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Abstract— When integrating computational tools, such

as automatic segmentation, into clinical practice, it is of
utmost importance to be able to assess the level of accuracy
on new data and, in particular, to detect when an automatic
method fails. However, this is difficult to achieve due to the
absence of ground truth. Segmentation accuracy on clinical
data might be different from what is found through cross
validation, because validation data are often used during
incremental method development, which can lead to over-
fitting and unrealistic performance expectations. Before
deployment, performance is quantified using different met-
rics, for which the predicted segmentation is compared with
a reference segmentation, often obtained manually by an
expert. But little is known about the real performance after
deployment when a reference is unavailable. In this paper,
we introduce the concept of reverse classification accu-
racy (RCA) as a framework for predicting the performance
of a segmentation method on new data. In RCA, we take
the predicted segmentation from a new image to train a
reverse classifier, which is evaluated on a set of reference
images with available ground truth. The hypothesis is that
if the predicted segmentation is of good quality, then the
reverse classifier will perform well on at least some of the
reference images. We validate our approach on multi-organ
segmentation with different classifiers and segmentation
methods. Our results indicate that it is indeed possible
to predict the quality of individual segmentations, in the
absence of ground truth. Thus, RCA is ideal for integration
into automatic processing pipelines in clinical routine and
as a part of large-scale image analysis studies.

Index Terms— Abdominal, classification, image segmen-
tation, machine learning, MRI, performance evaluation.
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I. INTRODUCTION

SEGMENTATION is an essential component in many
image analysis pipelines that aim to extract clinically

useful information from medical images to inform clinical
decisions in diagnosis, treatment planning, or monitoring
of disease progression. A multitude of approaches have
been proposed for solving segmentation problems, with
popular techniques based on graph cuts [1], multi-atlas
label propagation [2], statistical models [3], and supervised
classification [4]. Traditionally, performance of a segmentation
method is evaluated on an annotated database using various
evaluation metrics in a cross-validation setting. These metrics
reflect the performance in terms of agreement [5] of a
predicted segmentation compared to a reference ‘ground
truth’ (GT).1 Commonly used metrics include Dice’s
similarity coefficient (DSC) [6] and other overlap based
measures [7], but also metrics based on volume differences,
surface distances, and others [8]–[10]. A detailed analysis
of common metrics and their suitability for segmentation
evaluation can be found in [11].

Once a segmentation method is deployed in routine little
is known about its real performance on new data. Due the
absence of GT, it is not possible to assess performance using
traditional evaluation measures. However, it is critical to be
able to assess the level of accuracy on clinical data [12],
and in particular, it is important to detect when an automatic
segmentation method fails. Especially when the segmentation
is an intermediate step within a larger automated processing
pipeline where no visual quality control of the segmentation
results is feasible. This is of high importance in large-scale
studies such as the UK Biobank Imaging Study [13] where
automated methods are applied to large cohorts of several
thousand images, and the segmentation is to be used for
further statistical population analysis. In this work, we are
asking the question whether it is possible to assess segmen-
tation performance and detect failure cases when there is
no GT available to compare with. One possible approach
to monitor the segmentation performance is to occasionally
select a random dataset, obtain a manual expert segmentation
and compare it to the automatic one. While this can merely
provide a rough estimate about the average performance of
the employed segmentation method, in clinical routine we are
interested in the per case performance and want to detect

1For simplicity, we use the term ground truth to refer to the best known
reference, which is typically a manual expert segmentation.
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when the automated method fails. The problem is that the
performance of a method might be substantially different on
clinical data, and is usually lower than what is found through
cross-validation on annotated data carried out beforehand due
to several reasons. First, the annotated database is normally
used during incremental method development for training,
model selection and fine tuning of hyper-parameters. This can
lead to overfitting [14] which is a potential cause for lower
performance on new data. Second, the clinical data might be
different due to varying imaging protocols or artefacts caused
by pathology. To this end, we propose a general framework
for predicting the real performance of deployed segmentation
methods on a per case basis in the absence of GT.

