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Anomalous Diffusion in Cardiac Tissue as an
Index of Myocardial Microstructure

Alfonso Bueno-Orovio*, Irvin Teh, Jürgen E. Schneider, Kevin Burrage, and Vicente Grau

Abstract—Diffusion in biological tissues is known to be hindered
by the structural complexity of the underlying medium. In the
heart, improved characterisation on how this complexity influ-
ences acquired diffusion weighted signals is key to advancing our
interpretation of diffusion magnetic resonance imaging, as well as
to propose novel biomarkers to further characterise myocardial
microstructure. In this work, we propose stretched Mittag–Leffler
signal decay models for the quantification of the anomalous decay
observed in acquired diffusion weighted signals. Our results,
analysed in ex vivo healthy, fixed rat ventricles, indicate that such
a representation suffices to capture the anomalous signal decay
observed in the myocardial syncytium. The subdiffusive order
of signal decay is shown to encode independent information to
that encapsulated by standard diffusion tensor metrics, and thus
may provide additional information on tissue microstructure.
Moreover, subdiffusion gradients are shown to be indicative of the
total structural heterogeneity spanning the left ventricular wall,
which includes progressive myolaminae branching and spatially
varying densities of perimysial collagen, microvasculature and
adipose tissue. The proposed approach may therefore have impor-
tant implications for the characterisation of tissue microstructure,
both in cardiac and other tissue types.
Index Terms—Anomalous diffusion, cardiac tissue, structural

heterogeneity, ventricular microstructure.

I. INTRODUCTION

D IFFUSION magnetic resonance imaging (MRI) is a non-
invasive imaging technique that is sensitive to the mag-

netisation of molecules undergoing diffusion. As the motion
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of the diffusing molecules is hindered and restricted by tissue
structures, this is a robust procedure for mapping structural fea-
tures and in characterising tissue heterogeneity and anisotropy.
In the particular case of cardiac tissue, diffusion tensor imaging
(DTI) reconstruction of myofibre architecture has been vali-
dated ex vivo against histological studies [1]–[4]. In spite of
its current limitations and associated difficulties in the in vivo
heart, reproducibility has already been established in vivo [5],
and novel applications of DTI as a clinical tool are becoming
increasingly significant, such as for the diagnosis of regional
impairment in transverse ventricular relaxation [6].
DTI analysis allows for the estimation of the initial and

approximately monoexponential decay exhibited by the ac-
quired signal at small diffusion weighting gradients. However,
it is recognised that, under large diffusion weighting gradi-
ents, signal attenuation in biological tissues is less prominent
than the predicted monoexponential [7]–[11]. This type of
anomalous signal decay also holds for cardiac tissue [12],
[13]. Consequently, the diffusion behaviour has been modelled
with a biexponential form [7], [12]. While it may be tempting
to theorise that the fast and slow components correspond to
extracellular and intracellular compartments, this does not
agree with the actual cell fractions [12], [14], and further
investigations are still needed.
Recently, stretched exponential and Mittag–Leffler models

have been proposed as alternatives for describing anomalous
signal decay, as representations of superdiffusion and subdiffu-
sion processes, respectively [15], [16]. Unlike the biexponential
model, which to some extent assumes distinct standard diffu-
sion properties in the two compartments, these models incor-
porate a broad and continuous distribution of diffusion prop-
erties, and may describe transport processes influenced by the
multiple length scales of a heterogeneous medium at sub-voxel
resolution. In addition, recent work in neural tissue has shown
anomalous superdiffusion to be influenced by local magnetisa-
tion gradients, whilst subdiffusion reflects the multi-scale de-
gree of disorder of local tissue microstructure [9]. This allows
for a closer interpretation of model output in terms of tissue mi-
crostructure than those obtained by other models.
In this work, we investigate the response of diffusion

weighted signals in healthy, fixed rat ventricles under a wide
range of applied magnetic gradient amplitudes. The capabilities
of generalised stretched Mittag–Leffler models are then ex-
plored to capture the anomalous decay observed in the signals.
In addition, we present an intra-ventricular and inter-sample
analysis of anomalous diffusion against standard DTI metrics,
confirming the ability of the subdiffusion index to explain the
total structural heterogeneity known to span the left ventricular
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wall. Our results therefore suggest the potential of the proposed
index as a novel biomarker for further characterisation of
cardiac tissue microstructure.

