatively weighting the
probabilities of false-positives with non-equal local curvature.

The possibility of anisotropic voxel sizes and slice spacing
is considered with the connection-strength factor (s) intro-
duced by Cardoso et al. [26], defined as s = {sx, sy, s;} =
{1/dy, 1/dy, 1/d;} based on real-world distances between the

where G represents a K by K matrix whose elements Gy;
represent the transition energy between tissue classes k and j
and the the subscript [ denotes the neighbourhood iterator
in each direction x, y, z. Since this is a two-class problem,
the matrix G is set up with diagonal elements equal to 0,
off-diagonal elements set to 1 and is a constant in our
framework.

Initial parameters for the mixture model (Eq. 7 and 8) are
set to 1"=9 = {0.10, 0.90} on the assumption that both class
distributions are significantly different. The class standard
deviations are initialised as the original standard deviation of
the image filter (62"=0 = {¢%(F}), 02(F;)}). Initial values
for the MRF energy weights (Eq. 11) are set to an even split
of 0.5. A termination criteria based on the ratio of likelihood
change is set to € = 1073,

The parameter f in Eq. 11 controls the regularisation
strength. To mitigate dependence of the segmentation on a
user-defined choice, the segmentation is performed iteratively
whilst increasing the strength of f. The percentage of high
probability fissure voxels (p; k=1 > 0.75) with respect to the
number of voxels n is quantified. This percentage decreases
as p rises leading to a fall in false-positive fissure voxels.
The initial regularisation is f = 0.75. The EM framework is
run and the percentage high probability voxels is quantified.
If there is a convergence of this percentage, the segmentation
framework terminates. Otherwise, the regularisation is auto-
matically increased by 0.50. Convergence is defined when
the percentage has not fallen by at least 2% in 5 successive
iterations. The output of the framework after convergence
yields probabilistic fissure (P fissure) and tissue (P tissue) Maps
for each image Z;. To obtain a binary segmentation of the
fissures (Sy), a two-pass analysis is performed. A connected
component analysis of P fissure Using a face-connected neigh-
bourhood is performed. Firstly, all components with a median
probability below 0.50 are removed then all components below
a volumetric threshold of 0.50mL are discarded.

C. Groupwise Fissure Prior

In a given patient cohort, there will be a range of cases with
incomplete fissures, which will complicate the segmentation of
the lobes. The goal is to combine all segmented fissures into
a groupwise space to create an average fissure model to help
guide the lobe segmentation in problematic cases.
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() (b) (© (@

Fig. 5. Average fissure in the groupwise space ‘Qi" The average lung
at the sagittal midsection of the right and left lung with the respective
average fissures can be seen. (a) Z. (b) Savg. (c) Z. (d) Savg-

1) Groupwise Registration: Given a set of T patients 7=
{Z1,1>,...,Zr}, acommon average space Q5 is computed by
iteratively registering the set of patients Z to the Fréchet mean.
The output is an average image Zav ¢ and a set of forward and
backward transformations (goI and 95, I) such that 975"
Q7. — Q and P77, " Q — QL

The registration is performed using the NiftyReg software
package [27]. The algorithm is motivated by the work of
Ashburner [28]. All patients in Z are initially registered to an
initial template image fgﬁ;o), which is chosen at random from
the set of images Z. The initial average space is created using a
rigid registration. This prevents the atlas from being biased by
the geometry of the initial template image. A set of n; affine
registrations using symmetric block-matching [29] are then
performed followed by a set of ny non-rigid registrations. The
non-rigid registration uses a stationary velocity field, which is
parameterised by a cubic B-spline with a 12mm spacing. The
locally normalised cross-correlation is used as the similarity
with a Gaussian kernel of 50mm. The number of iterations
was determined in a pilot experiment by computing the sum
of squared differences similarity between successive average
images i}%?g and i}%;l) at iterations n and n + 1. Convergence
of similarity measures occurred after ny = 5 and ny = 5 affine
and nonrigid registrations.

At each iteration (n) of the algorithm, all patients are
registered to the average image a?)gl In order to create
the new average image Iéug and the space Q,, the inverse
average transformation from all patients is computed in the
log-Euclidean space. Each patient transformation is demeaned
using the inverse average transformation. All patients are
subsequent (y resampled using the demeaned transformations
to create Im)g This new average image Im)g is obtained by
averaging all the resampled images.

2) Construction of the Population Prior: The set of patients
I={11,15,...,Zr} will have a corresponding set of binary
fissure volumes S={Si,S,,...,Sr}. The transformations
resulting from the groupwise registration (goItj and q)iIt)
are exploited to build the fissure prior (Savg). Each fissure
segmentation &, is resampled into the groupwise space (£4)

using the respective forward transformation 97,5 t0 yield S

All resampled fissures (S’ = {31, 3’2, e 37}) are averaged
in the groupwise space to create the average fissure Suyg.