A. Related Work

Retrieving an objective performance evaluation without
GT has been an issue in many domains, from remote
sensing [15], graphics [16], to marketing strategies [17].
In computer vision, several works evaluate the segmenta-
tion performance by looking at contextual properties [18],
by separating the perceptual salient structures [19], or by
automatically generating semantic GT [20], [21]. However,
these methods cannot be applied to a more general task, such
as an image with many different class labels to be segmented.
An attempt to compute objective metrics, such as precision
and recall with missing GT is proposed by [22] but it cannot
be used for data sets with partial GT since it applies a prob-
abilistic model under the same assumptions. Another stand-
alone method is to consider a meta-evaluation framework,
where image features are used in a machine learning setting
to provide a ranking of different methods [23]. But this does
not allow the estimation of segmentation performance on an
individual image level.

Meanwhile, unsupervised methods [24], [25] aim to esti-
mate the segmentation accuracy directly from the images
and labelmaps using, for example, information-theoretic and
geometrical features. While unsupervised methods can be
applied to scenarios where the main purpose of segmentation
is to yield visually consistent results that are meaningful to a
human observer, the application in medical settings is unclear.

When there are multiple reference segmentations available,
a similarity measure index can be obtained by comparing
an automatic segmentation with the set of references [26].
In medical imaging, the problem of performance analysis with
multiple references which may suffer from intra-rater and
inter-rater variability, has been addressed [27], [28]. The STA-
PLE approach [27] has lead to the work of Bouix et al. [29]
that proposed techniques for comparing the relative perfor-
mance of different methods without the need of GT. Here,
the different segmentation results are treated as plausible
references, thus can be evaluated through STAPLE and the
concept of common agreement. Another work by [30] has
quantitatively evaluated the performance of several segmen-
tation algorithms by region-correlation matrix. The limitation
of this work is that it cannot evaluate the segmentation
performance of a particular method on a particular image
independently.

Recent work has explored the idea of learning a regressor to
directly predict segmentation accuracy from a set of features
that are related to various segmentation energy terms [31].
Here, the assumption is that those features are well suited
to characterise segmentation quality. In an extension for a
security application, the same features as in [31] are extracted
and used to learn a generative model of good segmentations
that can be used to detect outliers [32]. Similarly, the work
of [33] considers training of a classifier that is able to dis-
criminate between consistent and inconsistent segmentations.
However, the approaches [31], [33] can only be applied
when a training database with good and bad segmentations is
available from which a mapping from features to segmentation
accuracy can be learned. Examples of bad segmentations can
be generated by altering parameters of automatic methods,
but it is unclear whether those examples resemble realistic
cases of segmentation failure. The generative model approach
in [32] is appealing as it only requires a database of good
segmentations. However, there is still the difficulty of choosing
appropriate thresholds on the probabilities that indicate bad or
failed segmentations. Such an approach cannot not be used to
directly predict segmentation scores such as DSC, but can be
useful to inform automatic quality control or to automatically
select the best segmentation from a set of candidates.

In the general machine learning domain, the lack-of-label
problem has been tackled by exploiting transfer learning [34]
using a reverse validation to perform cross-validation when
the number of labeled data is limited. The basic idea of
reverse validation [34] is based on reverse testing [35], where
a new classifier is trained on predictions on the test data
and evaluated again on the training data. This idea of reverse
testing is closely related to our approach as we will discuss
in the following.

B. Contribution

The main contribution of this paper is the introduction
of the concept of reverse classification accuracy (RCA) to
assess the segmentation quality of an individual image in
the absence of GT. RCA can be applied to evaluate the
performance of any segmentation method on a per case basis.
To this end, a classifier is trained using a single image with
its predicted segmentation acting as pseudo GT. The resulting
reverse classifier (or RCA classifier) is then evaluated on
images from a reference database for which GT is available.
It should be noted that the reference database can be (but does
not have to be) the training database that has been used to train,
cross-validate and fine-tune the original segmentation method.
The assumption is that in machine learning approaches, such
a database is usually already available, but it could also
be specifically constructed for the purpose of RCA. Our
hypothesis is that if the segmentation quality for a new image
is high, then the RCA classifier trained on the predicted
segmentation used as pseudo GT will perform well at least on
some of the images in the reference database, and similarly,
if the segmentation quality is poor, the classifier is likely to
perform poorly on the reference images. For the segmentations
obtained on the reference images through the RCA classifier,



VALINDRIA et al.: REVERSE CLASSIFICATION ACCURACY: PREDICTING SEGMENTATION PERFORMANCE 1599

we can quantify the accuracy, e.g., using DSC, since reference
GT is available. It is expected that the maximum DSC score
over all reference images correlates well with the real DSC
that one would get on the new image if GT were available.
While the idea of RCA is similar to reverse validation [34]
and reverse testing [35], the important difference is that in our
approach we train a reverse classifier on every single instance
while the approaches in [34] and [35] train single classifiers
over the whole test set and its predictions jointly to find out
what the best original predictor is. RCA has the advantage of
allowing to predict the accuracy for each individual case, while
at the same time aggregating over such accuracy predictions
allows drawing conclusions for the overall performance of a
particular segmentation method.