II. METHODS

A. Models of Anomalous Diffusion Signal
Assuming the Bloch–Torrey equation for the magnetisation

of water protons, together with the Stejskal–Tanner sequence,
the amplitude of the acquired signal follows the decay

(1)

where is the baseline signal intensity, is a positive definite
symmetric diffusion tensor, and is the
value. Here the diffusion-weighting is applied with a pair of

unipolar gradient waveforms of duration , separation , am-
plitude , and unit direction .
As a generalisation of this monoexponential decay, stretched

exponential models have been proposed based on fractal con-
siderations of tissue microstruture [17]. Accounting for the
anisotropic diffusion tensor, these models are formulated as

(2)

which recovers (1) for . Values of yield a power
law signal decay, as characteristic of superdiffusion [11], [18].
An alternative approach to characterising anomalous signal

decay is by means of the generalised exponentials given by

(3)

where and are the
Mittag–Leffler and Gamma functions. Mittag–Leffler functions
arise naturally in the solution of diffusion equations where the
time operator is replaced by a fractional counterpart to account
for increased lag times, where physical connections with mi-
crostructure have been established for example in the context
of porous media [19]. For , , and
is the exponential. Values of yield a heavy tail decay, as
characteristic of memory effects in subdiffusion [20], [21].
Finally, both models can be combined to give a signal decay

based on coexisting superdiffusive and subdiffusive processes,
in the form of a stretched Mittag–Leffler model

(4)

Here, we additionally compare the anomalous signal decay
model (4) against the biexponential tensor model [12]

(5)

where and are the diffusion tensors of the fast and slow
components, with weights and , respectively.

B. Data Acquisition
Hearts were excised from four female Sprague-Dawley rats

(hereafter denoted as ventricles V1 to V4). The hearts were
swiftly cannulated via the aorta for coronary perfusion in Lan-
gendorff mode at a constant pressure of 80 mm Hg and 37 .

After the initial wash using modified Krebs-Henseleit buffer (in
[mM]: NaCl 118.5, 25.0, KCl 4.75, 1.18,

1.19, D-glucose 11.0, and 1.41), the heart was
cardioplegically arrested using a high- solution (in [mM]:
NaCl 125.0; KCl 20.0; 1.0; HEPES 5.0; D-glucose 11.0;

1.8). All solutions were titrated to pH 7.4 and gassed with
95% /5% . The hearts were perfused with low osmo-
lality Karnovsky's fixative (Solmedia, Shrewsbury, UK), then
stored in the same fixative at 4 . Samples were rinsed with ca-
codylate buffer and embedded in 1% agarose gel for MRI. All
animal work was conducted in accordance with the UK Home
Office Guidance on the Operation of Animals (Scientific Proce-
dures) Act of 1986, and approved by the University of Oxford
ethical review board.
MRI was performed on a 9.4 T preclinical MRI scanner (Ag-

ilent, CA, USA) with a shielded gradient system (maximum
gradient strength, 1 T/m; rise time, 130 ), and transmit/re-
ceive birdcage coil (inner diameter, 20 mm; Rapid Biomed-
ical, Rimpar, Germany). Diffusion spectrum imaging (DSI) data
were acquired with 3D spin echo echo planar imaging (SE-
EPI) in four segments with no signal averaging, with: TR/TE,
1000/18 ms; echo train length, 20; FOV, 24 20 20 mm; res-
olution, ; acquisition time, 47 h. Forward and reversed
readout polarity data were acquired to correct for inconsisten-
cies between odd and even lines of -space [22]. Unipolar dif-
fusion sensitising gradients were used: , 5 ms; , 12 ms; ,
10000 . -space was sampled in 257 steps in a 3D grid
circumscribed by half a sphere, taking advantage of symmetry
in -space to halve the acquisition time. DSI data were also ac-
quired in a 20 mm tube filled with cyclooctane (Sigma-Aldrich,
MO, USA) with identical diffusion encoding parameters. Here,
TR/TE, 1000/24 ms; echo train length, 32; FOV, ; res-
olution, ; acquisition time, 19 h.