(@) It (b) T (©) I * G(o)
Fig. 6. GroupW|se prior in the patient space (2z,. a) The patient
volume (Z;), b) the resampled average fissure (/7;) and c) the smoothed

prior (/1 * G(<T)) (@) Zt. (b) MMy (c) MMt * G(0).

In order to exploit this information to help segment the
lobes, the average fissure is resampled using the backwards
transformation ¢+ ~ into each patient space (£2z,) resulting
in II;. This prlor is normalised to the range [0,1] for each
patient and is subsequently smoothed using a Gaussian ker-
nel (¢ = 2.5mm). This produces a prior in the space of each
patient, denoting a region where the fissure is expected.

D. Watershed Surface Fitting

The segmented fissure, the groupwise fissure prior and
anatomical information are combined into a cost imageinspired
by the formulation of Lassen and van Rikxoort [7].They create
a cost function by combining information from the vessel and
airway tree, the segmented fissure and the voxel intensities.
We build on this work by extending the cost function to utilise
a fissure groupwise prior derived from the population to be
segmented.

1) Watershed Cost Function: The population prior (I1;) is
first combined with the segmented fissure(S;). The aim of this
step is to produce an initial cost function, with regions of com-
plete and incomplete fissures accentuated using information
from the segmentation S; and the population prior II,. The
inverted Euclidean distance function is applied to S; to help
deal with minor gaps in the segmentation. It is normalised with
min-max scaling to the range [0,1] with a value of 1 at the
fissure. Only regions in the distance map (fyis (S;)) within
2.5mm of the fissure are considered. The distance map and
the population prior are averaged and convolved with a small
Gaussian kernel (¢ = 1.0mm) to produce a smooth map in
Eq. 14. The magnitude of ¢; will be strongest when fy;s: (S;)
and II; are in the same anatomical location. When there are
large gaps in S; due to fissure incompleteness,I1; will provide
a local maxima.

ist (S II
1= (%) % G(0). (14)
This is then combined with the anatomical informa-

tion (7 jk=1Vi — 7; x=1) and the binary segmentation (S;):

-1 +S
Ct:(ct,l'i‘ﬂt,k 1+ t)

15
3 (15)

The fissure likelihood based on the vessel and airway tree
(s k=1) provides a satisfactory estimate for regions of low
and high fissure probability and helps guide the segmentation
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into regions of low vessel and airway density. In addition
to c1, the original segmentation (S;) is reintroduced. This is
performed to produce a high value in C, at the segmented
fissure since this is the true location of the lobar border.

2) Lobe Seed Labelling: We employ the method used by
Doel et al. [14] to generate initial lobe seed labels from the
segmented airway tree. The seed labels are dilated and allowed
to grow according to the vessel density map for a limited
amount of iterations using the watershed algorithm.

3) Lobe Seed Labelling Post-Processing: The segmentation
is dependent on the initial seed labels. The quality of the initial
labelling can be affected by segmentation failures and errors
in the bronchial labelling. If a lobe seed is incorrectly labelled,
the resulting segmentation will be erroneous despite successful
segmentation of the fissures. To improve the robustness of
the pipeline with respect to the airway tree segmentation,
the following errors are accounted for: 1) mislabelled branches
and 2) unsegmented branches.

a) Seed label correction - labelling errors: To detect and
remove mislabelled branches, the centre of mass (CoM) of
each set of label seeds is quantified. For each label set,
the intra-label distance of each component to the label CoM
is computed. The inter-label distance of the components to all
other label CoMs are also quantified. The dilated components
are removed iteratively to minimise the amount of deleted
seeds. A seed is marked for removal if its inter-label distance
is smaller than its intra-label distance. The seed with the
smallest inter-component distance of all candidate components
is marked for removal. This component is discarded if its
removal does not cause the number of components for that
label to fall below a threshold (#/p,eshoia = 4). If this threshold
is met, the component with the next smallest distance is
considered. Once a component is removed, the above method
is repeated until removal is no longer possible. This enforces
maximum separability between the seeds and removes all
potentially erroneously labelled seeds.

b) Seed label correction - airway segmentation errors: If the
airway tree segmentation fails, labelling of the branches will
not yield the necessary seeds to segment all lobes. In this
instance, the anatomical information (7; x—1) and its distribu-
tion in non-fissure regions (16) is considered. The threshold is
considered by analysing the distribution of the prior (7 x=1)
at the fissure S;:

Tt threshold = I (ﬂt,k:I € St) —20 (ﬂt,ikzl € St) (16)

The low minima regions of 7; =1 are defined as m; =1 <
Tt,threshold- These correspond to regions of high vessel and
airway branching density. A mask of these regions is created
and a connected component analysis is performed to extract
the regions of local minima. These regions are analysed based
on their position within the lung and are exploited to generate
new seed labels should the airway tree segmentation fail.