In the following, we will first present the details of RCA and
then evaluate its applicability to a multi-organ segmentation
task by exploring the prediction quality of different seg-
mentation metrics for different combinations of segmentation
methods and RCA classifiers. Our results indicate that, at least
to some extent, it is indeed possible to predict the performance
level of a segmentation method on each individual case, in the
absence of ground truth. Thus, RCA is ideal for integration
into automatic processing pipelines in clinical routine and as
part of large-scale image analysis studies.

II. REVERSE CLASSIFICATION ACCURACY

The RCA framework is based on the idea of training
reverse classifiers on individual images utilizing their pre-
dicted segmentation as pseudo GT. An overview of the RCA
framework is shown in Fig. 1. In this work, we employ
three different methods for realizing the RCA classifier and
evaluate each in different combinations with three state-of-the-
art image segmentation methods. Details about the different
RCA classifiers are provided in the following.

A. Learning Reverse Classifiers
Given an image I and its predicted segmentation SI , we aim

to learn a function f I,SI (x) : R
n �→ C that acts as a

classifier by mapping feature vectors x ∈ R
n extracted for

individual image points to class labels c ∈ C . In theory,
any classification approach could be utilized within the RCA
framework for learning the function f I,SI . We experiment
with three different methods reflecting state-of-the-art machine
learning approaches for voxel-wise classification and atlas-
based label propagation.

a) Atlas forests: The first approach we consider for learn-
ing a RCA classifier is based on the recently introduced
concept of Atlas Forests (AFs) [36] which demonstrates the
feasibility of using Random Forests (RFs) [37] to encode
individual atlases, i.e., images with corresponding segmen-
tations. Random Forests have become popular for general
image segmentation tasks as they naturally handle multi-class
problems and are computationally efficient. Since they operate
as voxel-wise classifiers, they do not (necessarily) require
pre-registration of the images neither at training nor testing
time. Although in [36] spatial priors have been incorporated
by means of registering location probability maps to each
atlas and new image, this is not a general requirement for

Fig. 1. Overview of the general framework for reverse classification
accuracy. The accuracy of the predicted segmentation SI of a new image
I is estimated via a RCA classifier trained using SI as pseudo ground
truth, and applied to a set of reference images Jk for which ground
truth reference segmentations SGT

Jk
are available. The best segmentation

score computed on the reference images is used as prediction of the
real accuracy of segmentation SI.

using AFs to encode atlases. In fact, the way we employ
AFs within our RCA framework does not require any image
registration. The forest-based RCA classifiers in this work
are trained all with the same set of parameters of maximum
depth 30 and 50 trees. As we follow a very standard approach
for RFs, we refer to [36] and [38] for more details. Worth
to note that, similar to previous work, we employ simple
box features which can be efficiently evaluated using integral
images. This has the advantage that feature responses do not
need to be precomputed. Instead, we randomly generate a
large pool of potential features (typically around 10,000) by
drawing randomly values for the feature parameters such as
box sizes and offsets from predefined ranges. At each split
node we then evaluate on-the-fly a few hundred box features
with a brute force search for optimal thresholds over the range
of feature responses to greedily find the most discriminative
feature/threshold pair. This strategy has proven successful in
a number of works using RFs for various tasks.

b) Deep learning: We also experiment with convolutional
neural networks (CNNs) as RCA classifiers. Here, we uti-
lize DeepMedic,2 a 3D CNN architecture for automatic
segmentation [39]. The architecture is computationally