C. Signal Decay Fitting
The estimation of the diffusive parameters in the anomalous

signal decay model was performed on a voxel-by-voxel basis
in a two-steps algorithm. Firstly, the average diffusion tensor

was calculated by means of the -matrix approach, using
the subset of acquired data up to in order to
approximate the monoexponential decay at low values. Sec-
ondly, the complete range of values was used to fit the frac-
tional order parameters in (4), using a steepest-descent trust-re-
gion algorithm for constrained optimisation, with prescribed tol-
erance of . Parameter bounds were taken as , ,
with initial values , representative of standard dif-
fusion. Similarly, the biexponential tensor model was adjusted
by initialising and to the average diffusion tensor ,
with . An unconstrained optimisation was
then performed on the elements of and , whilst ensuring

, . Fitted results were insensitive to the
choice of initial values.
All calculations were implemented in MATLAB R2012b

(MathWorks Inc, Natick, MA). Evaluation of theMittag–Leffler
function was performed following [23], as available in MATLAB
CENTRAL (File ID #48154). The routines were vectorised
and particularised for negative real arguments (
speed-up). Analysis of a full dataset on a standard desktop
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took and for the anomalous signal decay and
biexponential tensor models, respectively.

D. Data Analysis
Signal decays are presented as functions in the -space

, which combines all acquisition points into a single at-
tenuation curve regardless of the diffusion weighting direction.
This choice of abscissa also enables a more straightforward
inter-sample comparison, as reflected by a same monoexpo-
nential decay regardless of local tissue diffusivities.
Diffusion tensor eigenvalues were calculated on a voxel-by-

voxel basis. From these, the mean apparent diffusion coefficient
( ) and fractional anisotropy (FA) were computed, in order
to analyse possible correlations with the estimated anomalous
model parameters. Estimated parameters lying outside their 1.5
inter-quartile bounds were identified as outliers, and subse-

quently removed to minimise possible influences on the results.
Outliers were typically localised on the segmented boundaries
due to partial volumes, and represented of the total of
analysed voxels.
Additionally, the left ventricular endocardial and epicardial

surfaces were approximated by prolate spheroids, and the re-
sulting volumes subdivided following the standardised segmen-
tation of the American Heart Association (AHA) [24]. Sup-
porting research data are available upon request.

III. RESULTS

A. Acquired Diffusion Signals Exhibit a Marked Anomalous
Decay in Cardiac Tissue
Acquired diffusion signals in cardiac tissue exhibited a

marked anomalous attenuation at large values, in contrast to
the monoexponential decline predicted by standard diffusion
theory. This is shown in Fig. 1, for indicated voxels within the
mid-ventricular slice of the preparations. The anomalous signal
decay was independent of ventricular location and baseline
signal intensity, and consistent across all data sets. This is in
contrast to the response displayed by an isotropic calibration
phantom (Fig. 1, bottom), which exhibited a standard diffusion
attenuation within the whole range of analysed values.
Our choice of abscissas also underlies the smaller number of

aggregated points in the isotropic phantom compared to the rest
of panels, due to its smaller diffusivity compared to ventricular
tissue (see Table I). This yields a smaller in spite of
being scanned in the same range of values.

B. Subdiffusion Dominates Anomalous Decay in Cardiac
Tissue
Results on the approximation of the observed signal decays

by the anomalous signal decay model (4) are presented in
Fig. 2, as shown for the indicated septal voxel of ventricle
V1 in Fig. 1 as a representative signal. The role of anomalous
order parameters on model output is illustrated in Fig. 2(a)-(b).
Both the superdiffusive ( ) and subdiffusive ( ) components
induce an increasing degree of anomalous decay for decreasing
values of their respective orders. However, marked differences
in signal decay are observed between both anomalous param-
eters, with much steeper signal decays at high values in the

Fig. 1. Experimental evidence of anomalous diffusion in cardiac tissue.
V1–V4: rat ventricles; IP: isotropic phantom. Normalised baseline intensities

in the central slice of the data sets and signal decays for the indicated voxels
are shown. In cardiac tissue, signal decay shows marked deviations from the
monoexponential decay predicted by standard diffusion theory (dashed lines).
Experimental data (filled symbols) are presented as .

