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A Generative Probabilistic Model and Discriminative
Extensions for Brain Lesion Segmentation—
With Application to Tumor and Stroke
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Esther Alberts, Philipp Gruber, Susanne Wegener, Marc-André Weber, Gabor Székely,
Nicholas Ayache, and Polina Golland

Abstract—We introduce a generative probabilistic model for seg-
mentation of brain lesions in multi-dimensional images that gener-
alizes the EM segmenter, a common approach for modelling brain
images using Gaussian mixtures and a probabilistic tissue atlas
that employs expectation-maximization (EM), to estimate the label
map for a new image. Our model augments the probabilistic atlas
of the healthy tissues with a latent atlas of the lesion. We derive
an estimation algorithm with closed-form EM update equations.
The method extracts a latent atlas prior distribution and the lesion
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posterior distributions jointly from the image data. It delineates le-
sion areas individually in each channel, allowing for differences in
lesion appearance across modalities, an important feature of many
brain tumor imaging sequences. We also propose discriminative
model extensions to map the output of the generative model to arbi-
trary labels with semantic and biological meaning, such as “tumor
core” or “fluid-filled structure”, but without a one-to-one corre-
spondence to the hypo- or hyper-intense lesion areas identified by
the generative model. We test the approach in two image sets: the
publicly available BRATS set of glioma patient scans, and multi-
modal brain images of patients with acute and subacute ischemic
stroke. We find the generative model that has been designed for
tumor lesions to generalize well to stroke images, and the extended
discriminative -discriminative model to be one of the top ranking
methods in the BRATS evaluation.

Index Terms—Medical diagnostic imaging, anatomical struc-
ture, tumors, image segmentation, object segmentation, Bayes
methods.

I. INTRODUCTION

LIOMAS are the most frequent primary brain tumors.

They originate from glial cells and grow by infiltrating
the surrounding tissue. The more aggressive form of this disease
is referred to as “high-grade” glioma. The tumor grows fast and
patients often have survival times of two years or less, calling
for immediate treatment after diagnosis. The slower growing
“low-grade” disease comes with a life expectancy of five years
or more, allowing the aggressive treatment to be delayed. Exten-
sive neuroimaging protocols are used before and after treatment,
mapping different tissue contrasts to evaluate the progression
of the disease or the success of a chosen treatment strategy. As
evaluations are often repeated every few months, large longitu-
dinal datasets with multiple modalities are generated for these
patients even in routine clinical practice. In spite of the need for
accurate information to guide decision making process for an
treatment, these image series are primarily evaluated using qual-
itative criteria—indicating, for example, the presence of charac-
teristic hyper-intense intensity changes in contrast-enhanced T1
MRI—or relying on quantitative measures that are as basic as
calculating the largest tumor diameter that can be recorded in a
set of axial images.

While an automated and reproducible quantification of tumor
structures in multimodal 3D and 4D volumes is highly desir-
able, it remains difficult. Glioma is an infiltratively growing
tumor with diffuse boundaries and lesion areas are only defined
through intensity changes relative to surrounding normal tis-
sues. As a consequence, the outlines of tumor structures cannot
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be easily delineated—even manual segmentations by expert
raters show a significant variability [1]—and common MR
intensity normalization strategies fail in the presence of ex-
tended lesions. Tumor structures show a significant amount of
variation in size, shape, and localization, precluding the use of
related mathematical priors. Moreover, the mass effect induced
by the growing lesion may lead to displacements of the normal
brain tissues, as well as a resection cavity that is present after
treatment, limits the reliability of prior knowledge available for
the healthy parts of the brain. Finally, a large variety of imaging
modalities can be used for mapping tumor-related tissue
changes, providing different types of biological information,
such as differences in tissue water (T2-MRI, FLAIR-MRI), en-
hancement of contrast agents (post-Gadolinium T1-MRI), water
diffusion (DTT), blood perfusion (ASL-, DSC-, DCE-MRI),
or relative concentrations of selected metabolites (MRSI). A
segmentation algorithm must adjust to any of these, without
having to collect large training sets, a common limitation for
many data-driven learning methods.

