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Guest Editorial
Deep Learning in Medical Imaging: Overview and
Future Promise of an Exciting New Technique

I. INTRODUCTION

D EEP learning is a growing trend in general data analysis
and has been termed one of the 10 breakthrough technolo-

gies of 2013 [1]. Deep learning is an improvement of artificial
neural networks, consisting of more layers that permit higher
levels of abstraction and improved predictions from data [2].
To date, it is emerging as the leading machine-learning tool in
the general imaging and computer vision domains.
In particular, convolutional neural networks (CNNs) have

proven to be powerful tools for a broad range of computer
vision tasks. Deep CNNs automatically learn mid-level and
high-level abstractions obtained from raw data (e.g., images).
Recent results indicate that the generic descriptors extracted
from CNNs are extremely effective in object recognition and
localization in natural images. Medical image analysis groups
across the world are quickly entering the field and applying
CNNs and other deep learning methodologies to a wide variety
of applications. Promising results are emerging.
In medical imaging, the accurate diagnosis and/or assessment

of a disease depends on both image acquisition and image in-
terpretation. Image acquisition has improved substantially over
recent years, with devices acquiring data at faster rates and in-
creased resolution. The image interpretation process, however,
has only recently begun to benefit from computer technology.
Most interpretations of medical images are performed by physi-
cians; however, image interpretation by humans is limited due to
its subjectivity, large variations across interpreters, and fatigue.
Many diagnostic tasks require an initial search process to de-
tect abnormalities, and to quantify measurements and changes
over time. Computerized tools, specifically image analysis and
machine learning, are the key enablers to improve diagnosis,
by facilitating identification of the findings that require treat-
ment and to support the expert’s workflow. Among these tools,
deep learning is rapidly proving to be the state-of-the-art foun-
dation, leading to improved accuracy. It has also opened up
new frontiers in data analysis with rates of progress not before
experienced.

A. Historical Perspective on Networks

Neural networks and the basic ideas behind deep learning
have been around for decades [3]. They have typically had just
a few layers. The performance of neural networks improved
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markedly after the development of the backpropagation algo-
rithm. However, performance was still insufficient. Other clas-
sifiers were subsequently developed, including decision trees,
boosting and support vector machines. Each of these has been
applied to medical image analysis, especially for detection of
abnormalities, but also in related fields such as segmentation.
Despite such developments, relatively high false positive rates
for detection were the norm.
CNNs were applied to medical image processing as long

ago as 1996 in work of Sahiner et al. [4]. In this work, ROIs
containing either biopsy-proven masses or normal tissues were
extracted from mammograms. The CNN consisted of an input
layer, two hidden layers and an output layer and used backprop-
agation. Training times were described as “computationally
intensive” in this pre-GPU era, but no times were given. In
1993, CNNs were applied to lung nodule detection [5]. A CNN
was used to detect microcalcifications on mammography in
1995 [6].
The typical CNN architecture for image processing consists

of a series of layers of convolution filters, interspersed with a
series of data reduction or pooling layers. The convolution fil-
ters are applied to small patches of the input image. Like the
low-level vision processing in the human brain, the convolution
filters detect increasingly more relevant image features, for ex-
ample lines or circles that may represent straight edges (such
as for organ detection) or circles (such as for round objects like
colonic polyps), and then higher order features like local and
global shape and texture. The output of the CNN is typically
one or more probabilities or class labels. The convolution filters
are learned from training data. This is desirable because it re-
duces the necessity of the time-consuming hand-crafting of fea-
tures that would otherwise be required to pre-process the images
with application-specific filters or by calculating computable
features. There are other network architecture variants, such
as a deep recurrent neural network known as long short-term
memory [7].
CNNs are highly parallelizable algorithms. Much of the

practicality of using CNNs today lies in the vast acceleration
(approximately 40 times) enabled by graphics processing unit
(GPU) computer chips compared to CPU processing alone.
An early paper describing the value of the GPU for training
CNNs and other machine learning techniques was published in
2006 [8]. In medical image processing, GPUs were introduced
first for segmentation, reconstruction and registration, and then
much later for machine learning [9], [10]. Interestingly, while
Eklund et al. [10] discuss convolutions extensively in their
2013 paper, convolutional neural networks and deep learning
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are not mentioned at all. This highlights how rapidly the revo-
lution of deep learning has refocused medical image processing
research.