4) Final Lobe Segmentation: Segmentation of the lobes (L;)
is obtained by combining the cost image C; and the processed
seed labels in a watershed segmentation. The lobar boundaries
are smoothed to deal with minor artefacts in the segmentation.
This is performed by normalised convolution with a 4.0mm?>
Gaussian kernel.

I11. DATA
A. Dataset 1

Dataset 1 was based on the LObe and Lung Analysis 2011
(LOLA11) challenge [30]. It consists of 55 volumetric chest
CT scans originating from a variety of source with a range
of scans containing serious pathology and abnormalities. The
inplane resolution is between 0.53mm and 0.78mm whilst
the slice thickness ranges from 0.3 to 1.5mm. The organisers
manually segmented the lobes on 9 coronal slices with two
human observers and were instructed only to label when
the boundaries were visible. The inter-observer agreement
between the lobar borders was 1.50mm £1.28mm.

B. Dataset 2

Dataset 2 was used to quantitatively and qualitatively
validate the framework on patients with COPD from
the COPDGene study [22]. We created a quantitative
(Nguan: = 30) and qualitative set (Nyyuq = 50) by randomly
selecting patients from the study. Minimum thresholds
(> 10%) for the level of emphysema in the inspiration
scan and gas trapping in the corresponding expiration
scan were set in the qualitative cohort to capture cases
with significant pathology. The quantitative set averaged
12.8% + 11.12% emphysema whilst the qualitative set
averaged 22.50% -+ 3.60% emphysema.

Analysed scans stem from GE Medical Systems (Light-
Speed 16, Lightspeed VCT), Siemens (Sensation 16,
Sensation 64 and Definition) and Philips (Brilliance 64)
scanners. Scans with the STANDARD (GE), AS+ B31f and
B31f (Siemens), and 64 B (Philips) reconstruction algorithms
were analysed. Information about the scanning protocols can
be viewed at the COPDGene website.” The slice thickness
of the scans range from 0.62mm to 1.00mm with in-plane
dimensions ranging from 0.52 to 0.90mm.

The quantitative cohort was built by manually tracing the
fissures in every fifth sagittal slice using ITK-SNAP [31]. The
radiologist was asked to manually trace the fissures using three
labels. Label 1 was used when the fissures were visible. Label
2 w as employed in cases where extrapolation was possible.
Label 3 was used in areas of high fissure uncertainty.

The manual segmentation provided an approximate estimate
of fissure incompleteness with an average of 12.4% + 8.3%
across the quantitative set. This was computed by considering
the percentage of voxels labelled 2 and 3. Intra-observer vari-
ability was obtained by a repeated segmentation of 3 datasets
with varying degrees of fissure incompleteness (6.7%, 23.0%
and 31.3%). These were performed 14 days after to minimise
recall bias. The intra-observer agreement for all lobar bound-
aries across all patients was 1.54mm =+ 0.45mm.

V. EXPERIMENTS & RESULTS
A. Fissure Segmentation Evaluation

We investigated the effects of parameters A and B (Eq. 2)
and the performance of our segmentation framework on the
quantitative set of dataset 2 using label 1 of the reference set.

2copdgcnc.org/ sites/default/files/COPDGene%20MOP%2006.19.2009.pdf
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We used the method presented by Xiao et al. [32] to evaluate
our fissure segmentation. We did not define a volume of
interest (Vol) using a 40mm width band around each reference
as this ignores potential false positives in the validation.
The Fp-score was used as quantitative index of performance.
It is defined as 2 - (Precision - Recall)/(Precision +
Recall). The magnitude of Fj reflects the similarity between
the segmentation and the reference. Precision and Recall
are defined respectively as TP/ (TP + FP) and TP,/
(T P, + FN) [32]. Precision was quantified by considering
the overlap of the binary result (S) with the reference. A 3mm
tolerance band was defined around the reference segmentation
as performed by Xiao et al. [32]. Voxels of S are classified as
true positive (7' Pp) if they fall within the 3mm band and false
positive (F P) if otherwise. Recall was computed by defining
a 3mm band around the binary result (S). Reference voxels
within this band were classified as 7 P, and those outside as
false-negative (F'N).