A. Related Prior Work

Brain tumor segmentation has been the focus of recent
research, most of which is dealing with glioma [2], [3]. Few
methods have been developed for less frequent and less ag-
gressive tumors [4]-[7]. Tumor segmentation methods often
borrow ideas from other brain tissue and other brain lesion seg-
mentation methods that have achieved a considerable accuracy
[8]. Brain lesions resulting from traumatic brain injuries [9],
[10] and stroke [11], [12] are similar to glioma lesions in terms
of size and multimodal intensity patterns, but have attracted
little attention so far. Most automated algorithms for brain
lesion segmentation rely on either generative or discriminative
probabilistic models at the core of their processing pipeline.
Many encode prior knowledge about spatial regularity and
tumor structures, and some offer longitudinal extensions for
4D image volumes to exploit longitudinal image sets that are
becoming increasingly available [13], [14].

Generative probabilistic models of spatial tissue distribution
and appearance have enjoyed popularity for tissue classification
as they exhibit good generalization performance [15]-[17]. En-
coding spatial prior knowledge for a lesion, however, is chal-
lenging. Tumors may be modeled as outliers relative to the ex-
pected shape [18], [19] or to the image signal of healthy tissues
[16],[20]. In [16], for example, a criterion for detecting outliers
is used to generate a tumor prior in a subsequent EM segmen-
tation that treats the tumor as an additional tissue class. Alter-
natively, the spatial prior for the tumor can be derived from the
appearance of tumor-specific markers, such as Gadolinium en-
hancements [21], [22], or from using tumor growth models to
infer the most likely localization of tumor structures for a given
set of patient images [23]. All these segmentation methods rely
on registration to align images and the spatial prior. As a result,
joint registration and tumor segmentation [17], [24] and joint
registration and estimations of tumor displacement [25] have
been investigated, as well as the direct evaluation of the defor-
mation field for the purpose of identifying the tumor region [7],
[26].
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Discriminative probabilistic models directly learn the differ-
ences between the appearance of the lesion and other tissues
from the data. Although they require substantial amounts of
training data to be robust to artifacts and variations in intensity
and shape, they have been applied successfully to tumor seg-
mentation tasks [27]-[31]. Discriminative approaches proposed
for tumor segmentation typically employ dense, voxel-wise fea-
tures from anatomical maps [32] or image intensities, such as
local intensity differences [33], [34] or intensity profiles, that
are used as input to inference algorithms such as support vector
machines [35], decision trees ensembles [32], [36], [37], or deep
learning approaches [38], [39]. All methods require the imaging
protocol to be exactly the same in the training set and in the
novel images to be segmented. Since local intensity variation
that is characteristic of MRI is not estimated during the segmen-
tation process, as in most generative mixture models, calibration
of the image intensities becomes necessary which is already a
difficult task in the absence of lesions [40]-[42].

Advantageous properties of generative and discriminative
probabilistic models have been combined for a number of
applications in medical imaging: generative approaches can be
used for model-driven dimensional reduction to form a low-di-
mensional basis for a subsequent discriminative method, for
example, in whole brain classification of Alzheimer's patients
[43]. Vice versa, a discriminative model may serve as a filter to
constrain the search space for employing complex generative
models in a subsequent step, for example, when fitting biophys-
ical metabolic models to MRSI signals [44], or when fusing
evidence across different anatomical regions in the analysis of
contrast-enhancing structures [45]. Other approaches improve
the output of a discriminative classification of brain scans by
adding prior knowledge on the location of subcortical structures
[46] or the skull shape [47] through generative models. The
latter approach for skull stripping showed superior robustness
in particular on images of glioma patients [48]. To the best of
our knowledge no generative-discriminative model has been
used for tumor analysis so far, although the advantages of
employing a secondary discriminative classifier on the prob-
abilistic output of a first level discriminative classifier, which
considers prior knowledge on expected anatomical structures
of the brain, has been demonstrated in [32].