B. Networks Today
Deep neural networks have recently gained considerable

commercial interest due to the development of new variants
of CNNs and the advent of efficient parallel solvers optimized
for modern GPUs. The main power of a CNN lies in its deep
architecture, which allows for extracting a set of discriminating
features at multiple levels of abstraction. Training a deep CNN
from scratch (or full training) is a challenge. First, CNNs re-
quire a large amount of labeled training data, a requirement that
may be difficult to meet in the medical domain where expert an-
notation is expensive and the diseases (e.g., lesions) are scarce.
Second, training a deep CNN requires large computational and
memory resources, without which the training process would be
extremely time-consuming. Third, training a deep CNN is often
complicated by overfitting and convergence issues, which often
require repetitive adjustments in the architecture or learning
parameters of the network to ensure that all layers are learning
with comparable speed. Given these difficulties, several new
learning schemes, termed “transfer learning” and “fine-tuning”,
are shown to provide solutions and are increasingly gaining
popularity. These will be discussed further in Section II-C.

C. Networks in the Medical Domain
Deep learning methods are most effective when applied to

large training sets, but in the medical domain large data sets are
not always available. We are therefore faced with major chal-
lenges including (a) Can deep networks be used effectively for
medical tasks? (b) Is transfer learning from general imagery to
the medical domain relevant? (c) Can we rely on learned fea-
tures alone or may we combine them with handcrafted features
for the task? This special issue of IEEE-Transactions on Med-
ical Imaging (IEEE-TMI) on deep learning in medical imaging
focuses on progress in this new era of machine learning and
its role in the medical imaging domain. This issue presents re-
cent achievements of CNNs and other deep learning applica-
tions to medical tasks. It contains 18 papers by various inves-
tigators from around the world, selected from 50 submissions,
an unusually high number for IEEE special issues, and this was
achieved in a period between publication of the call for papers
and the submission deadline that was shorter than usual. The pa-
pers focus on a variety of classical tasks, from detection to cat-
egorization (e.g., lesion detection, image segmentation, shape
modeling, image registration), as well as opening up new and
novel application domains. Also included are several works that
focus on the exploration of the networks and provide insight
on the architectures to be chosen for various tasks, parameters,
training sets and more.

II. OVERVIEW OF TOPICS AND PAPERS IN THE JOURNAL

A. Lesion Detection
Computer-aided detection (CAD) is a well established area

of medical image analysis that is highly amenable to deep

learning. In the standard approach to CAD [11] candidate le-
sions are detected, either by supervised methods or by classical
image processing techniques such as filtering and mathemat-
ical morphology. Candidate lesions are often segmented, and
described by an often large set of hand-crafted features. A
classifier is used to map the feature vectors to the probability
that the candidate is an actual lesion. The straightforward way
to employ deep learning instead of hand-crafted features is to
train a CNN operating on a patch of image data centered on the
candidate lesion. Several articles in this issue use this approach.
Setio et al. [12] combine three previously developed candidate
detectors for pulmonary nodules in 3D chest CT scans and ex-
tract 2D patches centered on these candidates under nine dif-
ferent orientations. A combination of different CNNs is used
to classify each candidate. A slight improvement compared to
a previously published classical CAD system for the same task
is reported.
Roth et al. [13] applied CNNs to improve three existing CAD

systems for the detection of colonic polyps on CT colonog-
raphy, sclerotic spine metastases on body CT and enlarged
lymph nodes on body CT. They also used previously developed
candidate detectors and 2D patches in three orthogonal direc-
tions, and up to 100 randomly rotated views. The randomly
rotated “2.5D” views are a method of decompositional image
representation from the original 3D data. The CNN predictions
on these 2.5D views are later aggregated to attain additional
gains in accuracy. The sensitivity for lesion detection im-
proved 13 – 34% for all three CAD systems with the use of
CNNs, indicating that the approach was both generalizable and
scaleable. Improvements of this magnitude have been nearly
impossible to achieve using non-deep learning classifiers such
as committees of support vector machines.
Dou et al. [14] detected cerebral microbleeds from suscep-

tibility weighted MRI scans. They use 3D CNNs and also re-
placed the candidate detection stage with a CNN, proposing a
two stage approach. They report improved results with their 3D
CNN compared to various classical and 2D CNN approaches
from the literature that the authors re-implemented and trained
and tested on the same data set.
Sirinukunwattana et al. [15] detected and classified nuclei

