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MAVEN: An Algorithm for Multi-Parametric
Automated Segmentation of Brain Veins

From Gradient Echo Acquisitions
Serena Monti,∗ Sirio Cocozza, Pasquale Borrelli, Sina Straub, Mark E. Ladd, Marco Salvatore,

Enrico Tedeschi, and Giuseppe Palma

Abstract— Cerebral vein analysis provides a chance
to study, from an unusual viewpoint, an entire class of
brain diseases, including neurodegenerative disorders and
traumatic brain injuries. Manual segmentation approaches
can be used to assess vascular anatomy, but they are
observer-dependent and time-consuming; therefore, auto-
mated approaches are desirable, as they also improve repro-
ducibility. In this paper, a new, fully automated algorithm,
based on structural, morphological, and relaxometric infor-
mation, is proposed to segment the entire cerebral venous
system from MR images. The algorithm for multi-parametric
automated segmentation of brain VEiNs (MAVEN) is based
on a combined investigationof multi-parametric information
that allows for rejection of false positives and detection of
thin vessels. The method is tested on gradient echo brain
data sets acquired at 1.5, 3, and 7 T. It is compared to
previous methods against manual segmentation, and its
inter-scan reproducibility is assessed. The achieved accu-
racy and reproducibility are good, meaning that MAVEN
outperforms previous methods on both quantitative and
qualitative analyses. It is usable at all the field strengths
explored, showing comparable accuracy scores, with no
need for algorithm parameter adjustments, and thus, it is a
promising candidate for the characterization of the venous
tree topology.

Index Terms— Brain veins, vesselness, segmentation,
MRI.

I. INTRODUCTION

THE intracranial venous tree can be proficiently visualized
by Susceptibility Weighted Imaging (SWI) [1]. This

technique allows for the depiction of the anatomy of deep
cerebral veins and their abnormalities, which occur in different
brain pathologies, such as isolated cortical vein thrombosis [2]
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and acute brain injury [3], or may be a feature of different
neurological conditions [4], ranging from neuroinflammatory
diseases [5], [6] to idiopathic intracranial hypertension [7].
Assessing vascular anatomy is then crucial, since accurate
segmentation and extraction of the cerebral venous system
may help quantitative clinical research, as demonstrated in
diseases primarily affecting the venous system [8], [9], but
also in pathologies (such as Alzheimer’s disease [10], normal
pressure hydrocephalus [11], leukoaraiosis [12], [13], multiple
sclerosis [14]–[16], traumatic brain injury [17], and perinatal
encephalopathy [18]) in which deep brain veins are secon-
darily involved and may thus represent an index of patho-
physiologic alterations. Moreover, accurate vessel tracking is
obviously important in clinical situations where deep brain
percutaneous intervention is planned [19].

Unfortunately, manual segmentation of the vascular tree
is not possible in reasonable times: a whole brain time-of-
flight Magnetic Resonance (MR) angiography can take up to
8 weeks to be segmented manually [20]. Such a task is even
more daunting and time-consuming in a denser SWI dataset,
also due to the narrowness of the structures and the complexity
of the patterns to be tracked both in-plane and through-plane.
Hence, semi-automated or automated approaches are actively
sought, as they also improve the reproducibility of the results.

Several automated or semi-automated methods for vessel
segmentation are described in the literature [21]. They can
be divided into scale-space analysis, statistical methods and
deformable models. Currently, the segmentation approaches
most often and successfully applied to SWI are based on
scale-space analysis [22]–[24] or statistical models [17], [25].
Each of them has its own limitations and is prone to detect
false positives or to under-segment some structures [25].
In this context, combinations of scale-space approaches with
statistical methods [26], [27] or deformable models [28]–[30]
have been proposed, but, mainly due to the high variability
of the susceptibility weighting at different magnetic field
strengths (B0), they have only been assessed at a fixed B0
value. However, a feasibility study on a wider range of field
strengths could be beneficial [30]. Another common drawback
of these methods is that, according to the targeted application,
they are usually more robust in some brain regions than in
others.

This work presents an algorithm for Multi-parametric Auto-
mated VEiN segmentation (MAVEN) that is, to the best of
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our knowledge, the first fully automated segmentation tool
of the entire cerebral venous system implementing at once
several independent criteria (structural, morphological and
relaxometric information) of vein characterization to enhance
classification accuracy [31]. The aim of this study is to obtain
a method usable on a wide spectrum of B0 and capable of
providing highly reproducible segmentation results.

In the following, we present the description of the developed
algorithm (§II) and the experimental methodology to validate
MAVEN performance (§III). After the analysis of segmenta-
tion results (§IV), the findings of this work are discussed and
conclusions are drawn (§V).

II. METHODS

The segmentation of cerebral veins is a labeling problem
whose objective is to obtain a logical vein mask S classifying
each voxel �x as belonging (S(�x) = True) or not (S(�x) = False)
to a vein, on the basis of some hypotheses about vessel/other-
tissue statistical distribution in the observed data.

Our method exploits three different sources of information
to devise as many independent criteria of vein characterization:

• structural information, carried by SWI;
• morphological information, described by Vesselness

maps V (i.e. a measure of the probability that the signal
in the neighborhood of a given point is compatible with
a vessel-like structure; it is computed by the Vessel
Enhancing Diffusion filter from SWI and Quantitative
Susceptibility Mapping – QSM – [17] as in Appendix A);

• relaxometric information, contained in R∗
2-maps

(see Appendix B for details).

In this multi-parametric approach, vein voxels are character-
ized by hypo-intensity in SWI and have high Vesselness and
R∗

2 values compared to other tissues.
MAVEN represents a largely rethought version of the statis-

tical method described in [17], originally meant to be applied
only on the SWI images.