Spatial regularity and spatial arrangement of the 3D tumor
sub-structure is used in most generative and discriminative
segmentation techniques, often in a postprocessing step and
with extensions along the temporal dimension for longitudinal
tasks: Local regularity of tissue labels can be encoded via
boundary modeling within generative [16], [49] and discrim-
inative methods [27], [28], [50], [49], or by using Markov
random field priors [30], [31], [51]. Conditional random fields
help to impose structures on the adjacency of specific labels
and, hence, impose constraints on the wider spatial context of a
pixel [29], [35]. 4D extensions enforce spatial contiguity along
the time dimension either in an undirected fashion [52], or in a
directed one when imposing monotonic growth constraints on
the segmented tumor lesion acting as a non-parametric growth
model [13], [53], [14]. While all these segmentation models
act locally, more or less at the pixel level, other approaches
consider prior knowledge about the global location of tumor
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Fig. 1. Graphical model for the proposed segmentation approach. Voxels are
indexed with ¢, channels are indexed by ¢. The known prior 7 determines the
label k& of the normal healthy tissue. The latent atlas o determines the channel-
specific presence of tumor ¢. Normal tissue label k, tumor labels ¢, and intensity
distribution parameters 8 jointly determine the multimodal image observations
y. Observed (known) quantities are shaded. The segmentation algorithms aims
to estimate p(t$|y), along with the segmentation of healthy tissue p(k;|y).

structures. They learn, for example, the relative spatial ar-
rangement of tumor structures such as tumor core, edema, or
enhancing active components, through hierarchical models of
super-voxel clusters [54], [34], or by relating image patterns
with phenomenological tumor growth models that are adapted
to the patient [25].

B. Contributions

In this paper we address three different aspects of multimodal
brain lesion segmentation, extending preliminary work we pre-
sented earlier in [S5]-[57]:

+ We propose a new generative probabilistic model for
channel-specific tumor segmentation in multi-dimensional
images. The model shares information about the spatial
location of the lesion among channels while making full
use of the highly specific multimodal, i.e., multivariate,
signal of the healthy tissue classes for segmenting normal
tissues in the brain. In addition to the tissue type, the model
includes a latent variable for each voxel encoding the
probability of observing a tumor at that voxel, similar to
[49], [50]. The probabilistic model formalizes qualitative
biological knowledge about hyper- and hypo-intensities
of lesion structures in different channels. Our approach
extends the general EM segmentation algorithm [58], [59]
using probabilistic tissue atlases [60], [15], [61] for situa-
tions when specific spatial structures cannot be described
sufficiently through population priors.

+ We illustrate the excellent generalization performance of
the generative segmentation algorithm by applying it to
MR images of patient with ischemic stroke, which—to the
best of our knowledge—is one of the first automated seg-
mentation algorithms for this major neurological disease.

+ We extend the generative model to a joint generative-dis-
criminative method that compensates for some of the
shortcomings of both the generative and the discriminative
modeling approach. This strategy enables us to predict
clinically meaningful tumor tissue labels and not just

the channel-specific hyper- and hypo-intensities returned
by the generative model. The discriminative classifier
uses the output of the generative model, which improves
its robustness against intensity variation and changes in
imaging sequences. This generative-discriminative model
defines the state-of-the-art on the public BRATS bench-
mark data set [1].
In the following we introduce the probabilistic model
(Section II), derive the segmentation algorithm and additional
biological constraints, and we describe the discriminative
model extensions (Section IIT). We evaluate the properties and
performance of the generative and the generative-discrimi-
native methods on a public glioma dataset (Sections IV and
Section V, respectively), including an experiment on the
transfer of the generative model to images from stroke patients.
We conclude with a discussion of the results and of future
research directions (Section VI).