in histopathological images. They use a CNN that takes small
patches as input and instead of just predicting if the central pixel
of the patch is a cell nucleus, they model the output as a high
peak in the vicinity of the center of each nucleus and flat else-
where. This spatially constrained CNN, in combination with a
fusion of overlapping patches in the test stage, produces better
results than previously proposed techniques for this task also
based on CNNs and on classical feature-based approaches.
Anthimopoulos et al. [16] focus on detecting patterns of inter-

stitial lung diseases from 2D patches of chest CT scans. They are
one of three groups in this issue (Shin et al. [17] and van Tulder
et al. [18]) using a public data set from [19]. They train a CNN
to classify patches of 32 32 pixels into one of 7 classes and
report higher accuracy than three previously published methods
that employ hand-crafted features.
In several other articles in this issue, lesion detection is also

the topic of interest, but the focus of these papers are broader or
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zoom in on particular methodological issues. These papers will
be briefly discussed below.

B. Segmentation and Shape Modeling

For a large dataset of 2891 cardiac ultrasound examinations,
Ghesu et al. [20] combine deep learning and marginal space
learning for object detection and segmentation. The combina-
tion of “efficient exploration of large parameter spaces” and a
method to enforce sparsity in the deep networks, increased com-
putational efficiency, and led to a 13.5% reduction in mean seg-
mentation error compared to a reference method published by
the same group.
Three studies focused on segmentation of brain structures

or brain lesions. The problem of multiple sclerosis brain le-
sion segmentation on MRI was addressed by Brosch et al. [21].
The authors developed a 3D deep convolutional encoder net-
work that combined interconnected convolutional and decon-
volutional pathways. The convolutional pathway learned higher
level features, and the deconvolutional pathway predicted the
voxel level segmentation. They applied their network to two
publicly available datasets and one clinical trial data set. They
compared their method with 5 publicly available methods. The
method was reported to perform “comparably to the best state-
of-the-art methods”.
Brain tumor segmentation on MRI was investigated in

Pereira et al. [22]. The authors used small kernels, a deeper
architecture, intensity normalization and data augmentation.
Different CNN architectures were used for low and high grade
tumors. The method separately segmented the enhancing part
and the core of the tumor. They attained top results on a 2013
public challenge dataset, and second place in an on-site 2015
challenge.
For brain structure segmentation, CNNs performed well

on five different datasets for patients in different age groups,
spanning from pre-term infants to older adults in a study by
Moeskops et al. [23]. A multi-scale approach was used to
achieve robustness. The method attained good results on eight
tissue classes, with Dice similarity coefficients averaging 0.82
to 0.91 for the five datasets.

C. Network Exploration

1) Data Dimensionality Issues- 2D vs 3D: In most works
to date we see analysis performed in 2D. It is often questioned
if the transition to 3D will be a key to major step forward in
performance. Several variations exist in the data augmentation
process, including 2.5D. For example, in Roth et al., [13] axial,
coronal and sagittal images were taken centered on a voxel in a
colonic polyp or lymph node candidate and fed into the cuda-
convnet CNN, which incorporates three channels normally used
to represent the red, green and blue color channels of a nat-
ural light image. Explicitly 3D CNNs were used in this issue
by Brosch et al.[21] and Dou et al. [14].
2) Learning Methodology- Unsupervised vs Supervised:

When we look at the literature of networks, it is evident that the
majority of works focus on the supervised CNNs in order to
achieve categorization. Such networks are important for many

applications, including detection, segmentation and labeling.
Still, several works focus on unsupervised schemes which are
mostly shown to be useful in image encoding, efficient image
representation schemes and as a preprocessing step for further
supervised schemes. Unsupervised representation learning
methods such as Restricted Boltzmann Machines (RBM) may
outperform standard filter banks because they learn a feature
description directly from the training data. The RBM is trained
with a generative learning objective; this enables the network
to learn representations from unlabeled data, but does not
necessarily produce features that are optimal for classification.
Van Tulder et al., [18] conducted an investigation to com-
bine the advantages of both generative and a discriminative
learning objectives in a convolutional classification restricted
Boltzmann machine, which learns filters that are good both for
describing the training data and for classification. It is shown
that a combination of learning objectives outperforms purely
discriminative or generative learning.
3) Training Data Considerations: CNNs enable learning