TABLE I
SUMMARY OF AGGREGATED DIFFUSION PARAMETERS.

V1–V4: RAT VENTRICLES; IP: ISOTROPIC PHANTOM. IN
; FA, AND , DIMENSIONLESS

stretched exponential ( ) than in the Mittag–Leffler ( ) model
compared to the experimental data. Model behaviour at low
values is further highlighted in the panel insets. In particular,
the stretched exponential model significantly overestimates the
initial signal decline for decreasing values of (Fig. 2(a)) . On
the other hand, such a signal overshoot at low values is not
present in the generalised Mittag–Leffler model (Fig. 2(b)).
Residuals in the -norm in the approximation of the consid-

ered data are shown in Fig. 2(c) for different combinations of pa-
rameters and . Starting from standard diffusion ( ,
left corner of the plot), residuals show a marked initial reduc-
tion in the approximation error for decreasing values of both pa-
rameters, then quickly raising as the anomalous decay becomes
excessively pronounced. For the signal decay under considera-
tion, the residuals map shows a unique global minimum along
the axis representing the subdiffusive regime ( ,

). The convergence history of the proposed optimisation
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Fig. 2. Signal decay approximation by the anomalous diffusion signal model. A, B: Effects of superdiffusive ( ) and subdiffusive ( ) components, respectively.
Experimental data (open circles, ) correspond to the voxel marked by a black square in ventricle V1 of Fig. 1. Only one third of randomly sampled points
are shown for improved visualisation. Insets provide details on model behaviour at low values. C: Residuals in the approximation of the signal decay shown in
panels A and B, for different combinations of and . D: Convergence history of the optimisation algorithm. E: Optimal approximation of signal decay by the
anomalous diffusion model ( , ), compared against a biexponential fit of the data. Points are colour-coded by density distribution.

algorithm is illustrated in Fig. 2(d), attaining the global min-
imum in four optimisation steps. The optimal approximation of
this signal decay by the anomalous diffusion model ( ,

) is presented in Fig. 2(e).
Fig. 3 shows spatially resolved maps of diffusion parameters

for the anomalous signal decay model given by (4). These
include the mean apparent diffusion coefficient ( ) as
a metric for the diffusion tensor, as well as the respective
subdiffusive ( ) and superdiffusive ( ) orders. A manifest
subdiffusion is observed throughout all ventricles,
in the absence of a superdiffusive component ( ). Our
findings hence suggest that subdiffusion dominates and suffices
to explain the anomalous signal decay as observed in cardiac
tissue. In fact, superdiffusive exponents in the order of those
reported in Table I would only yield minor deviations from a
monoexponential decay. Taken together, these results support
reducing the full anomalous diffusion model to its subdiffusive
counterpart (3). For these reasons, we will focus our analysis in
subsequent sections on the subdiffusive order ( ).

C. Anomalous Diffusion Encodes Independent Information
From Standard Diffusion Metrics
To exclude for anomalous diffusion being underpinned by

local tissue diffusivities, we performed a quantitative analysis
of diffusion metrics interdependencies, as presented in Fig. 4.
In terms of standard DTI metrics, a marked negative correlation
was found in our data between the apparent diffusion coefficient
and fractional anisotropy (Fig. 4(a)), highlighting as expected
bigger diffusion displacements (larger ) at more isotropic
positions of the tissue (smaller FA).
On the other hand, only a modest trend towards more anoma-

lous behaviours (smaller ) was observed for increasing diffu-
sivities (Fig. 4(b)). A similar trend was noticed when examining
the dependence of the subdiffusive anomalous order with re-
spect to the FA metric (Fig. 4(c)). However, the weak coeffi-

Fig. 3. Spatially resolved maps of diffusion parameters in the mid-ventricular
slices of the different data sets. A: Mean apparent diffusion coefficient ( ).
B: Subdiffusive order ( ). C: Superdiffusive exponent ( ). A clear subdiffusion
component ( ) is observed throughout the entire ventricles, in the absence
of superdiffusion ( ). in ; and , dimensionless.

cients of determination ( ) attained in both cases indicate that
only a minimum fraction of the variance observed in can be
explained in terms of these metrics.
Equivalent results were obtained by using higher order re-

gression models and/or additional DTI metrics (such as rational
anisotropy, independent eigenvalues magnitudes, eigenvalues
ratios, or combinations of the above), and in the different ventri-
cles. Altogether, this supports that the subdiffusive order en-
codes independent information on tissue microstructure to that
encapsulated by the diffusion tensor itself.