II. A GENERATIVE BRAIN LESION SEGMENTATION MODEL

Generative models consider prior information about the
structure of the observed data and exploit such information to
estimate latent structure from new data. The EM segmenter,
for example, models the image of a healthy brain through three
tissue classes [60], [15], [61]. It encodes their approximate
spatial distribution through a population atlas generated by
aligning a larger set of reference scans, segmenting them manu-
ally, and averaging the frequency of each tissue class in a given
voxel within the chosen reference frame. Moreover, it assumes
that all voxels of a tissue class have about the same image
intensity which is modeled through a Gaussian distribution.
This segmentation method, whose parameters can be estimated
very efficiently through the expectation maximization (EM)
procedure, treats image intensities as nuisance parameters
which makes it robust in the presence of the characteristic
variability of the intensity distributions of MR images. More-
over, since the method formalizes the image content explicitly
through the probabilistic model, it can be combined with other
parametric transformations, for example, for registration [62]
or bias field correction [15], and account for the related changes
in the observed data. Generative models with tissue atlases
used as spatial priors are at the heart of most advanced image
segmentation models in neuroimaging [63], [64].

Population atlases cannot be generated for tumors as their lo-
cation and extensions vary significantly across patients. Still,
the tumor location is similar in different MR images of the same
patient and a patient-specific atlas of the lesion class could be
generated. Segmentation and atlas building can be performed si-
multaneously, in a joint estimation procedure [50]. Here, the key
idea is to model the lesions through a separate latent atlas class.
Combined with the standard population atlas of the normal tis-
sues and the standard EM segmentation framework, this extends
the EM segmenter to multimodal or longitudinal images of pa-
tients with a brain lesion. The generative model is illustrated in
Fig. 1.

A. The Probabilistic Generative Model

1) Normal Healthy Tissue Classes: We model the normal
healthy tissue label k; of voxel 7 in the healthy part of the brain
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Fig. 2. Tllustration of the probabilistic model. The left panel shows images of a low-grade glioma patient with lesion segmentations in the different channels
(outlined in magenta); in the bottom row it shows the probabilistic tissue atlases used in the analysis, and the patient-specific tumor prior inferred from the segmen-
tations in the different channels. The right panel shows three voxels ¢ with different labels in T1-, T1c- and FLAIR-MRI for a high-grade glioma patient. In voxel
‘1’ all three channels show the characteristic image intensity of gray matter (G). In voxel 2’ white matter (W) is visible in the first two channels, but the third
channel contains a tumor-induced change (T), here due to edema or infiltration. In voxel ‘3’ all channels exhibit gray values characteristic of tumor: a hypo-intense
signal in T1, a hyper-intense gadolinium uptake in T1c—indicating the most active regions of tumor growth—and a hyper-intense signal in the FLAIR image. The
initial tissue class k; remains unknown. Both k; and #; are to be estimated. Inference is done by introducing a transition process—with ‘latent” prior ¢x; (Fig. 1)—
which is assumed to have induced the channel-specific tissue changes implied by £; = 1 in the tumor label vector #;.

using a spatially varying probabilistic atlas, or prior p(k; = k)
that is constructed from prior examples. At each voxel i &
{1,..., I}, this atlas indicates the probability of the tissue label
k; to be equal to tissue class & € {1,...,K} (Fig. 1, blue).
The probability of observing tissue label & at voxel ¢ is mod-
eled through a categorical distribution

plk; = k) = i, (1

where Zk 7r; = 1 for all ¢ and mp; > O for all i, k. The
tissue label &; is shared among all (! channels at voxel i. In our
experiments we assume K = 3, representing gray matter (G),
white matter (W) and cerebrospinal fluid (CSF), as illustrated in
Fig. 2.