2Code available at https://github.com/Kamnitsask/deepmedic
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efficient as it can handle large image context by using a
dual pathway for multi-scale processing. CNNs have been
shown to be able to learn highly complex and discriminative
data associations between input data and target output. The
architecture of the network is defined by the number of layers
and the number of activation functions in each layer. In CNNs,
each activation function corresponds to a learned convolutional
filter, and each filter produces a feature map (FM) by convolv-
ing the outputs of the previous layer. Through the sequential
application of many convolutions, highly complex features are
learned that are then used to produce voxel-wise predictions
at the final, fully-connected layer. CNNs are a type of deep
learning approach which normally requires large amounts of
training data in order to perform well due to the thousands
(or millions) of parameters corresponding to the weights of
the filters. To be able to act as a RCA classifier that is trained
on a single image, we require a specialised architecture. Here,
we reduce the number of FMs in each layer by one third
compared to the default setting of DeepMedic. We also cut
the feature maps in the last fully connected layers, from
150 to 45. By reducing the feature maps without changing
the architecture in terms of number of layers the network
preserves its capability to see large image context as the size
of the receptive field remains unchanged. With less number of
filters, the number of parameters is substantially decreased,
which leads to faster computations, but more importantly,
reduces overfitting when trained on a single image. Training
is performed in a patch-wise manner where the original input
image is devided into 3D patches that are then sampled during
training using backpropagation and batch normalization. For
details about the training procedure and further analysis of
DeepMedic we refer to [39].

c) Atlas-based label propagation: The third approach we
consider is atlas-based label propagation. Label propagation
using multiple atlases have been shown to yield state-of-the-
art results on many segmentation problems [2]. A common
procedure in multi-atlas methods is to use non-rigid registra-
tion to align the atlases with the image to be segmented and
then perform label fusion strategies to obtain predictions for
each image point. Although, multi-atlas methods based on reg-
istration are not strictly voxel-wise classifiers as they operate
on the whole image during registration, the final stage of label
fusion can be considered as a voxel-wise classification step.
Here, we make use of an approach that has been originally
developed in the context of segmentation of cardiac MRI [40].3

For the purpose of RCA, however, there is only a single atlas
and thus no label fusion is required. Using single atlas label
propagation then boils down to making use of an efficient
non-rigid registration technique as the one described in [40].
For RCA, the single atlas then corresponds to the image and
its predicted segmentation for which we want to estimate the
segmentation quality. We use the same configuration for image
registration as in [40] and refer to this work for further details.

B. Predicting Segmentation Accuracy
For the purpose of assessing the quality of an individual

segmentation, we train a RCA classifier fI,SI on a single image

3Code available at https://github.com/baiwenjia/CIMAS

I that has been segmented by any segmentation method, where
SI denotes the predicted segmentation that here acts as pseudo
GT during classifier training. Our objective is to estimate the
quality of SI in the absence of GT. To this end, we define the
segmentation function FI,SI (J ) = SJ that applies the trained
RCA classifier f I,SI to all voxels (or more precisely to the
features extracted at each voxel) of another image J which
produces a segmentation SJ . Assuming that for the image
J a reference GT segmentation SGT

J is available, we can
now compute any segmentation evaluation metric on the pair
(SJ , SGT

J ). The underlying hypothesis in our RCA framework
is that there is a correlation between the values computed on
(SJ , SGT

J ) and the values one would get for the pair (SI , SGT
I ),

where SGT
I is the reference GT of image I which in practice,

however, is unavailable.
It is unlikely that this assumption of correlation holds for an

arbitrary reference image J . In fact, the RCA classifier f I,SI

is assumed to work best on images that are somewhat similar
to I . Therefore, we further assume that a suitable reference
database is available that contains multiple segmented images
(or atlases) T = {(Jk, SGT

Jk
)}m

k=1 that capture the expected
variability. Such a database is commonly available in the
context of machine learning and multi-atlas based segmen-
tation approaches, but could also be generated specifically
for the purpose of RCA. If already available, we can re-use
existing training databases that might have been previously
used during method development and/or cross-validation and
parameter tuning. When testing the RCA classifier on all of
the available m reference images, we expect that the RCA
classifier performs well on at least some of these, if and only
if the predicted segmentation SI is of good quality. If SI is of
bad quality, we expect the RCA classifier to perform poorly
on all reference images. This leads to our definition of a proxy
measure for predicting the segmentation accuracy as

ρ̄(SI ) = max
1≤k≤m

ρ(FI,SI (Jk), SGT
Jk

), (1)

where ρ is any evaluation metric, such as DSC, assuming
higher values correspond to higher quality segmentations.4