We segmented the fissures using parameters A, B €
[0.05, 0.50]. We illustrate the performance of the segmentation
for a subset of the parameter B € [0.05, 0.10, 0.15, 0.25] with
A € [0.05,0.50] in Fig. 7. The best performance over all
datasets was achieved with parameters A = 0.25 and B = 0.10
with a median Fj-score of 0.90 with median False-Discovery
Rate and False-Negative-Rate of 0.08 and 0.13 respectively.
The Fi-score remained relatively stable when set in the range
A* = B* € [0.10, 0.35] (Fig. 7). The mean Fj-score over all
combinations (A*x B*) was 0.87£0.02 demonstrating stability
in algorithm performance. The mean Fj over all values of A
for increasing values of B is 0.87 £0.03 (Fig 7a), 0.87+0.03
(Fig 7b), 0.86 £0.04 (Fig 7c), 0.83+0.08 (Fig. 7d). At higher
values of B, this drops to 0.824+0.09 (B = 0.30), 0.81£0.10
(B =0.35), 0.79 £ 0.12 (B = 0.40), 0.78 £ 0.14 (B = 0.45)
and 0.77 +£0.15 (B = 0.50). This is expected as higher values
decreases the separation between the tissue and fissure-class
distributions.

B. Lobe Segmentation Validation

Algorithm parameters quoted within Section II were used in
the validation of dataset 1 and 2. The fissure filter parameters
used were A = 0.20 and B = 0.20.

1) Dataset 1 - LOLA11: We evaluated our algorithm on
the LOLAI11l cohort and submitted our results for evalua-
tion [30]. The LOLA11 evaluation metric is the volume over-
lap between the submission and the reference segmentation
of one observer. The organisers defined a 2mm slack border
around the borders of the lung and lobes to account for
inter-observer variability. Voxels within this border were not
accounted for during evaluation. The overlap is calculated for
each lobe across all patients. We report the mean + standard
deviation, first quartile (Q1), median and third quartile (Q3) of
the scores across all 55 patients. The LOLA score is calculated
as the average of all average overlaps over all lobes. Table I
shows the score for our lobe segmentation and those of van
Rikxoortet al. [10] and Lassen and van Rikxoort [7].

Five algorithms have been validated for lobe segmentation
on this cohort. However, we have restricted our comparison to
van Rikxoort et al. [10] and Lassen and van Rikxoort [7] as
they are fully automatic and do not require interactive post-
processing to correct segmentations. We achieved the highest
automatic average lobe score of 0.884 and an average median
overlap of 0.950 (Table I).

2) Dataset?2 - Quantitative COPDGene: We assessed the per-
formance of our algorithm quantitatively on dataset 2 using the
mean, maximum and root-mean square error (RMSE) distance
from the manual reference to the automatic boundary. This
was performed by calculating the three-dimensional Euclidean
distance between the reference voxels and the closest point on
the automatic segmentation.

We assessed the segmentation for each label (Table IV). The
algorithm achieved a mean of 2.0lmm =+ 6.24mm when the
fissures were visible (label 1). In cases where fissure extrapola-
tion was possible (label 2), a mean of 5.16mm =+ 6.12mm was
achieved. The performance dropped to 7.31mm =+ 4.88mm in
regions of highest uncertainty (label 3). In one case, the right
lobe segmentation failed and in a second case, segmentation
of the right and left lobes failed. The failure was due to major
errors in the airway branching labelling, which could not be
corrected using our methodology. With a 2mm slack border,
the mean distances were 1.65 & 3.28mm (label 1), 3.31 &
5.93mm (label 2) and 6.18 + 4.70mm (label 3). Errors were
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Fig. 8. Relationship between incompleteness and segmentation perfor-
mance. One case where the right major fissure failed and another where
both the left and right lungs failed were removed as outliers for better
visualisation.

due to instances where the groupwise fissure was significantly
different from label 2 and 3 of the reference or slightly biased
the segmentation of label 1. Further typical errors were in
cases where emphysametous bullae appearing as fissures lead
to isolated errors in the lobe boundary segmentation. Results
of the lobe segmentation for selected cases of the quantitative
cohort can be visualised in Fig. 9 a-g.

The performance of our algorithm was also assessed against
approximate fissure incompleteness (Fig. 8). The relationships
between the mean distance and standard deviation of the
distance to the closest points on the automatic segmentation
were examined and the Pearson correlation coefficient was
calculated for each lobar boundary. Weak relationships were
observed between the mean distance and the degree of fissure
incompleteness for each boundary (right minor: p = .47 (p <
0.05), right major: p = .66(p < 0.05) and left major:
p = .35(p > 0.05)). Similar findings were observed in
the standard deviation (right minor: p = .46 (p < 0.05),
right major: p = .61 (p < 0.05) and left major: p = .23 (p >
0.05)).