A sketch of the algorithm flowchart is shown in Fig. 1, and
the rationale behind it is briefly described below.

An excellent starting point is represented by a global thresh-
olding on a combination of the Vesselness maps derived from
the SWI and QSM: the former provides a good sensitivity to
small vessels, while the latter correctly handles the contrast of
large veins that are usually washed out in SWI. A useful expe-
dient to make the Vesselness function less sensitive to tubular-
like artifacts due to non-local field inhomogeneities consists
in a preliminary regularization according to the estimated
local field gradient. This step, however, excludes the tiniest
veins, which are broadened and whose Vesselness values are
typically lowered by the diffusion steps to the same order
of magnitude of CSF-filled sulci (which are hypo-intense in
SWI due to their low R1 value). Therefore, it is necessary to
refine the vein mask by adding voxels that satisfy a condition
based on a lower threshold applied on SWI-Vesselness, prop-
erly combined with two further thresholds on SWI and R∗

2 .
The former is aimed to enforce vessel extension within the
actual anatomical details, the latter to properly exclude CSF
structures that match Vesselness- and SWI-based criteria.

Fig. 1. Schematic flowchart of the MAVEN algorithm. From a double-
echo gradient echo acquisition, a pair of 3D magnitude Im,i and phase φi
images is obtained at each echo time TE,i, i ∈ {1, 2}. They are used
to compute QSM, SWI, R∗2-map (Appendix V) and a B0 regularization
function (§II-A). The regularized Vesselness functions (Appendix V) from
QSM and SWI are used to obtain an initial condition S0 (§II-B). Then,
the current estimate of the asymptotic vein mask is iteratively computed
by the moving window filter that uses as input SWI, Vesselness from SWI,
R∗2-maps and the estimate from the previous step (§II-C). When the exit
condition is met, a cardinality thresholding is applied to obtain the final
MAVEN segmentation.

This combined condition is better applied on a local moving
window, since at least one of the involved contrasts (namely,
the SWI) depends on the coil sensitivity, which usually shows
long wavelength oscillations that may invalidate the results
of a global thresholding. In this process, the thresholds are
based on the statistical moments of the three maps computed
in the moving window. Therefore, the exclusion of voxels
previously marked as vein in the computation of mean and
standard deviation may allow an iterative approach to identify
also small vessels, which typically have less marked contrast
due to partial volume effect. In addition, once the risk of
having a local signal distribution skewed by the presence of a
large vessel has been prevented, a smaller moving window can
be used in the next steps of the iteration, in order to enhance
the sensitivity to local information.

In the following, a solution to the problem of regularizing
the Vesselness in regions of highly inhomogeneous B0 field
is proposed (§II-A), and a detailed description of the setup
of MAVEN initial condition (§II-B) and subsequent itera-
tions (§II-C) is provided.

A. Vesselness Regularization

Regions with severe non-local field inhomo-
geneities (SNLFI), such as the temporo-basal regions (above
the roofs of the petrous bones), the fronto-basal region on
the midline (i.e. near the air/bone interface of the skull base)
and the interhemispheric fissure, are troublesome for the
segmentation algorithm. Indeed, an imperfect shim or high
susceptibility contrast aside these peripheral parenchyma
regions induce SNLFI that cause both unwanted gradients
in phase images and intra-voxel decay of isochromat
coherence (i.e. signal loss) in magnitude images. Therefore,
a considerable amount of parenchyma voxels may resemble
vein signal intensity in SWI, Vesselness and R∗

2 maps.
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Consequently, the algorithm needs to be tuned up in order to
be more selective in the regions of field inhomogeneities not
related to parenchyma properties. This goal is accomplished
by regularizing overestimated Vesselness maps V with a
function that takes into account the spatial variation of the
magnetic field as estimated from the phase images, so that
vessel-like artifacts are appropriately damped.

In order to assess the SNLFI, the associated residual phase
variation (RPV) is first computed as:

RPV(�x) = (
φ(�x) − φχ(�x)

) · Mb, (1)

where Mb is a binary brain mask [32], φ(�x) is the unwrapped
phase [33], and φχ(�x) is the tissue phase computed by the
SHARP filter [34], which exploits the harmonicity of static
magnetic fields within homogeneous media:

φχ(�x) = SHARP
[
φ(�x)

]
. (2)

Then, a measure of the SNLFI is provided by the local field
gradient (LFG), computed according to:

LFG(�x) =
∣
∣
∣ �∇RPV(�x)

∣
∣
∣. (3)

In the resulting LFG, which is obtained by a differential oper-
ator (namely, the gradient), some heavy border artifacts are
present at the edge of the brain mask, due to the purely noisy
phase (almost evenly distributed between 0 and 2π) returned
by the scanner in the signal vacuum between arachnoid and
dura mater and inner skull table. To get rid of the apparent
SNLFI that would follow, if an arbitrary spherical structuring
element Br [�x] is defined as

Br [�x](�y) = ‖�y − �x‖ < r, (4)

an erosion of the brain mask is obtained via a spherical
structuring element Bre [0] centered in 0, with radius re ≈
4 mm (a safe scale for complete removal of the residual extra-
brain space in Mb):

Mb,e = Mb � Bre[0]. (5)

Then, a regularized LFGr is computed as

LFGr(�x) =
{

μMb,e∩Brd [�x] (LFG) if �x ∈ Mb,e ⊕ Brd[0];
+∞ otherwise,

(6)

where rd ≈ 3
2re is the dilation radius of Mb,e chosen to

ensure that possible brain regions removed in Mb,e will receive
a proper regularization of the Vesselness function, and the
functional μMb,e∩Brd [�x], defined for any given set A as

μA( f ) = mean ({ f (�y) |�y ∈ A }), (7)

guarantees a smooth behavior of LFGr based solely on LFG
estimated in regions certainly belonging to the brain.