data-driven, highly representative, layered hierarchical image
features. These features have been demonstrated to be a very
strong and robust representation in many application domains,
as presented in this issue. In order to provide such a rich repre-
sentation and successful classification, sufficient training data
are needed. The amount of data required is a key question to be
explored. Related questions include the following: How can we
use the training data we have most efficiently? What can we do
in cases in which data are not available? And finally, are there
alternative methods for acquiring and medically annotating
data?
Several of these questions are addressed by papers in this

issue. Van Grinsven et al. [24] attempt to improve and speed-up
the CNN training for medical image analysis tasks by dynami-
cally selecting misclassified negative samples during training.
The CNN training process is a sequential process requiring
many iterations (or epochs) to optimize the network parame-
ters. In every epoch, a subset of samples is randomly selected
from the training data and is presented to the network to update
its parameters through back-propagation, minimizing a cost
function. Classification tasks in the medical domain are often
a normal vs pathology discrimination task. In such a scenario,
the normal class is extremely over-represented; moreover, the
majority of normal training samples are highly correlated due
to the repetitive pattern of normal tissues in each image. Only
a small fraction of these samples are informative. Treating
uniformly this data during the learning process leads to many
training iterations wasted on non-informative samples, making
the CNN training process unnecessarily time-consuming. An
approach to identify informative normal samples, as shown in
the work, increased the efficiency of the CNN learning process
and reduced the training time.
4) Transfer Learning and Fine Tuning: Obtaining datasets

in the medical imaging domain that are as comprehensively
annotated as ImageNet remains a challenge. When sufficient
data are not available, there are several ways to proceed: 1)
Transfer learning: CNN models (supervised) pre-trained from
natural image dataset or from a different medical domain are
used for a newmedical task at hand. In one scheme, a pre-trained
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CNN is applied to an input image and then the outputs are ex-
tracted from layers of the network. The extracted outputs are
considered features and are used to train a separate pattern clas-
sifier. For instance, in Bar et al. [25], [26] pre-trained CNNs
were used as a feature generator for chest pathology identifica-
tion. In Ginneken et al. [27] integration of CNN-based features
with handcrafted features enabled improved performance in a
nodule detection system. 2) Fine Tuning: When a medium sized
dataset does exist for the task at hand, one suggested scheme is
to use a pre-trained CNN as initialization of the network, fol-
lowing which further supervised training is conducted, of sev-
eral (or all) the network layers, using the new data for the task
at hand.
Transfer learning and fine tuning are key components in the

use of deep CNNs in medical imaging applications. Two works
that explore these issues are Shin et al. [17] and Tajbakhsh et
al. [28]. The experiments conducted in these works consistently
show that using pre-trained CNNs with fine-tuning achieved
the strongest results, regardless of specific applications domain
(Tajbakhsh et al.), and for all network architectures (Shin et al.).
In Tajbakhsh et al., [28] further analysis shows that deep fine-
tuning led to improved performance over shallow fine-tuning,
and the importance of using fine-tuning increases with reduced
size training sets. In Shin et al., [17] the GoogLeNet architec-
ture led to state-of-the-art detection of mediastinal lymph nodes
compared to other less deep architectures.
5) Ground Truth – From the Experts and the Non-Experts:

The lack of publicly available ground-truth data, and the diffi-
culty in collecting such data per medical task, both cost-wise as
well as time-wise, is a prohibitively limiting factor in the med-
ical domain. Though crowdsourcing has enabled annotation of
large scale databases for real world images, its application for
biomedical purposes requires a deeper understanding and hence,
more precise definition of the actual annotation task Nguyen et
al. [29], McKenna et al. [30]. The fact that expert tasks are being
outsourced to non-expert users may lead to noisy annotations
introducing disagreement between users. Many issues arise in
combining the knowledge of medical experts with non-profes-
sionals, such as how to combine the information sources, how to
assess and incorporate the inputs weighted by their prior-proved
accuracy in performance and more. These issues are addressed
in Albarqouni et al. [31] who present a network that combines
an aggregation layer that is integrated into the CNN to enable
learning inputs from the crowds as part of the network learning
process. Results shown give valuable insights into the function-
ality of deep CNN learning from crowd annotations. The most
astonishing fact about crowdsourcing studies in the medical do-
main, however, is the conclusion that a crowd of nonprofes-
sional, inexperienced users can in fact perform as well as the
medical experts. This has also been observed by Nguyen et al.
[29] and McKenna et al. [30] for radiology images.