3) Dataset 2 - Qualitative COPDGene: We qualitatively
assessed (Table IIT) our algorithm on 50 patients with advanced
disease using an adapted scoring system of van Rikxoort and
van Ginneken [21], which scores the segmentations out of five.
The radiologist assessed each lobe segmentation on the sagittal
plane. The highest score (5) corresponded to a segmentation
error below 3mm. A score of 4 reflected a segmentation
error at any location between 3mm and 12mm. A score of
3 reflected a segmentation error greater than 12mm but where
the overall lobe segmentation remained acceptable for analysis.
The lowest scores (2 and 1) were awarded when the maximum
segmentation error was greater than 12mm and segmentation
quality was either equivocal or unusable. Scores were assigned
to both complete and incomplete fissures.

The algorithm showed good performance across com-
plete (3.9 £ 0.3) and incomplete fissures (3.8 £ 0.5). There
was one notable failure (score = 2) to segment the right
major fissure in a case with a complete fissure and one
failure (score=1) of a segmentation of a right major fissure
when it was grossly incomplete. Across cases with complete
and incomplete fissures, the most commonly awarded score
was 4. Only a small proportion of cases had maximum errors
< 3mm (22% and 12.5% for complete and incomplete right
minor fissures whilst 0% and 7.3% for complete and incom-
plete right major fissures). Results of the lobe segmentation for
selected cases of this cohort can be visualised in Fig. 9h-n.

C. Effect of the Groupwise Prior

We assessed the performance of the algorithm with and
without the groupwise prior (IT) on dataset 2. We computed the
mean of the distances from the automated segmentation to the
reference and compared this to results using the prior. We did
not include the boundaries that failed in the quantitative analy-
sis of Section IV-B.2 as these boundaries also failed without
using the groupwise prior. We omitted cases with minor fissure
incompleteness in the analysis. This was defined when a lobar
boundary had less than 1% fissure incompleteness. This led to
19 analysed patients for the right major fissure, 23 for the right
minor and 19 for the left major. There was 9.72% + 8.66%
fissure incompleteness in the right major, 36.44% + 18.91%
for the right minor and 11.61% =+ 9.81% for the left major
in the new cohort. We calculated the cohort average for each
boundary and for the segmentation labels of fissures not visible
in CT, delineated as label 2 and 3. We performed a two-
sample t-test under the null hypothesis that the mean results
of the segmentation with and without the groupwise prior are
significantly different.

We found a general increase in the distance to the reference
for label 2 (5.87mm =+ 3.72mm to 7.60mm =+ 6.49mm) and
label 3 (7.10mm =+ 3.67mm to 8.59mm =+ 5.77mm) when
excluding the groupwise prior. We did not find a significant
difference between the sets of mean distances for each lobar
boundary stratified by reference label (Table II). This is due
to the fact there may be extreme differences due to failures
without the prior, smaller improvements using the prior but
also cases where the prior negatively affects extrapolation of
the fissure.

In areas of significant fissure incompleteness, the groupwise
prior may help avoid leaking of the seed labels during the
surface fitting whilst guiding the segmentation to the most
probable location based on the population and the patient
anatomy. This occurred in several cases (Figure 11(a-f)) where
either the left major border or the right major border failed
without the prior. Within this cohort, the right minor fissure
had the highest level of fissure incompleteness. In various
cases (Figure 11 (g-1)), the prior helped drive the lobar border
towards the reference. However, there are several modes of
variation in the right minor fissure (Figure 5). The patient
anatomy may differ greatly from the population mean. The
prior may negatively affect the final segmentation in areas
of incomplete fissures. This led to a smaller difference in
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TABLE Il
QUANTITATIVE RESULTS - FISSURE METRICS WITH AND
WITHOUT GROUPWISE PRIOR

WITH (mm) _ WITHOUT (mm) _ p-Value
Right Major ~ 5.29 & 3.00 5.71+2.75 p=0.65
Label o Right Minor  6.28 + 3.52 6.51 & 3.51 p=0.83
Left Major ~ 6.05+£4.64 10591632  p=0.25

Total 5.87 + 3.72 7.60 + 6.49 -
Right Major ~ 6.94 + 3.24 8.18 4+ 4.28 p=0.34
Label 3 Right Minor ~ 6.41 +2.81 6.50 & 2.84 p=0.92
Left Major ~ 7.94+4.95  11.09+10.19  p=0.67

Total 7.10 £ 3.67 8.59 £ 5.77 -

the population means in the right minor fissure (6.28mm to
6.51mm in label 2 and 6.41mm to 6.50mm in label 3). Despite
this limitation, we can conclude that the groupwise fissure
prior, constructed from the same cohort using a combination of
complete and incomplete segmented fissures is advantageous.