Finally, the regularization function is computed as a
Fermi-Dirac distribution:

reg(�x) = 1

1 + exp
[

LFGr(�x)−μME (LFGr)

σME (LFGr)

] , (8)

where ME = Mb � Br1[0] and

σA( f ) = SD ({ f (�y) |�y ∈ A }). (9)

A choice of r1 ≈ 20 mm allows for the erosion of the most
troublesome areas, still saving enough inner brain volume to
properly estimate the moments of field gradients in regular
regions.

The regularized Vesselness function is then computed as:
Vr(�x) = V (�x) · reg(�x). (10)

Vr is similar to V in regions with relatively homogeneous field,
while it is reduced to nearly 0 in regions with a large LFGr.

B. Initial Condition

The initial condition (S0) of MAVEN is designed in order
to include large veins that may elude the local moment criteria
used in the successive iterations of the algorithm (see §II-C).

Large vessels, i.e. vessels whose caliber is much greater
than voxel size (such as – for most acquisitions – sagittal,
transverse and straight sinuses, and – for high-resolution
dataset – veins responsible for the drainage of both cortical
and deep gray matter), have some peculiarities. Due to their
size, although their magnetic susceptibility is different from
their surroundings, they are characterized by a lower signal
loss in SWI, because only voxels close to the vessel wall
experience field inhomogeneities, resulting in the so-called
ring effect [17]. As long as most internal blood voxels are
considered, the fading of non-local interference from boundary
voxels preserves the intravoxel phase coherence of isochro-
mats, thus reducing the R∗

2 signal loss; moreover, the higher
speed of blood flow induces an apparent hyper-intensity due to
the Time-of-Flight effect. As a result, in gradient echo (GRE)
magnitude and SWI images, large veins may easily show a
behavior that is typical of parenchyma tissues, thus eluding the
segmentation criteria based on the assumption of vein hypo-
intensity in SWI and high R∗

2 values.
In contrast to SWI, QSM is less sensitive to smaller veins,

because it is a local quantity computed by a global opera-
tor (which needs to be regularized with an unavoidable loss
of spatial detail) and because of the lack of blooming effect.
Conversely, it directly expresses the mean susceptibility of
each voxel, and, by construction, it does not suffer from SWI
and R∗

2 limitations within large veins.
In order to obtain a good initial condition S0 for the initial-

ization of our algorithm, an approach combining Vesselness
information from SWI and QSM is adopted. A modified
version of QSM, QSMm, is computed to enhance vessel
contrast relatively to other brain tissues and to reduce the
influence of hyper-intense basal ganglia (BG) interface in the
computation of the Vesselness map from QSM. In this respect,
an initial BG mask is obtained as a global thresholding on
QSM to detect substantially paramagnetic areas, according to:
BG1(�x) = QSM(�x) > μMb (QSM) + 1.5 · σMb (QSM). (11)

Most likely, several vessels are included within BG1. To get
rid of possible spurious connections between large vessels and
actual BG, a soft erosion is applied to BG1, followed by a
closing to ensure a regular shape of BG:

BG2 = (BG1 � B1 mm[0]) • B2 mm[0]. (12)
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Once vessels have been disconnected from BG, a shape filter
that identifies small or highly elongated structures can be
safely applied to BG2 to remove residual vessel clusters:
for each 26-connected cluster (of volume |�| and boundary
surface |∂�|) the compactness

C = |�| ·
(

6

|∂�|
)3/2

(13)

and the relative anisotropy

RA =
√

1

2

√
(a − b)2 + (b − c)2 + (c − a)2

a + b + c
(14)

(a, b and c being the eigenvalues of the covariance matrix of
the cluster) are computed, and BG2 is purged of clusters with
|�| < 10 mm3 or C < 0.15 or RA > 0.85.

To shave BG contrast from the QSM, an auxiliary q(�x) is
defined as the linear interpolation of QSM on the Delaunay
triangulation of a set of coats designed for each BG2 cluster,
in the outer parenchyma, as

BGshell = (BG2 ⊕ B5 mm[0])\(BG2 ⊕ B2 mm[0]). (15)

The QSMm, specifically designed to lose sensitivity to
tubular diamagnetic structures, is finally given by

QSMm(�x) =
{

QSMBG(�x) if QSMBG(�x) > 0;
0 otherwise,

(16)

with

QSMBG(�x) =
{

q(�x) if �x ∈ BG2 ⊕ B2 mm[0];
QSM(�x) otherwise.

(17)

Then, a regularized Vesselness function Vr,QSM(�x) is computed
from QSMm, using a Vessel Enhancing Diffusion (VED)
filter (see Appendix A), tuned to detect hyper-intense vessels,
i.e. with σ ∈ {i · �σ |1 ≤ i ≤ 3 }, and �σ = 0.5 mm.
Vr,QSM(�x) is then combined with a Vesselness function com-
puted from SWI, Vr,SWI(�x), which detects hypo-intense vessels
using σ ∈ {i · �σ |1 ≤ i ≤ 10 } and �σ = 0.1 mm, according
to

Vr,m(�x) = Vr,QSM(�x) + Vr,SWI(�x)

2
, (18)

to equally weigh the contribution of both maps, further reduc-
ing the effect of possible residual non-vessel structures.