Here, we only look for the maximum value that is found across
all reference images, as this seems to be a good indicator of
the quality of the segmentation SI . Other statistics could be
considered, such as the average of the top three scores, but we
found that the maximum score works best as a proxy. Note,
that the mean or median scores are not very useful measures
as we do not expect the RCA classifier to work well on the
majority of the reference images. Afterall, the RCA classifier
does overfit to the single image and will not generalize to
perform well on dissimilar images. Nonetheless, as we will
demonstrate in the experiments, ρ̄ indeed provides accurate
estimates for the segmentation quality in a wide range settings

C. Summary

The following provides a summary of the required steps for
using RCA in practice within a processing pipeline for auto-
matic image segmentation. Given an image I to be segmented:

4For metrics where a lower value indicates better quality, such as surface
distance, we can simply replace the max with a min operator.
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1) Run the automated image segmentation method to obtain
predicted segmentation SI .

2) Train a RCA classifier on image I and its predicted
segmentation SI to obtain an image segmenter FI,SI .

3) Evaluate the RCA classifier on a reference database with
images for which GT is available T = {(Jk, SGT

Jk
)}m

k=1
to obtain segmentations ∀k F,SI (Jk) = SJk .

4) Compute the segmentation quality of SI using a proxy
measure ρ̄(SI ) according to Eq. (1).

Depending on the application, a threshold may be defined on
ρ̄ to flag up images with poor segmentation quality that need
manual inspection, or to automatically identify high quality
segmentations suitable for further analysis.

III. EXPERIMENTAL VALIDATION

In order to test the effectiveness of the RCA framework,
we explore a comprehensive multi-organ segmentation task
on whole-body MRI. In this application, we evaluate the
prediction accuracy of RCA in the context of three differ-
ent state-of-the-art segmentation methods, a Random Forest
approach [4], a deep learning approach using 3D CNNs [39],
and a probabilistic multi-atlas label propagation approach [40].
The dataset used to validate our framework is from our
MALIBO (MAchine Learning In whole Body Oncology)
study. We collected whole-body, multi-sequence MRI
(T1w Dixon and T2w images) of 35 healthy volunteers.
Detailed manual segmentations of 15 anatomical structures,
including abdominal organs (heart, left/right lung, liver,
adrenal gland, gall bladder, left/right kidney, spleen, pancreas,
bladder) and bones (spine, left/right clavicle, pelvis) have been
generated by clinical experts as part of the study. These manual
segmentations will serve as GT in the quantitative evaluation.

A. Experimental Setting

We use 3-fold cross validation to automatically segment
all 525 structures (15 organs × 35 subjects) with each of
the three different segmentation methods, namely Random
Forests, CNNs, and Multi-Atlas. In each fold, we use the
RCA framework with three different methods for realizing the
RCA classifier, namely Atlas Forests, constrained CNNs, and
Single-Atlas, as described above. Using the RCA classifiers
that are trained on each image for which we want to assess
segmentation quality, we obtain segmentations on all reference
images which are then compared to their manual reference GT.
Since the GT is available for all 35 cases, we can compare
the predicted versus the real segmentation accuracy for all
cases and all organs under various settings with nine different
combinations of segmentation methods and RCA classifiers.

B. Quantifying Prediction Accuracy

The Dice’s similarity coefficient is the most widely used
measure for evaluating segmentation performance,5 and in our
main results we focus on evaluating how well DSC can be
predicted using our RCA framework. In order to quantify
prediction accuracy, we consider three different measures,

5Despite some well known shortcomings of DSC as discussed in [11].

namely the correlation between predicted and real DSC, the
mean absolute error (MAE), and a classification accuracy.
Arguably, the most important measure for direct evaluation
of how well RCA works is the MAE, as it directly tells us
how close the predicted DSC is to the real one. Correlation is
interesting, as it tells us something about the relation between
predicted and real scores. We expect high correlation in order
for RCA to be useful, but we might not always have an
identity relation, as there could be a bias in the predictions.
For example, if the predicted score is consistently lower than
the real score, this can still be useful in practice, and will be
indicated by high correlation but might not yield low MAEs.
In such a case, a calibration might be considered as we will
discuss later on. We also explore whether the predictions
can be used to categorize segmentations according to their
quality. We argue that for many clinical applications it is
already of great value to be able to discriminate between good,
bad, and possibly medium quality segmentations and that
the absolute segmentation scores are of less importance. For
proof-of-principle, we consider a three-category classification
by grouping segmentations within DSC ranges [0.0, 0.6) for
‘bad’, [0.6, 0.8) for ‘medium’, and [0.8, 1.0] for ‘good’ cases.
Note, that those ranges are somewhat arbitrary, in particular,
as the quality of absolute DSC values is highly depending on
the structure of interest. So in practice, those ranges would
need to be adjusted specifically to the application at hand.