V. DISCUSSION AND CONCLUSION

We have presented a novel lobe segmentation algorithm
based on an unsupervised segmentation of the fissures with
iterative false-positive removal, the creation of a groupwise
fissure prior and a cost function combining patient and pop-
ulation information. Our algorithm does not require prior
training or manual labelling to segment the fissures and build
a population prior of the fissures. Fissure probabilities were
obtained by parameterising a fissure enhancement filter with a
Gaussian Mixture Model (GMM). Smoothness and curvature
constraints were enforced in the segmentation by considering a
Markov Random Field (MRF) regularisation. This led to rejec-
tion of most false-positives leading to high maximum Fj-score
of 0.90. A method to construct a groupwise fissure prior given
complete and incomplete fissures in a population was pre-
sented. We evaluated its role in identifying incomplete fissures
whilst minimising potential segmentation failures. The method
was validated on 55 cases from the LOLAI1l study [30]

and on 80 datasets from the COPDGene study [22]. We illus-
trated its applicability in correctly segmenting the lobes of
patients with varying levels of disease severity and fissure
incompleteness.

Correct removal of false-positive fissures is necessary to
accurately segment the fissures. Whilst supervised filter tech-
niques have been utilised to segment the fissures [8], [9], [12],
they require a training dataset to perform the classification.
Manual labelling of voxels is laborious and may not always
be practicable in a clinical setting. The fissure segmentation
used by van Rikxoort et al. [10] required a training set as part
of their algorithm and can only be employed when manual
labelling is possible by an expert. Moreover, the applicability
of a training set built on an independent set of scans applied
to those acquired on different scanners is debatable.

Ross et al. [12] exploited a deformable model to identify
the fissure surfaces, which may fail when the patient anatomy
cannot be modelled by the atlas. The fissure enhancement
applied by Lassen and van Rikxoort [7] required experimen-
tation to yield optimal ranges for the Hessian eigenvalues.
Applying pre-existing thresholds to new datasets and those
acquired at lower doses can be problematic and may cause
undesirable drops in algorithm specificity. Applying hard-
constraints on eigenvalue magnitudes in new scans may not
be beneficial. The eigenvalue range may differ whilst the ratio
is expected to remain constant. This is because the ratio will
model different orientation patterns unique to various struc-
tures (spherical, tubular and sheet-like). This may cause an
over-segmentation with too many false positives. The limita-
tion of pre-existing threshold can also be applied to the filter of
Wiemker et al. [19], who developed a weighting term based
on the expected intensity of the fissures. It requires specific
knowledge about the HU of the fissures to determine parame-
ters unique to scans. Finding optimal parameters that yield a
robust filter across a broad range of datasets is difficult and
not desirable.

Our segmentation framework requires little prior knowledge
regarding algorithm parameters and will be more robust than
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TABLE IlI
QUALITATIVE SCORING RESULTS FOR COMPLETE FISSURES (A)
AND INCOMPLETE FISSURES (B)

Score  Right Major  Right Minor  Left Major | Total Score
% 5 0.0 22.0 0.0
% 4 82.4 58.0 76.5
% 3 15.6 20.0 235 3.9 £ 0.3
% 2 2.0 0.0 0.0
% 1 0.0 0.0 0.0
(a)
Score  Right Major  Right Minor  Left Major | Total Score
% 5 7.3 12.5 2.4
% 4 68.3 50.0 70.7
% 3 22.0 375 26.8 3.8 £ 0.5
% 2 0.0 0.0 0.0
% 1 2.4 0.0 0.0

(b)

methods requiring prior training. Our fissure enhancement
filter is based on ratios of Hessian eigenvalues. Given a set of
new scans, separability between class distributions will exist
since relationships between the eigenvalues should remain
constant. Since we learn model parameters of the GMM,
the segmentation of the fissures will be flexible when process-
ing new scans. Classifying voxels by learning the underly-
ing class distributions will capture a range of filter values;
which can vary for each dataset. The integration of the MRF
regularisation increases the robustness of the segmentation to
noise. A voxel with a poor filter response can still receive a
high fissure class probability when considering neighbourhood
constraints on pairwise probabilities and Hessian eigenvectors.

We showed in Section IV-A that our method achieved a
high median Fj-score of 0.90 and insensitivity to the filter
input parameters. These parameters govern the separability of
the class distributions and do not rely on knowledge of specific
CT features. There is a minor dependence on the initialisation
of the model parameters in the GMM. However, the iterative
framework for increasing the MRF regularisation means no
user-interaction is required. The iterative increase also deals
with false-positive rejection as constraints on neighbourhood
properties are given more weight until algorithm convergence.
Performance of the fissure segmentation could be improved
in future work by modelling the signal as a mixture of skew-
normals akin to the work of Hame ef al. [33] since we chose
a GMM for mathematical simplicity.