Finally, S0 is computed by an hysteresis thresholding on
Vr,m, Vr,SWI and Vr,QSM. Given two masks:
S0,high(�x) = {[

Vr,SWI(�x) > μMb(Vr,SWI) + 4 · σMb(Vr,SWI)
]

∨ [
Vr,QSM(�x)>μMb(Vr,QSM)+9 · σMb(Vr,QSM)

]}

∧�x ∈ Mb, (19)

modeled to include only voxels that definitely belong to vessel
structures, and

S0,low(�x) = {
Vr,m(�x)>μMb(Vr,m) + 2 · σMb(Vr,m)

} ∧ �x ∈ Mb,

(20)

which includes voxels with a moderately high value in the
mean Vesselness map, the actual S0 mask is provided by
the 26-connected clusters in S0,low that have a non-empty
intersection with S0,high.

C. Iterations

Having defined the initial condition of the recursion in
§II-B, the iterations are provided by the application of a
spherical moving window filter: at the i -th step of the recur-
sion, the window radius ri is given by the i -th term of the
geometric progression with initial value 20 mm and common
ratio 10−1/2:

ri = 20 mm · 10−(i−1)/2. (21)

For each voxel �x , local mean and standard deviation of
SWI, Vesselness and R∗

2 are calculated in the neighborhood,
excluding voxels previously marked as veins. The aim is to
obtain, at each iteration, adaptive thresholds that allow to
identify also small vessels, which, due to partial volume effect,
typically have higher SWI and lower Vesselness and R∗

2 than
large vessels. Each iteration refines the current estimate of
S(�x) according to:

Si (�x) = Si−1(�x) ∨ H (�x), (22)

where

H (�x) = SWI(�x) < μK (�x)(SWI) − 2.5 · σK (�x)(SWI)

∧Vr,SWI(�x) > μK (�x)(Vr,SWI) + σK (�x)(Vr,SWI)

∧R∗
2 (�x) > μK (�x)(R∗

2 )

∧�x ∈ Mb, (23)

with

K (�x) = Bri [�x] ∩ S̄i−1 ∩ Mb. (24)

The thresholds defined in Eq. 23 are closely related to those
proposed in [26], provided that the Vesselness function is
here computed according to a more relaxed scheme (see
Appendix A) and a third condition is added on SWI.

To prevent the algorithm from emulating a kinetic process
leading to the undue detection of parenchyma voxels that fall
in the tails of the iteratively updated distributions (evapora-
tion), an exit condition for the recursion is required, and it is
naturally verified when the radius of the moving window filter
falls below the length of the minimum voxel edge. The result
of the last iteration is further refined by applying an additional
condition on the size of each classified cluster, in order to
reject incorrect classifications due to noise: all the detections of
the vein mask are grouped in clusters of 26-connected voxels,
and the clusters of cardinality lower than 3 voxels are rejected.
This threshold is chosen as a compromise between obtaining a
good noise suppression and avoiding the rejection of true small
vein segments belonging to incompletely tracked vessels.

III. EXPERIMENT

The algorithm was tested at three different field
strengths (1.5 T, 3 T and 7 T) by acquiring, at each B0, a brain
MR dataset in 4 healthy volunteers (a total of 7 males and
5 females, with median age of 29 years) who underwent exam-
ination after providing informed consent, with the approval
of the Institutional Review Board. The acquired sequences
were 3D double-echo spoiled GRE with a flip angle (FA)
slightly higher than the parenchyma Ernst angle [26]. The
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TABLE I
ACQUISITION PARAMETERS AT DIFFERENT B0

voxel size and repetition- (TR) and echo- (TE,i ) times were
largely dependent on B0 and were chosen to provide high SNR
R∗

2 -maps and images with similar susceptibility weightings in
a clinically acceptable acquisition time, as reported in Table I.
As a result, for each acquisition, a pair of 3D magnitude Im,i

and phase φi images was available at each echo time TE,i ,
i ∈ {1, 2}. To assess inter-scan reproducibility, one healthy
control was acquired twice at 3 T, with head repositioning
between the scans (GREpre and GREpost).

For each acquired dataset, SWI images, Vesselness
maps (see Appendix A), QSM (computed by the iterative
Least Square – iLSQR – algorithm described in [35]) and
R∗

2 -maps (see Appendix B) were derived prior to running
the segmentation. All processing steps, including the MAVEN
algorithm, were implemented in Matlab/C++ on a commercial
workstation (Intel® Core™ i7-3820 CPU @ 3.6 GHz; RAM
16 GB) equipped with 2 GPU boards (NVIDIA GeForce®

GTX 690). The whole process to obtain the segmentation
starting from the double-echo GRE took 20, 30 and 60 minutes
for the dataset acquired at 1.5 T, 3 T and 7 T respectively.

A. Quantitative Evaluation

The performance of MAVEN was evaluated by comparison
to manual segmentation. For each segmented dataset, two
minimum Intensity Projections (mIPs) of SWI and the cor-
responding Maximum Intensity Projections (MIPs) of QSM
were selected to represent an axial slab of 20 mm at the
level of BG and a sagittal slab of 10 mm on the mid-
line, providing an adequate vein content for the following
evaluations. A neuroradiologist with more than 10 years of
clinical expertise segmented the veins on the mIPped SWIs,
using the MIPs of QSM as additional reference. The obtained
projections of manual vein segmentation were then compared
with the corresponding MIPs of MAVEN, using three different
geometric accuracy scores to grade the match of the 2D vein
masks: the Dice Index (DI) and the Cohen’s κ coefficient,
which measure the overlap between two sets, and the Modified
Hausdorff Distance (MHD) [36] expressed in voxel size units,
which is a robust pseudo-metric on the set of segmentation
masks. In order to compare the performance of MAVEN
with previous methods, these scores were also computed
on the results of mono/bi-parametric segmentation (m/bPS)
approaches [17], [26].