D. Novel Applications and Unique Use Cases

Unsupervised feature learning for mammography risk
scoring is presented in Kallenberg et al. [32]. In this work,
a method is shown that learns a feature hierarchy from un-
labeled data. The learned features are then input to a simple

classifier, and two different tasks are addressed: i) breast den-
sity segmentation, and ii) scoring of mammographic texture,
with state-of-the-art results achieved. To control the model
capacity a sparsity regularizer is introduced that incorporates
both lifetime and population sparsity. The convolutional layers
in the unsupervised parts are trained as autoencoders; In the
supervised part the (pre-trained) weights and bias terms are
fine-tuned using softmax regression.
Yan et al. [33] design a multi-stage deep learning framework

for image classification and apply it on body part recognition.
In the pre-train stage, a convolutional neural network (CNN)
is learned using multi-instance learning to extract the most dis-
criminative and non-informative local patches from the training
slices. In the boosting stage, the pre-trained CNN is further
boosted by these local patches for image classification. A hall-
mark of the method was that it automatically discovered the dis-
criminative and non-informative local patches throughmulti-in-
stance deep learning. Thus, no manual annotation was required.
Regression networks are not very common in the medical

imaging domain. In Miao et al. [34], a CNN regression ap-
proach is presented, for real-time 2-D/3-D registration. Three
algorithmic strategies are proposed to simplify the underlying
mapping to be regressed, and to design a CNN regression model
with strong non-linear modeling. Results show that the DL
method is more accurate and robust than two state-of-the-art
accelerated intensity-based 2-D/3-D registration methods.
We have yet to explore the domains to which NNs can be ap-

plied, and the applications and dimensionality of tasks to which
they will provide a substantial contribution. In an exploratory
work, Golkov et al. [35] provide an initial proof-of-concept,
applying DL to reduce diffusion MRI data processing to a
single optimized step. They show that this modification en-
ables one to obtain scalar measures from advanced models
at twelve-fold reduced scan time and to detect abnormalities
without using diffusion models. The relationship between the
diffusion-weighted signal and microstructural tissue properties
is non-trivial. Golkov et al. [35] demonstrate that with the use
of a DNN such relationships may in fact be revealed: DWIs
are directly used as inputs rather than using scalar measures
obtained from model fitting. The work shows microstructure
prediction on a voxel-by-voxel basis as well as automated
model-free segmentation from DWI values, into healthy tissues
and MS lesions. Diffusion kurtosis is shown to be measured
from only 12 data points and neurite orientation dispersion
and density measures from only 8 data points. This may allow
for fast and robust protocols facilitating clinical routine and
demonstrates how classical data processing can be streamlined
by means of deep learning.

III. DISCUSSION: KEY ISSUES AND MAIN PROMISES

In the majority of works presented, use of a deep network is
shown to improve over the state-of-the-art. As these improve-
ments seem to be consistent across a large variety of domains,
and as is usually the case, development of a deep learning solu-
tion is found to be relatively straight-forward, we can view this
as a major step forward in the medical computing field. Still, a
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major question remains as to how and when we can reach a sub-
stantial leap in performance – equivalent to the 10% increase
in large scale category recognition of 2012. Are we asking the
right questions and investigating the right tasks? Are we using
strong enough input representations (e.g., 2D vs 3D)? Do we
need to work on getting real Big Data for each medical task,
or will transfer learning be sufficient? These issues and more
are partly addressed in the papers of this issue (Section II), and
mostly remain as the challenges to be answered in the future.
In the literature we can find both unsupervised as well as su-

pervised learning via deep networks. It seems that the majority
of works are in fact using supervised learning. The question
arises if in the medical domain, where data numbers are a crit-
ical factor, the formalism should combine the benefits of both
the unsupervised and the supervised. It is likely that to leverage
really big data for which hand annotations are unavailable or
intractable to obtain, the field will need to move more towards
semi-supervised and unsupervised learning.
The literature contains many network architectures. The vari-