C. Results for Predicting Dice’s Similarity Coefficients

Our main results are summarized in Tab. I where we report
the quantitative analysis of the predicted accuracy for nine
different settings consisting of three different segmentation
methods and three different ways of realizing the RCA clas-
sifier. In Fig. 2 we provide the scatter plots of real versus
predicted DSC for all nine settings with 525 data points each.

Overall, we observe high correlation between predicted and
real DSC for both Atlas Forests and Single-Atlas when used
as RCA classifiers, with the Single-Atlas showing correlations
above 0.95 for all three segmentation methods. The Single-
Atlas approach also yields the lowest MAEs between 0.05 and
0.07, and good 3-category classification accuracies between
81% and 89%. This is visually confirmed by the scatter
plots in the right column of Fig. 2 which show good linear
relation close to the diagonal between predicted and real scores
for most structures in the case where Random Forests or
Multi-Atlas are used as the original segmentation method.
When using Atlas Forests for RCA, we still observe good
correlation but the relationship between predicted and real
scores is off-diagonal with larger spread towards lower quality
segmentation. The correlation is still good and above 0.82,
MAEs are between 0.12 and 0.17 with classification accuracy
going down to 0.62%, 0.75% and 0.78% depending on the
original segmentation method. For the case of the constrained
CNNs, we observe that the prediction quality is lowest con-
firmed by the scatter plots and all quantitative measures, with
correlations below 0.78 and MAEs above 0.2. The constrained
CNNs seem to only work for predicting segmentation accuracy
in case of major organs such as liver, lungs, and the spine but
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TABLE I
PREDICTING DSC FOR DIFFERENT SEGMENTATION METHODS USING DIFFERENT RCA CLASSIFIERS. BEST RESULTS

ARE OBTAINED WITH THE SINGLE-ATLAS APPROACH YIELDING THE LOWEST ERROR BETWEEN REAL AND

PREDICTED DSC SCORES AND HIGH CLASSIFICATION ACCURACY

Fig. 2. Scatter plots of predicted and real DSC of multiple structures for three different segmentation methods (rows) using three different RCA
classifiers (columns). High correlation and low prediction errors are obtained when employing the single-atlas label propagation as RCA classifier
(right column). There is also good correlation with predictions in case of Atlas Forests (left) with larger spread towards lower quality segmentations.
The constrained CNNs (middle column) are less suitable for RCA which is likely due to the difficulty of training on single images. Both, Atlas Forests
and constrained CNNs work best for larger organs such as liver, lungs, and pelvis while leading to many zero predictions for smaller structures
such as adrenal gland and clavicles. The single-atlas label propagation makes accurate predictions of segmentation quality across all 15 anatomical
structures. A summary of the plots is given in Tab. I.

clearly struggle with smaller structures leading to many zero
predictions even when the real DSC is rather high. This is
most likely caused by the difficulty of training the CNNs with
single images and small structures which does not provide
sufficient amounts of training data.

Figure 3 shows an example for predicting the accuracy of a
liver segmentation. Next to a slice from a T2w MRI volume
we show the GT manual segmentation together with the result

from a Random Forest. Underneath, we show the 24 seg-
mentations obtained on the reference database when using the
Single-Atlas RCA approach. The bar plot in the same figure
shows the variation of the 24 DSC scores. Similarly, the bar
plots in Fig. 4 of two more examples illustrate the distribution
of DSC scores when predicting a good quality segmentation on
the left, and a poor quality segmentation on the right. The three
examples support the hypothesis that selecting the maximum
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Fig. 3. Visual examples for predicting the segmentation quality of the liver for a new image shown on the top. Its GT segmentation (red colored) is
unknown in practice, and we want to estimate the quality of the predicted, automatic segmentation shown on the most right (green colored). By taking
the predicted segmentation as pseudo GT and training a RCA classifier we can obtain segmentations on a reference database with 24 images with
available GT. The bar plot shows the real DSC in red and the different DSC values obtained for the reference images shown below. The green bar
corresponds to the maximum DSC, and is selected as predicted DSC for the new image according to Eq. (1) which matches well the real DSC.

score across the reference database according to Eq. (1) is a
good proxy for predicting segmentation quality.