The vessel density and its dependence on B0 was then
estimated by computing the length of the segmented vascular
trees. First, each segmentation was skeletonized using an

efficient three-dimensional parallel thinning algorithm that
extracted the medial axis of the object [37], iteratively remov-
ing voxels from the volume boundary if their removal did not
change the connectivity of their 26 neighborhood and if they
were not endpoints. Then, the voxel skeleton was converted
into a network graph described by nodes and links [38]: nodes
being the voxels with more than two neighbors each; links
being the groups of 26 connected voxels, with two neighbors
each, connecting two nodes. This topology was finally used to
calculate the network length as the sum of euclidean distances
between adjacent voxels that compose the links of the graph.

To evaluate inter-scan reproducibility, the segmenta-
tions (Spre and Spost) were computed, respectively from GREpre
and GREpost. The second echo of GREpost was then affine
co-registered to the second echo of GREpre and the obtained
transformation was used to map Spost to the Spre coordinate
system. The DI, κ and MHD were used to grade the matching
of the co-registered vein masks.

B. Qualitative Evaluation

The previous quantitative scores convey an objective, yet
coarse, measure of the geometric adherence of an estimate to
a gold standard. In order to suggest a more interesting sense
of the anatomical accuracy of the segmentation algorithms,
a trade-off can be found between the score reproducibility
and the opportunity to assign a weight to the segmentation
errors according to their clinical relevance. Therefore, the same
projected slabs selected for the quantitative analysis were
presented in triplets (MAVEN, mPS and bPS, in random order)
to two experienced neuroradiologists, not involved in the filter
design, who were asked to grade, blindly and in consen-
sus, the accuracy of the vascular tree depiction (VTD) on
a 0-5 scale, compared to the corresponding mIPs of SWI and
MIPs of QSM. Namely, the VTD scores correspond to:

5) optimal accuracy with possible minor misestimations
of vein caliber (i.e. suboptimal definition of vein
courses/borders);

4) moderate-to-major misestimations of vein caliber or mis-
detections of deep white matter (medullary) veins;

3) misdetections of cortical veins;
2) misdetections of deep gray matter veins;
1) missed detection of major venous sinuses or undue

detections of non-venous midline structures (e.g. cere-
bral falx or septum pellucidum);

0) major anatomical incoherences.

C. Statistical Analysis

After testing for normality with the Kolmogorov-Smirnov
tests, normally distributed scores of MAVEN versus m/bPS
were compared using one-tailed t-tests for paired sam-
ples (pt,p); non parametric scores were instead compared
using one-tailed Wilcoxon signed-rank test (pW). Moreover,
the performances of the algorithm were also compared using
the corresponding parametric and non-parametric one-tailed
tests for unpaired samples (i.e. t-test for independent samples –
pt,u – and Mann-Whitney U -test – pU ), to check whether the
difference significance survived at inter-patient variability.
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Fig. 2. Progression of MAVEN iterations on a dataset acquired at 3 T.
The SWI (mIPped over 20 mm) is fused with the corresponding MIP of
the result of the MAVEN segmentation before cardinality thresholding.
The vein mask is represented using a look-up table that points out the
voxels detected at each iteration of the algorithm (from red for the first
iteration up to blue for the last one).

One-way analysis of the variance – ANOVA – and Kruskal-
Wallis test were used to assess differences among scores,
at 1.5 T, 3 T and 7 T.

A Spearman’s rank correlation test was used to verify a
significant trend in the measured length of the segmented
vascular trees at different B0.

IV. RESULTS

A segmentation result obtained by the MAVEN algorithm
is shown in Fig. 2, where it is pointed out how the algorithm
iteratively refines the vein mask at each step. Newly detected
voxels, belonging to increasingly small and tortuous vessels,
are added to the large structures identified in the first itera-
tions, thanks to the adaptive and local thresholds computed
excluding voxels previously marked as veins. The MAVEN
performance against manual segmentation is compared with
m/bPS performances in Table II, where the mean and standard
deviation of each score are reported along with the significance
level p of the differences between previous methods and
MAVEN. DI, κ and MHD consistently show that MAVEN
better matches the actual gold standard (manual segmentation)
than m/bPS. The higher accuracy in the MAVEN venous
tree depiction is also confirmed by the qualitative evaluation.
Interestingly, the statistical significance observed at paired t-
and Wilcoxon tests survives even at the independent t- and
U -tests, showing that the observed performance differences
go beyond the possible inter-patient variability of the venous
tree. An illustrative segmentation result is shown in Fig. 3,
where the MAVEN classification is placed side by side with

TABLE II
QUANTITATIVE AND QUALITATIVE COMPARISON OF

SEGMENTATION METHODS

TABLE III
MAVEN QUANTITATIVE AND QUALITATIVE ACCURACY SCORES AT

DIFFERENT B0

the results of m/bPS and the manual segmentation as reference
in the axial and sagittal slabs of a sample dataset, pointing out
how MAVEN outperforms previous methods both in terms
of false positives and false negatives. An additional result
is exemplified in Fig. 4 to demonstrate that the MAVEN
algorithm is capable to correctly classify veins at different
axial levels of the brain, neglecting hypo-intensities that are
mainly due to artifacts.