D. Anomalous Diffusion Captures the Structural Heterogeneity
of the Left Ventricular Wall
Apico-basal diffusion gradients were further studied in the

ventricular datasets (Fig. 5(a)). The analysis of standard DTI
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Fig. 4. Correlation analysis between diffusion metrics. A: Fractional anisotropy (FA) vs. mean apparent diffusion coefficient ( ). B: Subdiffusive anomalous
order ( ) vs. . C: vs. FA. Results and associated histograms are aggregated for the whole ventricle V1, with points colour-coded by their two-dimensional
density distributions. Dashed lines represent linear regression fits between the studied variables. in ; FA and , dimensionless.

Fig. 5. Apico-basal heterogeneity in diffusion parameters. A: American Heart Association (AHA) segmentation of ventricle V2. B: Apico-basal gradients in
mean apparent diffusion coefficient ( ), according to basal (red), mid-ventricular (green), apical (blue) and apex (gray) AHA segments. Despite significant
inter-sample variability, a modest apico-basal gradient in is observed across the different ventricles. C: Apico-basal gradients in fractional anisotropy (FA),
showing an overall trend towards more isotropic diffusion in the apex. D: Apico-basal gradients in subdiffusive anomalous order ( ). Although inter-sample
differences are also observed, apico-basal distributions are more uniform than in and FA. in ; FA and , dimensionless.

metrics (Fig. 5(b)-(c)) reveals a significant level of inter-sample
variability, as previously summarized in Table I. Despite these
individual differences, overall trends towards slightly larger
mean diffusivities (larger , Fig. 5(b)) and a more isotropic
diffusion (smaller FA, Fig. 5(c)) were identified in the apex
compared to the basal segments across all ventricles, with the
exception of ventricle V2, in which the positive apico-basal
gradient in was not observed. An equivalent analysis is
presented in Fig. 5(d) for the subdiffusive order ( ). Despite
significant differences being present as well, both inter-sample
and intra-ventricular variability in were less pronounced than
in standard DTI metrics. Apico-basal distributions of were
also more uniform than in and FA, without consistent
apico-basal patterns being identified across the ventricles.
Transmural heterogeneities in diffusion parameters were

also investigated (Fig. 6(a)). Aggregated results for the con-
sidered metrics are presented in Fig. 6(b)-(d) with respect to
the normalised distance to the endocardial cavity, . In general,
a convex response in mean diffusivities is exhibited across
the ventricular wall, with first decreasing in the central
region and then approaching similar values in the epicardium
than those in the endocardium (Fig. 6(b)). A mirrored trend

to the behaviour of is observed in FA (Fig. 6(c)), due
to the negative correlation between both metrics, as discussed
previously (Fig. 4(a)). Diffusion was therefore found to be
moderately more anisotropic (larger FA) at central transmural
locations, decreasing towards more isotropic diffusion in the
subepicardial ventricular layer. These results are hence in
agreement with the reported progressive branching in ventric-
ular laminar structure as a function of wall depth [25]–[27], and
the absence of myolaminae from much of the subepicardium
[26], [28], respectively. The only exception to these transmural
trends was noted again in ventricle V2, which falls however
within the limits of inter-individual structural variability [29].
In terms of , a monotonic trend towards more anomalous

diffusion was identified with respect to wall depth (Fig. 6(d)).
Hence, the subdiffusive order is also able to capture the increas-
ingly branching structure of the ventricular wall. However, and
contrary to the FA metric, a marked inflection in the values of
is not observed in the subepicardial layer. Although the lam-