We evaluated our algorithm on the LOLA11 dataset [30],
which enabled direct comparison with the work of Lassen and
van Rikxoort [7] and van Rikxoort et al. [10]. We achieved
the highest score of 0.884 in comparison to Lassen and van
Rikxoort [7] (0.881) and van Rikxoort et al. [10] (0.851).
Both algorithms used superior lung segmentation algorithms
(0.947 (our method) versus 0.962 [10] and 0.971 [7]), which
may have had detrimental effects on our lobe segmentation
scores in the most challenging cases (e.g. Fig. 10h, i, k and 1).

The quantitative experiment on dataset 2 highlighted the
accuracy of the algorithm in areas with varying fissure visi-
bility (Table IV). The high standard deviation associated with
the segmentation of the right minor fissure was due to the

failure of lobar segmentation in 2/30 cases. In these two cases,
post-processing of airway labelling errors could not be auto-
matically corrected. The respective fissure means and standard
deviations were: 1.52mm £1.49mm, 46.06mm £30.74mm and
1.33mm =+ 2.06mm for the right major and minor fissures and
and left major fissure respectively, which displays the isolated
error. The large maximum errors in certain cases with low
mean distances occurred in isolated areas close to the ribcage
and near the lung hila where the automated segmentation
disagreed significantly with the radiologist.

Qualitative testing (Table IIT) highlighted the ability of
the algorithm to produce good segmentation results in cases
with higher severities of disease. The low proportion of lobar
boundaries scoring 5 (errors < 3mm) in cases with complete
fissures (Table Illa) are a result of the narrow boundary
definitions of the scoring system. The scoring system may
not adequately reflect the performance of the algorithm since
an isolated error will reduce the score to 4 when it would
otherwise be graded as 5. Most of these errors were less than
6mm from the reference fissure line and occurred in isolated
regions prone to artefacts such as close to the rib-cage, the lung
hila and the intersection between the right major and minor
boundaries. Importantly, the algorithm was able to interpolate
incomplete fissures (Table IIIb) and demonstrated equivalence
in performance to cases with complete fissures. The findings
highlight the ability of the groupwise prior in conjunction with
information from the vessel and airway tree to successfully
guide fissure segmentation towards correct locations as defined
by the reference standard.

Our work bears many similarities with the implementation
of Lassen and van Rikxoort [7]. They also exploited infor-
mation from auxiliary structures by combining the airway
and vessel tree with the segmented fissures to create a cost
image for watershed segmentation. Our algorithm differs pri-
marily in the fissure segmentation and in the inclusion of
population information in the cost image. Priors dependent
on the segmentation of the vessel and airway tree might
not always be fully informative. Airway tree segmentation is
challenging and may not be sufficiently segmented to provide
enough information about the location of lobar borders. The
vessel tree may also not provide sufficient information in areas
of largely incomplete fissures. The additional information
provided by the groupwise fissure prior helps mitigate these
issues. Within the LOLA11 dataset, the effect is marginal on
the overall scores (0.884 versus 0.881). The dataset included
many highly irregular scans, which made it difficult to create
an accurate population model. The effect of the groupwise
prior was more noticeable in dataset 2 from the COPDGene
study (Fig. 6 and 11) where we demonstrated the utility of
the groupwise fissure.

The technique by which we construct the groupwise prior
has the advantage of not requiring any pre-existing data.
This does not require an expert to manually delineate complete
fissures including visible and non-visible fissures. Since we
construct the prior on the current set of data, it is not biased
towards particular types of imaging data. The groupwise prior
acted as a guide or region of confidence within the patient
space rather than rigidly guiding the segmentation based
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TABLE IV
QUANTITATIVE RESULTS - FISSURE METRICS

average of patient mean (mm)

average of patient max (mm)

average of patient rmse (mm)

Right Major 1.66 + 3.61 15.42 £ 14.91 2.72 £ 5.67

Label 1 Right Minor 2.31 £11.10 18.60 £ 20.10 3.32+£12.82
Left Major 2.07 +£4.03 28.50 + 27.89 3.95+6.85

Total 2.01 +6.24 20.85 + 20.96 3.33 £8.44

Right Major 5.44 +5.55 14.22 4+ 14.45 6.69 £ 6.98

Label 2 Right Mipor 5.39 £ 8.50 18.65 + 18.96 7.23 £8.48
Left Major 4.65 +4.30 16.15 £ 16.75 6.01 +5.81

Total 5.16 £6.12 16.34 +16.72 6.64 £ 7.09

Right Major 7.21£4.18 20.95 + 21.02 8.65 £ 6.15

Label 3 Right Minor 7.56 & 5.49 19.05 £+ 17.62 8.44 £ 7.28
Left Major 7.16 = 34.96 23.23 £23.23 9.78 £ 5.58

Total 7.31 £4.88 21.08 + 20.62 8.95 +6.34
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Fig. 10. lllustration of the segmentation on a variety of cases from dataset 1 with complete and incomplete fissures in addition to various
levels of pathology. (a) lola11-40. (b) lola11-01. (c) lola11-30. (d) lola11-41. (e) lola11-29. () lola11-16. (g) lola11-28. (h) lola11-55. (i) lola11-21.