The segmentation results obtained at 1.5, 3 and 7 T are
shown in Fig. 5, Fig. 6 and Fig. 7, respectively, where the
MAVEN results are displayed together with the correspond-
ing SWI and their fusion. The MAVEN accuracy scores
grouped by B0 are shown in Table III, where the mean and
standard deviation of each score are reported, along with
the significance level p of the differences among groups.
Though the measured length of the segmented vascular trees
([14.8±1.5] m at 1.5 T, [21.3±3.0] m at 3 T and [28.5±5.6] m
at 7 T, respectively) reflects a visible vein density increase with
the B0 (trend confirmed by the Spearman’s rank correlation
test: rs = 0.91; p = 2.8 · 10−5), the scores in Table III
are not significantly different. This shows that venous tree
segmentation by MAVEN is feasible at several field strengths,
with no need of algorithm parameter adjustments or human
interaction, thanks to the intrinsically adaptive thresholds used.

The comparison of Spre and Spost shows a good overlap (also
visible in Fig. 8), with DI = 0.67, κ = 0.66 and MHD = 0.52.

V. DISCUSSION

In this work, a fully automated method based on struc-
tural, morphological and relaxometric information has been
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Fig. 3. RGB color-coded fusion of manual segmentation (red) and automated segmentation methods (green, from the second to the fourth
column: mPS, bPS and MAVEN) from a brain dataset acquired at 3 T. All segmentations are MIPped and fused with SWI-mIP: image projections
cover 20 mm in the axial slabs (first row) and 10 mm in the sagittal slabs (second row). From the second to the fourth column: yellow voxels correspond
to true positives; green voxels correspond to false positives; red voxels correspond to false negatives. The lower incidence of green and red areas in
the fourth column indicates that MAVEN better matches manual segmentation in comparison to mPS and bPS, which frequently barely detect some
thin vessels and large caliber veins, and wrongly classify as vein several fibrous structures in the midline and susceptibility artifacts near the bone
interfaces.

Fig. 4. Segmentation results at different axial levels of the brain at 7 T (fusion of SWI-mIP with MAVEN-MIP over 20 mm). MAVEN is able to reject
artifacts due to SNLFI without losing sensitivity in vein detection (left), it exhibits a high accuracy in detection of cortical and deep white matter
veins (center) and correctly segments superior sagittal sinus and superficial veins (right).

proposed, in order to segment the entire cerebral venous
system. The proposed approach takes into account several key
points that are not addressed by previous methods, leading to
an accurate segmentation of the venous tree, which combines

a reduction of false positives with an improved detection of
true positives when compared to m/bPS.

The greater accuracy in vessel display achieved by MAVEN
seems partially due to the lack of a comprehensive vein
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Fig. 5. Segmentation result at 1.5 T. From left to right: MAVEN-MIP; fusion of SWI-mIP with MAVEN-MIP; SWI-mIP. Image projections cover 20 mm
in the head-foot direction.

Fig. 6. Segmentation result at 3 T. From left to right: MAVEN-MIP; fusion of SWI-mIP with MAVEN-MIP; SWI-mIP. Image projections cover 20 mm
in the head-foot direction.

characterization (morphologic, structural and relaxometric)
in the other approaches. Indeed, each independent criterion
used in MAVEN brings its intrinsic added value to the
final segmentation result. Compared to mPS, the use of a
relaxometric reference helps to avoid incorrect classification
of elongated hypo-intense structures – such as cerebral sulci,
whose intensity resembles the venous one in SWI images
when FA increases. Similarly, the Vesselness map limits the
detection to tubular structures only, thus reducing misclassi-
fication in the mid-sagittal plane, in BG and in parenchyma
voxels, adjacent to veins, that may undergo evaporation in
the monoparametric iterative process based on SWI images
only, leading to vein caliber misestimations. On the other

hand, the use of structural information (SWI), which is not
considered in bPS, increases the algorithm sensitivity to small
veins, such as deep white matter veins, and, used together with
the other criteria, makes it possible to adopt less restrictive
threshold values, leading to an improved detection of true
positives without loss of specificity. In addition, MAVEN
incorporates a preliminary regularization step on the Vessel-
ness functions: this solution modifies the Vesselness values,
making the algorithm less sensitive at the level of the roof of
the petrous bones, in the fronto-basal midline region and in the
interhemispheric fissure, where SNLFI induce susceptibility
artifacts not related to tissue properties. As a result, incorrect
classifications of voxels that resemble venous signal intensity
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Fig. 7. Segmentation result at 7 T. From left to right: MAVEN-MIP; fusion of SWI-mIP with MAVEN-MIP; SWI-mIP. Image projections cover 20 mm
in the head-foot direction.

Fig. 8. RGB color-coded fusion of Spre (red) and Spost (green) maps,
MIPped over 20 mm in the head-foot direction, superimposed on the SWI
reference. Yellow areas correspond to matched vein detections.

are strongly reduced by MAVEN in SNLFI regions, where
the accuracy of m/bPS segmentation is instead degraded by
the large amount of false positives. Moreover, regarding the
detection of large vessels (e.g. sagittal sinus and superficial
veins), the typical problems of segmentation methods based
on the local moments of signal intensity are bypassed by

the MAVEN initial condition, thanks to a combination of
morphological information extracted from SWI and QSM.
This leads to a further reduction of false negatives in MAVEN
(compared to m/bPS) that, consequently, shows a good overlap
with manual segmentation. The use of QSM in the design of
the initial condition also makes the algorithm less sensitive to
vessel directionality relative to �B0. Indeed, the venous blood
phase depends on the vessel orientation relative to the main
magnetic field, causing a variable appearance of otherwise
similar venous vessels in SWI. As long as a vessel remains
visible in SWI images, this effect is partially compensated
throughout the MAVEN routine by the use of multi-parametric
thresholds, iteratively computed on local moving windows.
Even if the vessel visibility is compromised, its detectability
is fostered anyway in the initial step by the QSM, which is
independent on vessel orientation [39].