inar arrangement of the ventricular wall is lost in most of this
region, dense and sparsely interconnected arrays of perimysial
collagen have been reported in the subepicardium [28], which is
also known to be richer in microvasculature and adipose tissue
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Fig. 6. Transmural heterogeneity in diffusion parameters. A: Central slices in the basal (red), mid-ventricular (green) and apical (blue) AHA segments are exam-
ined, as shown for ventricle V3. Results are presented as with respect to the normalised endocardial distance, . B: In general, a convex response in
mean diffusivities is observed, with smaller s within the ventricular wall and similar subepicardial ( ) and subendocardial ( ) values. C: Fractional
anisotropy (FA) exhibited a mirrored trend to that of , also with similar subendocardial and subepicardial FA values. D: Overall, diffusion in the subepicardial
layer exhibits a more anomalous behaviour (smaller ) than in the subendocardium. in ; FA and , dimensionless.

Fig. 7. Diffusion metrics in biexponential tensor models. A: Spatial maps of fast/slow mean diffusivity and fractional anisotropy ( and ,
respectively) in one of the analysed ventricles (V4). B: Transmural distributions of the different diffusion metrics, showing similar trends to those of the monoex-
ponential model in Fig. 6. Results are presented as with respect to the normalised endocardial distance, . in ; FA dimensionless.

than the subendocardial layers [30]–[32]. Therefore, the subdif-
fusive order was found as the only metric that may be directly
related to the total structural heterogeneity known to exist in the
left ventricular wall.

E. Comparison Against Biexponential Tensor Models

We finally compare our results against biexponential tensor
models, previously used to study anomalous signal decay in
myocardial tissue [12]. Fig. 7 shows spatial maps and trans-
mural trends of and FA for the estimated fast and slow
diffusion tensors ( and , respectively).
The two-compartment model exhibits similar fast-diffusivities
( and ) than those obtained for the average diffusion
tensor (Fig. 6), whilst the smaller slow-component diffusivi-
ties account for the slower signal decay at large values. How-
ever, themetrics associated to the slow diffusion tensor provided
no additional information in terms of structural heterogeneity,
with exhibiting overall flat transmural distributions, and

following similar trends to those of the fast component.

IV. DISCUSSION

In this study, we have evaluated generalised stretch-expo-
nential and Mittag–Leffler models to capture and explain the
anomalous signal decay observed in diffusion weighted signals
in cardiac tissue in a wide range of values. The subdiffusive
order has been shown to encode independent information to
that encapsulated by standard DTI metrics, and thus may pro-
vide additional information in the characterisation of tissue mi-
crostructure. Whereas no marked apico-basal differences were
found in the new anomalous diffusion index, transmural gra-
dients in are indicative of the total structural heterogeneity
known to span the left ventricular wall.
Our work constitutes the first application of stretched expo-

nential and Mittag–Leffler models for the characterisation of
anomalous diffusion in the heart. Other MRI studies to date
have explored cardiac microstructure in ranges of values typ-
ically spanning from 1000 up to 2500 [27], [33], [34].
Whilst this suffices to capture myocardial anisotropy, they fall
within the initial monoexponential response of water diffusion.
Our estimation of diffusion tensors in the 0–1000 range
indeed allows for a direct comparison with previous results on
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DTI eigenvalues and associated metrics [27], [33], [34], while
minimising the observed difference between the estimated my-
olaminar architecture and histological studies [26].
Whilst the proposed model of anomalous signal decay is

clearly phenomenological, other modelling approaches have
contributed to the understanding of different microstructural
aspects on signal attenuation from a biophysical perspective
(e.g., myofibre diameters, intracellular volumes, membrane
permeability or bundle packing densities) [35], [36]. However,
unambiguous parameter estimation in these models is a difficult
task, limiting they practical applicability. Alternative repre-
sentations of signal decay, improving the agreement between
experimental data and the fitting curves, might therefore be
of practical interest as long as they are capable of exhibiting
sensitivity to tissue features or microstructural changes.
In these terms, the full anomalous diffusion model considered