ability is large, as can be seen across the works in the current
journal. Possibilities include selecting a known architecture, de-
vising a task-specific architecture, fusing across architectures
and more. One interesting question going forward is if the very
deep residual networks that used 152 layers and performed best
in the ILSVRC 2015 classification task [36] also obtain good
results on medical tasks.
One key aspect of deep learning is that it can benefit from

large amounts of training data. Breakthrough results in com-
puter vision were obtained on the ILSVRC challanges based
on the ImageNET data set (http://www.image-net.org/). This
data set is very large compared to most of the training and test
data sets used in the papers in this special issue (millions versus
100’s or 1000’s). Our community could likely benefit strongly if
similarly large publicly available medical image data sets were
constructed.
There are several reasons why this is challenging. First, it

is difficult to obtain funding for the construction of data sets.
Second, scarce and expensive medical expertise is needed for
high quality annotation of medical imaging data. Third, privacy
issues make it more difficult to share medical data than natural
images. Fourth, the breadth of applications in medical imaging
requires that many different data sets need to be collected.
Despite these potential hurdles, we see rapid progress in the
area of data collection and data sharing. Many public data sets
have been released and studies today routinely use them in
experimental validation. Examples include VISCERAL and
The Cancer Imaging Archive (http://www.visceral.eu/ and
http://www.cancerimagingarchive.net/). Roth et al. [13] and
Shin et al. [17] analyze a dataset of enlarged lymph nodes on
CT scans that they have made public on The Cancer Imaging
Archive [37]. The same group has made a pancreas dataset
available online [38].
Since 2007, it has become customary to organize challenge

workshops at medical imaging conferences such as MICCAI,
ISBI, and SPIEMedical Imaging. This has led to a large amount
of data sets and ongoing benchmark studies, documented at the
website http://www.grand-challenge.org/. Using these public
benchmark data sets has a distinct advantage over using public

data sets only: challenges provide a precise definition of a task
to be solved and define one or more evaluation metrics that
provide a fair and standardized comparison between proposed
algorithmic. Without such a standardization, it is often difficult
to compare different approaches to the same problem even if
they use the same data set. This is illustrated in this issue where
three studies (Anthimopoulos et al. [16], Shin et al. [17], and
van Tulder et al. [18]) use the same data set of chest CT scans
with annotations of interstitial lung disease patterns [19], but
they all report results in a different form.
One study in this issue (Setio et al. [12]) has resulted in a

challenge for pulmonary nodule detection (http://luna16.grand-
challenge.org/), organized in conjunction with the IEEE ISBI
conference, using the publicly available LIDC/IDRI data set,
and thus the system described in this issue can be compared
directly to alternative approaches.
Last year we have seen the first large challenges devoted

to medical image analysis organized on major platforms tra-
ditionally focusing on other machine learning applications.
Kaggle organized a competition on detection and staging
of diabetic retinopathy from color fundus images for which
661 teams submitted results, $100,000 prize money was
awarded, and around 80,000 images were made available
(https://www.kaggle.com/c/diabetic-retinopathy-detection).
This data was used in one study in this special issue (van
Grinsven et al. [24]). Recently, a second medical image
analysis competition was completed using MRI to measure
cardiac volumes and derive ejection fractions in which 192
teams participated and $200,000 prize money was available
(https://www.kaggle.com/c/second-annual-data-science-bowl).
In both these competitions, the top contenders all used convo-
lutional neural networks. We expect both trends to continue:
challenges will use larger data sets and deep learning will be a
dominant technology among the best performing solutions. In
this context, the upcoming series of worldwide competitions
to increase the accuracy of various imaging based cancer
screenings (coding4cancer.org) could be of interest for readers
of this special issue.
On-line platforms, such as the ones used for competitions,

serve multiple purposes. They lead to new collaborations and
joint solutions, could also be the most effective way to obtain
large amounts of data annotations via crowd-sourcing, which
was shown by the study fromAlbarqouni et al. [31] in this issue.
Finally, we are grateful for the guidance from the current Ed-

itor-in-Chief, the help from the TMI office, and most impor-
tantly the tremendous efforts by the authors and the reviewers.
This Special issue provides a snapshot in time of a very fast
moving field of medical image processing. We hope you will
enjoy it and look forward to your future contributions to this
dynamic field.
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