The venous tree segmentation by MAVEN proves to be
feasible at 1.5 T, 3 T and 7 T with comparable accuracy scores.
However, it should be kept in mind that, when segmenting
datasets acquired at the different field strengths, the variation
of both physical conditions and acquisition parameters affects
the vein visibility. In particular, a higher field strength provides
higher SNR and increases vessel contrast in a reasonable
acquisition time; a higher scan resolution allows to visual-
ize smaller structures; anisotropic voxels (usually with the
slice thickness two or four times larger than the in-plane
grid element sizes), compared to isotropic voxels with the
same in-plane dimensions, guarantee, in SWI images, a better
visibility of vessels with caliber comparable to the in-plane
resolution [40], but they provide enlarged vessel size in the
through-plane direction. Taking all these factors into account,
the used acquisition parameters lead to an increase of visible
vein density with B0, due to enhanced resolution and higher
susceptibility contrast, and this is reflected in the segmentation
results. This trend is proven by the increasing lengths of the
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segmented vascular trees with the B0, and it is also clearly
visible in Fig. 5, Fig. 6 and Fig. 7.

Of note, the vein visibility also affects the minimum diam-
eter of vessels that MAVEN can accurately segment. Indeed,
due to the blooming artifact, even veins that are smaller than
the voxel size leave a clear sign within SWI [17], and they
can thus be detected by our algorithm. This effect, actually
dependent on voxel aspect ratio, increases at higher field
strengths, lower local oxygen saturation levels and longer TE s,
allowing to detect vessels up to four times smaller than the
voxel itself in standard unenhanced clinical acquisitions.

The presented algorithm, when applied to repeated acqui-
sitions of the same subject, leads to a MHD between the
two segmentations well below 1 (i.e. the resolution of the used
dataset), thus indicating an excellent inter-scan reproducibility
at 3 T.

MAVEN, therefore, offers a reproducible, accurate and
completely automated method for vein detection that provides
trustworthy segmentations on a large spectrum of acquired
datasets.

We are aware that the presented algorithm is not without
limitations. First, it is based on the assumption that only
venous blood susceptibility can lead a vessel voxel to show low
SWI- and high R∗

2-values. However, possible non compensated
flows in GRE acquisitions might give rise to signal loss in large
arterial vessels that, consequently, resemble veins in shape and
SWI- and R∗

2 -values, and may thus be incorrectly mistaken for
veins by MAVEN. Second, MAVEN takes advantage of the R∗

2
map, whose computation requires a double (or multi) echo
acquisition. Of note, in this work a double echo acquisition
and, consequently, the assumption of a monoexponential FID
for the brain tissues are used: those choices are motivated
by the fact that in MAVEN it is preferable to obtain a high
SNR SWI (i.e. an echo acquired with an adequately low
bandwidth) than a more accurate R∗

2 mapping, since the vein
R∗

2 estimates are merely used to better distinguish between
false and true positives in the multi-parametric thresholding.
Though, in principle, no extra acquisition time is typically
necessary for the additional low TE image of this dual echo
configuration, as it fits within an otherwise sequence dead-
time, the need for a second echo could rule out the method
in retrospective studies based on single-echo GREs. However,
a MAVEN variant that substitutes R∗

2 information with other
tissue properties could be explored in future works, extending
the scope of the algorithm to any GRE acquisition.

Despite the apparently large number of free algorithm
parameters, their actual values have been set up largely accord-
ing to geometrical and tissue evaluations on the anatomical
structures at issue. Most importantly, it has been observed
that even moderate variations of the values – compatibly with
the above evaluations – only lead to negligible effects on the
results.

It seems desirable to integrate MAVEN in a tubular tracking-
based approach, as the one described in [30], to obtain
a comprehensive framework for morphological analysis of
the whole-brain venous tree, including, but not limited
to, the measurements of length, curvature and caliber of
each vein.

Moreover, since a vein mask is needed to compute oxy-
gen extraction fraction (OEF) maps from MR phase images,
an accurate and automated algorithm for 3D segmentation
of the vessel tree of the whole brain represents an essential
method for an OEF quantification tool. This would in fact
minimize typical issues encountered in this calculation, such
as the spatial resolution limited by the amount of venous pixels
detected, and the exclusion of slices at BG level to avoid
susceptibility effects of iron deposition [41].

Conversely, the use of the 3D vein mask would also
be valuable in a complementary way: knowing their exact
location, vein voxels could be proficiently and automatically
excluded from parenchymal ROIs when measuring quantitative
parameters. In fact, despite the relative small vein volume,
their inclusion may cause severe biases, since even small
amounts of paramagnetic veins may greatly alter the measure
of mean magnetic susceptibility in a white matter region.

Besides, the accurate definition of the venous intracranial
compartment may find useful applications in the study of other
fluid networks, such as the CSF and the recently described
cerebral lymphatic system [42]. In particular, it could be
hypothesized that, even if the scales involved in the lymphatic
network do not allow for a direct MRI investigation, a detailed
knowledge of the venous morphology may provide the defi-
nition of realistic compartments and boundary conditions for
phenomenological hydrodynamics simulations of the biologi-
cal fluid interaction [43].

In conclusion, MAVEN represents an automated algorithm
for the brain vein segmentation, offering an accurate and repro-
ducible method that could provide quantitative measurements
in future studies of different clinical conditions, ranging from
traumatic brain injuries to neurodegenerative or neurovascular
disorders.