Some of the original segmentation methods have problems
segmenting structures such as the adrenal gland and clavicles.
The CNNs, in particular, failed to segment adrenal glands in
most cases. Because the real DSC for these is zero with no
voxels labelled in the segmentation map, the RCA predictions
are always correct as there are no labels for the RCA classifier
for this structure. In order to investigate the effect of those
zero predictions on the quantitative results, we also report
in Tab. I under the columns ‘No Zeros’ the correlations,
MAEs and classification accuracies when structures with a real
DSC of zero are excluded. We observe that the zero predictions

have mostly an impact on CNNs, either employed as original
segmentation method or as RCA classifier. For Atlas Forests
and Single-Atlas the effect on the accuracies is very little,
confirming that those both are well suited within the RCA
framework, independent of the original segmentation method.

D. Detecting Segmentation Failure

In clinical routine it is of great importance to be able
to detect when an automated method fails. We conducted
a dedicated experiment to investigate how well RCA can
predict segmentation failure. From the scatter plots in Fig. 2
we can see that all three segmentation methods perform



1604 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 8, AUGUST 2017

Fig. 4. The bar plots show two examples for predicting the real DSC (red) in case of a good quality (left) and bad quality segmentation (right) using
a database with 24 reference images with available GT. The predicted DSC (green bar) selected according to Eq. (1) matches well the real DSC.

TABLE II
DETECTING SEGMENTATION FAILURE

reasonably well on most major organs with no failure cases
among structures such as liver, heart, and lungs. In order to
further demonstrate that RCA can predict failure cases in these
structures, we utilize degraded Random Forests by limiting
the tree depth at test time to 8. This leads to much worse
segmentation results for most structures which is confirmed
in the corresponding scatter plots shown in Fig. 5. Again, we
evaluate the performance of the three different RCA classifiers,
Atlas Forests, constrained CNNs and Single-Atlas. The results
are summarized in Tab. II. The constrained CNNs are again
suffering from many zero predictions and less suitable for
making accurate predictions. Atlas Forests and Single-Atlas,
however, result in high correlations, low MAEs and very good
classification accuracies. Low real DSC scores are correctly
predicted and failed segmentations are identified. The only
exception here is the bladder. This might be explained by the
unique appearance of the bladder in the multi-spectral MRI
with hyper-intensities in the T2w image, and its largely varying
shape between subjects. It appears that even a badly segmented
bladder can be sufficient for the RCA classifier to learn its
appearance and segment the bladder well on at least one of
the reference images. Overall, the experiment suggests that
RCA with Atlas Forests and Single-Atlas can be employed in
automatic quality control, for example, in large-scale studies
where it is important to be able to detect failed segmentations
which should be excluded from subsequent analyses.

E. Results for Predicting Different Segmentation Metrics

We further explore the ability to predict other evalua-
tion metrics than DSC. We consider the following metrics:
Jaccard index (JI), precision (PR), recall (RE), average surface
distance (ASD), Hausdorff distance (HD) and relative volume
difference (RVD). For this experiment, we use Random Forests
as segmentation method, and Atlas Forests for RCA. The
results are summarized in Tab. III.

Good correlation is obtained between predicted and real
overlap based scores, with low MAEs, and high accuracies.
Since Jaccard is directly related to DSC,6 it is expected that

6 J I = DSC/(2 − DSC).

TABLE III
PREDICTING DIFFERENT SEGMENTATION METRICS

the predictions are of similar quality. Prediction accuracy for
precision is lower than for recall. The two metrics capture
different parts of segmentation error; under-segmentation is not
reflected in precision, while over-segmentation is not captured
in recall.7 Distance based errors are unbounded, so we define
thresholds for HD and ASD, and errors above are clipped to
the threshold value, which is set to 150mm for HD, and 10mm
for ASD. This also allows us to define ranges for the error cat-
egorization. For HD, we use the ranges [0, 10], (10, 60], and
(60, 150] for good, medium and bad quality segmentations.
For ASD we divide the range into [0, 2] for good, (2, 5] for
medium, and (5, 10] for bad segmentation quality. Compared
to overlap based metrics, the RCA predictions for HD and
ASD are not convincing with low correlation, high MAE, and
low classification accuracy. RVD is the ratio of the absolute
difference between the reference and predicted segmentation
volume and the reference volume. Perfect segmentation will
result in a value of zero. As RVD is also unbounded, we use
a threshold of one to indicate maximum error. The predictions
for RVD are good, with high classification accuracy of 0.68%,
similar to the overlap based scores. In conclusion, it seems
RCA works very well for overlap based measures and for
RVD to some extent, while distance based metrics cannot be
accurately predicted with the current setting and would require
further investigation.