(j) lola11-14. (k) lola11-25. (I) lola11-52. (m) lola11-23.

on shapes in the training set, facilitating the segmentation
of lobes of varying shape. Its effect was demonstrated on
dataset 2 (Table II) and visualised in Fig. 11. Our method
for constructing the groupwise prior suffers from a lack of
flexibility in comparison to deformable models. A prior created
by averaging all segmented fissures in the groupwise space
may be over simplistic. Despite the simplicity of its con-
struction, the application can bias the results in certain cases.
This was seen in the weak relationships calculated between
segmentation errors and fissure incompleteness (Fig. 8) but
also when quantifying the effect of the prior (Section IV-C).
Since the average fissure is directly added within the patient
space, it does not take into account the shape of the segmented
fissure. This introduces a bias if the patient anatomy differs
significantly from the mean. This occurred mostly in the
right minor fissure, where several modes in the population
exist (Fig. 5). This led to a smaller average increase in
the errors when testing algorithm performance without the
prior (Table II).

The dependence of our work on the construction of a
groupwise space is a limitation. Groupwise registration is
computationally expensive and measuring registration accu-
racy of inter-patient registration is difficult. Errors in the
registration may be present, which can decrease the strength
of our calculated groupwise prior. The work of Li et al. [34]

Al

(a) (c) IT

v P YV
f — A
i
(@ () 11 @ (9] M 11

Fig. 11.  Lobe segmentation results without and with the group-
wise prior (/1) in four different patients. The reference for non-visible
fissures (label 2 and 3) is overlaid on the lobe segmentation. The
colour of the reference was chosen to aid the visualisation and is not
representative of the segmentation label.

used annotated landmarks from the airway tree to drive inter-
patient landmark and intensity-based registration, indicating
the applicability of detecting landmarks in inter-patient regis-
tration. Inclusion of the vessel density map in a multi-modal
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registration scheme to construct our groupwise space may then
produce a more accurate fissure prior. Improving the inter-
patient registration is then likely to increase the flexibility of
the fissure prior. The transformation between the average space
and the patient space acts as a deformable model. A more
accurate mapping; obtained by including extra morphological
information will help deform the groupwise prior to more
unusual geometries.

The need to segment the airway tree may also decrease the
applicability of our framework. Segmentation of the bronchial
tree is an important determinant in the success of our algorithm
as demonstrated by several failures in dataset 2. The vessel
density map produces a good approximation of the fissure
location, which may negate the need to use the airway tree
in the fissure segmentation and cost function. However, initial
seed labelling for the watershed still relies on the airway
tree. Whilst we developed post-processing methods to make
the method more robust to the quality of the airway seg-
mentation, errors can lead to failures. A combination of the
groupwise framework and the labelling method described in
Section II-D.3 may help generate better seeds without needing
the airway tree.

The segmentation of incomplete fissures remains one of
the biggest challenges in lobe segmentation. We presented
the simultaneous construction of a groupwise prior to address
this challenge. When the fissures are not-visible on CT, this
is because they may be congenitally absent or destroyed
by inflammatory disease processes. The segmentation may
therefore be creating an artificial division between lobes.
In reality, the anatomical boundary between the lobes has
either been destroyed or is absent. This is seldom mentioned in
the lobe segmentation literature. When comparing our results
with the label 3 reference, it is therefore important to note
we are comparing algorithm extrapolation with the educated
guess of an expert. Furthermore, it is not yet known what
accuracy is needed in the segmentation of incomplete fissures
to produce regional markers of disease that are clinically
useful.

Despite the ability to correctly guide the segmentation in
regions of incomplete fissures in most cases, the application of
the groupwise prior requires further work. There may be issues
when the mean of the population deviates significantly from
the patient being segmented. In order to fully exploit the power
obtained by fusing complete and incomplete segmentations,
it is necessary to dynamically weight the groupwise prior
in regions when it is needed and regions where information
stemming from the patient is sufficient. Another solution may
lie in creating various fissure models using different sets of
patients from the population to mimic multi-atlas selection.

In conclusion, we have presented a lobe segmentation
algorithm, which requires no prior training or manual labelling
to both segment the fissures and build a population prior
of the fissures. We have tested the method on 135 different
datasets with varying levels of disease severity and complexity.
The presented algorithm can be used in large studies to
perform accurate regional quantification of disease progression
and shows great promise to be integrated within a clinical
setting.
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