here provides two additional parameters to further characterise
tissue microstructure: the subdiffusive ( ) and superdiffusive
( ) anomalous orders. Previous work in neural tissue has shown
anomalous superdiffusion to be influenced by local magneti-
sation gradients, thus highlighting the interface between com-
partments with different magnetic susceptibility [9]. Unlike the
brain, which is formed by highly localised regions of white and
gray matter with dissimilar magnetisation properties (hence re-
flected by spatial varying maps in ) [10], [37], the myocardial
syncytium mostly consists of ventricular myocytes. This may
underlie the almost uniform spatial distributions in that we
observe in our experimental datasets.
On the other hand, anomalous subdiffusion has been previ-

ously shown to reflect the multi-scale disorder of local tissue
microstructure, both in tortuous materials as in heterogeneous
tissues [9], [10], [37]. Theoretical and simulation studies have
also shown anomalous subdiffusion to arise as a consequence
of hindered transport in densely packed and heterogeneous
structures, via particle collisions with the obstacle surfaces
(such as microvasculature and cleavage planes in cardiac
tissue), which act to increase diffusion lag times [38], [39].
Our findings on transmural gradients in are hence in agree-
ment with the structural heterogeneity observed across the left
ventricular wall, including progressive myolaminae branching
and spatially varying densities of perimysial collagen, mi-
crovasculature and adipose tissue [25]–[32]. They therefore
suggest that may provide additional information on tissue
structure to that provided by conventional DTI metrics, as well
as its potential as a novel biomarker for the characterisation
of cardiac microstructure. In fact, recent MRI studies have
reported a higher sensitivity of anomalous diffusion parameters
to ischemic changes in brain than standard metrics [40]. Strong
correlations with the assessment of liver fibrosis have also been
established [41]. The extension of our approach may therefore
have important implications for the characterisation of different
disease states, both in cardiac or other tissue types.
Our choice of descriptions of anomalous signal decay is

based on their direct link with superdiffusive and subdiffu-
sive processes. As also contemplated here, two-compartment
models have been also suggested, leading to a biexponential
signal decay [7], [12]. A more sophisticated two-compartment
framework is given in [42], where the signal decay is described

by a system of coupled Bloch–Torrey equations. Unfortunately
there is no closed form solution, and is difficult to accommo-
date anisotropy in the approach. Other anomalous diffusion
frameworks include adding a kurtosis term (essentially a cubic
term into the exponential component), not analysed here due to
its known associated deviation of signal decay at large values
[43]. Different stretched exponential models have also been
proposed in the anisotropic case, for instance by fitting the
data to three stretched exponentials aligned along the principal
eigenvector axes [8]. Alternatively, our signal decay model
contemplates anisotropy by means of a diffusion tensor with
the same meaning as in the traditional setting.
Finally, tissue microstructure also affects cardiac electrical

propagation. The results presented here are thus in agreement
with our previous work [44], [45], where anomalous diffusion
models were shown to recover key properties of cardiac con-
duction. However, in terms of potential theory, the secondary
sources related to tissue inhomogeneities are associated with su-
perdiffusion effects on the electric field. On the other hand, the
physical principle underlying anomalous water diffusion in car-
diac tissue is different, based on increased lag times due to the
collisions in a tortuous environment [38], [39], hence resulting
in a subdiffusion. This distinction in the underlying physical
processes underpins the difference in their associated anoma-
lous diffusion nature, in spite of both phenomena taking place
in the same anatomical substrate. The development of a frame-
work to connect both physical processes, informing simulations
of the electrical behaviour of the heart from MRI estimates of
tissue microstructure beyond myofibre orientation, remains as
an open and exciting challenge for future investigations.

A. Limitations

In our acquisition sequence, the diffusion gradient duration
was finite and not insignificant relative to the diffusion time.
This violation of the short gradient pulse condition [46] may
limit the sensitivity of the measurement to shorter length scales
in tissue, although this may not be a problem in practice as
shown in DSI [47]. This constitutes an interesting open ques-
tion for future studies.
Our model encapsulates the multi-scale complexity of tissue

microstructure into a single parameter, the subdiffusive order .
This makes it challenging to separate and to establish a phys-
ical connection with different microstructural contributors to
anomalous signal decay. Whereas the proposed representation
has been proven to capture and explain the anomalous signal
decay observed in our data, the use ofmore sophisticatedmodels
[11], [48] may be explored in a future.
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