IV. DISCUSSION AND CONCLUSION

The experimental validation of the RCA framework has
shown that it is indeed possible to accurately predict the
quality of segmentations in the absence of GT, with some
limitations. We have explored different methods for realising
the RCA classifier and could demonstrate that Atlas Forests
and in particular, Single-Atlas label propagation yield accurate
predictions for different segmentation methods. As the RCA

7 DSC = 2 · P R · R E/(P R + R E).
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Fig. 5. Scatter plots for the experiment for detecting segmentation failure when using degraded Random Forests with limited depth as the
segmentation method. Atlas Forests (left) and single-atlas label propagation (right) make highly accurate predictions in the low DSC ranges and
thus, are able to correctly detect such failed segmentations, with the exception of the bladder. Constrained CNNs are again less suitable for RCA
with many zero predictions.

TABLE IV
COMPARISON OF PREDICTING DSC WITH AND WITHOUT CALIBRATION VIA REGRESSION

framework is generic, other methods can be considered and
it might be necessary to select the most appropriate one for
the application at hand. We have also experimented with a
constrained CNN trained on single images, which only works
well for major organs such as liver, lungs and spine. There
might be other more appropriate architectures for the purpose
of RCA, which will be explored as part of future work.

An appealing property of the proposed framework is that
unlike the supervised methods in [31] and [33] no training
data is required that captures examples of good and bad
segmentations. Instead, in RCA we simply rely on the avail-
ability of a reference database with available GT segmen-
tations. The drawback, however, is that we assume a linear
relationship between predicted and real scores which should
be close to an identity mapping, something we only found
in the case of using Single-Atlas label propagation (cf. right
column of Fig. 2). In the case of off-diagonal correlation,
as for example found for Atlas Forests, an extension to RCA
could be considered where the predictions are calibrated.
This, however, requires training data from which a regres-
sion function could be learned, similar to [31]. In order to
demonstrate the potential of such an approach, we perform
a simple experiment on the data that we used for conduct-
ing the main evaluation. After obtaining all predicted DSC
scores, we run a leave-one-subject-out validation where in
each fold we use Random Forest regression to calibrate the
predictions. The results are summarized in Tab. IV where we
compare the quantitative measures before and after calibration.
Both the MAEs and classification accuracies improve signif-
icantly for the case of Atlas Forests and constrained CNNs.

For Single-Atlas, however, the results remain similar due to
the already close to identity relationship between predicted
and real scores before calibration. Calibration, however, comes
with a risk of overfitting as the method will learn the relation-
ship on the available training data but might not generalize to
new data.

In our experiments we have found that best predictions
are obtained for overlap based measures such as DSC and
Jaccard Index. Whether those measures are sufficient to fully
capture segmentation quality is debatable. Still, DSC is the
most widely considered measure and being able to accurately
predict DSC in the absence of GT has high practical value.
Besides being useful for clinical applications where the goal
is to identify failed segmentations after deployment of a
segmentation method, we see an important application of
RCA in large-scale imaging studies and analyses. In settings
where thousands of images are automatically processed for the
purpose of deriving population statistics, it is not feasible to
employ manual quality control with visually inspection of the
segmentation results. Here, RCA can be an effective tool to
automatically extract the subset of high quality segmentations
which can be used for subsequent analysis. We are currently
exploring this in the context of population imaging on the UK
Biobank imaging data where image data of more than 10,000
subjects is available which will be subsequently increased to
100,000 over the next couple of years. The UK Biobank data
will enable the discovery of imaging biomarkers that correlate
with non-imaging information such as lifestyle, demographics,
and medical records. In the context of such large scale
analysis, automatic quality control is a necessity and we
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believe the RCA framework makes an important contribution
in this emerging area of biomedical research. In future work,
we will further explore the use of RCA for other image analy-
sis and segmentation tasks. To facilitate the wide application
of RCA and use by other researchers, the implementations
of all employed methods are made publicly available on the
website of the Biomedical Image Analysis group.8
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