APPENDIX A VESSELNESS

The Vesselness V (�x) is a likeliness function that dis-
tinguishes tubular structures (veins) from non-tubular or
different-contrast features.

For a given dataset F(�x), the non-smoothed Vesselness
V(�x) is traditionally computed by adopting a multi-scale
approach in order to identify vessels of different caliber [22].
F is preliminarily filtered by Gaussian kernels with different
standard deviations σ , corresponding to the different spatial
scales. For each scale and each voxel, the local second-
order pattern is examined using the Hessian tensor Hσ (�x) and
its eigenvalues, sorted by increasing magnitude (|λσ,1(�x)| <
|λσ,2(�x)| < |λσ,3(�x)|). If the vessels are expected to be dark
within F (e.g. in SWI), since low-signal tubular structures
are characterized by high values of λ2 and λ3, the Vesselness
measure at each scale is calculated as:

Vσ [F ](�x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if λσ,2(�x) < 0 ∨ λσ,3(�x) < 0,
(

1 + e
−Aσ (�x)2

2α2

)
e

−Bσ (�x)2

2β2

(

1 + e
−Sσ (�x)2

2γ 2
σ

)

otherwise,

(25)
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where

Aσ (�x) ≡ |λσ,2(�x)|
|λσ,3(�x)| (26)

is essential for distinguishing plate-like from linear structures,

Bσ (�x) ≡ |λσ,1(�x)|
√|λσ,2(�x)λσ,3(�x)| (27)

accounts for the deviation from a blob-like structure, and

Sσ (�x) ≡
√

λσ,1(�x)2 + λσ,2(�x)2 + λσ,3(�x)2 (28)

allows for tuning the result as a function of the background
noise. In case of bright vessels (e.g. in QSM), Eq. 25 becomes:

Vσ [F ](�x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if λσ,2(�x) > 0 ∨ λσ,3(�x) > 0,
(

1 + e
−Aσ (�x)2

2α2

)
e

−Bσ (�x)2

2β2

(

1 + e
−Sσ (�x)2

2γ 2
σ

)

otherwise.

(29)

In the MAVEN setup, the tuning parameters α and β were set
to 0.5, according to [24], whereas

γσ = 1

2
max

�x
‖Hσ (�x)‖F . (30)

For each voxel, �x , V is finally computed as:
V[F ](�x) = max

σ
Vσ [F ](�x). (31)

In order to obtain the actual Vesselness V from the
dataset F , a rotationally invariant version of the Vessel
Enhancing Diffusion filter (VED) [26] is applied to F . In par-
ticular, the above definition of the V measure allows for
evolving F according to a scheme of anisotropic diffusion,
highly restricted when perpendicular to tubular structures [23]:

⎧
⎨

⎩

∂

∂ t
F(�x, t) = �∇ ·

{
D[F(·, t)](�x) · �∇F(�x, t)

}
;

F(�x, 0) = F(�x),
(32)

where

D[F(·, t)](�x)

≡ Q[F(·, t)](�x) · �[F(·, t)](�x) · Q[F(·, t)](�x)T , (33)

�[F(·, t)](�x)

≡ �+ V[F(·, t)](�x)1/s · [
diag(ω, ε, ε) − �

]
, (34)

Q[F(·, t)](�x) is the matrix of the Hσ (�x) eigenvectors at the
scale σ with the maximum Vσ [F(·, t)](�x) response, ω is
the strenght of anisotropic diffusion, s the sensitivity to the
Vesselness response, and ε ensures the positive definiteness
of the tensor. Note that D is continuously updated by a new
calculation of V on the evolved F . The actual Vesselness V
from the dataset F is then obtained as:

V [F ](�x) = V[F(·, te)](�x). (35)

To improve the VED filtering and obtain a high-SNR contin-
uous 3D model of the veins, in the MAVEN setup ω = 25,
ε = 10−2, the sensitivity s = 3 and the diffusion time te was
set to 0.4.

APPENDIX B
R∗

2 MAP CALCULATION

The acquired datasets were first processed in order to
enhance the Signal-to-Noise Ratio (SNR) of the original
images to be used for R∗

2 -map extraction. For this pur-
pose, a modified version of the Non Local Means (NLM)
approach [44], developed for parallel MRI acquisitions with
noise power spatially varying (SVN-NLM) within the Field
of View (FOV) [45], was adapted for multi-component
3D datasets.

As described in [46], the phase images φi correspond-
ing to each acquired echo were first high-pass filtered to
remove unwanted low-frequency B0 variations due to exoge-
nous contrast mechanisms (e.g. shimming problems, imperfect
phase refocusing of spatially selective Radio-Frequency (RF)
pulses, complex coil sensitivity, etc.). Each pair of mag-
nitude (Im,i ) and phase (φhp,i ) images was then converted
in the real/imaginary representation of the complex domain
(IR,i and II,i ). These four 3D images were considered
as a discrete version of a general multi-component image
X : �N → �

M (N = 3 and M = 4) with a bounded support
� ⊂ �

N , and thus processed via SVN-MNLM according
to [47]. Due to the high computational complexity of the
scheme, a multi-GPU implementation of the algorithm [48]
was used.

The denoised ĨR,i and ĨI,i were then combined to obtain the
magnitude images for each echo:

Ĩm,i =
√

Ĩ 2
R,i + Ĩ 2

I,i , (36)

whence the R∗
2-map was derived as

R∗
2 =

log
(

Ĩm,1/ Ĩm,2

)

TE,2 − TE,1
. (37)
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