2) Tumor Class: We model the tumor label using a spatially
varying latent probabilistic atlas o [49], [50] that is specific to
the given patient (Fig. 1, red). At each voxel 7, this atlas contains
a scalar parameter «; that defines the probability of observing
a tumor at that voxel, forming the 3D parameter volume a. Pa-
rameter «; is unknown and is estimated as part of the segmen-
tation process. We define a latent tumor label ¢{ € {0,1} that
indicates the presence or absence of tumor-induced changes in
channel ¢ € [1,...,C] at voxel 4, and model it as a Bernoulli
random variable with parameter ;. We form a binary tumor
label vector ¢; = [t},...,t]7 (where [-]T indicates the trans-
pose of the vector) of the tumor labels in all €' channels, that
describes tumor presence in voxel ¢ with probability

p(ts; ;) = Hp(tf;ai) = HO":? (-t ()

Here, we assume tumor occurrence to be independent from the
type of the underlying healthy tissue. We will introduce condi-
tional dependencies between the underlying tissue class and the
likelihood of observing tumor-induced intensity modifications
in Section II-C.

3) Observation Model: The image observations y; are gen-
erated by Gaussian intensity distributions for each of the K
tissue classes and the C' channels, with mean pj, and variance
vg, respectively (Fig. 1, purple). In the tumor (i.e., if £f = 1),
the normal observations are replaced by intensities from another
set of channel-specific Gaussian distributions with mean p%. and
variance v5. representing the tumor class. Letting 8 denote the
set of mean and variance parameters for normal tissue and tumor
classes, and y; = [y},...,y |7 denote the vector of the inten-
sity observations at voxel i, we form the data likelihood:

p(yilti, ki:8) = [ [ p(use5, Ris 6)
=11 [N(yf;uﬁi,vzi)lt?'N(yf:M%vv%)”f , )

where A/ (+; u, v) is the Gaussian distribution with mean g and
variance v.

4) Joint Model: Finally, the joint probability of the atlas, the
latent tumor class, and the observed variables is the product of
the components defined in (1)—(3):

Py, i kis 0, ;) = p(y; i, ki3 0) - p(ts; i) - p(ks). (4)

We let Y denote the set of the C' image volumes, 7" denote
the corresponding C' volumes of binary tumor labels, K de-
note the tissue labels, and & denote the parameter volume. We
obtain the joint probability over all voxels ¢ € I by forming
p(Y,T,K;6,a) = [],.; p(y;, L, ki; 8, cv;), assuming that all
voxels represent independent observations of the model.

B. Maximum Likelihood Parameter Estimation

We derive an expectation-maximization scheme that jointly
estimates the model parameters {8, @} and the posterior distri-
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bution of tissue labels &; and tumor labels ¢;. We start by seeking
maximum likelihood estimates of the model parameters {8, a:}:

~

8,0) = arg 1&1a>><p(Y; 0,a) 5)
M
= arg lgola>><Hp(yi; b,a), (6)
a1
and
p(y;;6, @) ZZp Y, ti ki 0, @) @)
)]

= Zp y‘i7s'i;07a ?
8;

where label vector s; = [s},..., 5T indicates tumor s¢ = T
in all channels with ¢{ = 1, and normal tissue s{ = k; for all
other channels. As an example with three channels, illustrated
in Fig. 2 (voxel 2), suppose t; = [0, 0, 1] and k; = W indicating
tumor in channel 3 and image intensities relating to white matter
in channels 1 and 2. This results in the tissue label vector s; =
(W, W, T).

1) E-Step: In the E-Step of the algorithm, making use of
given estimates of the model parameters {8, a}, we compute
the posterior probability of all K * 2 tissue label vectors s;.
Expanding (4), we use 2;(s;) and k;(s;) that are corresponding
to s; to simplify notation:

p(sily;; 0, @) oc my; H [{Oéif\/'(y%ﬂ%j@%)}t?'

C

{(1 - ai)N(yz 7:&’2762)}172? ) (9)

and >, p(sily;; 0, &) = 1 for all 4. Using the tissue label vec-
tors, we can calculate the probability that tumor is visible in
channel ¢ of voxel « by summing over all the configurations ;
for which s{ = T (or equivalently ¢ = 1):

20T

where 4 is the Kronecker delta that is equal to 1 for s = T and
0 otherwise. In the same way we can estimate the probability
for the healthy tissue classes k&:

Z max{5

where max,.{6(s¢, k) } indicates that one or more of the C' chan-
nels of label vector s; contain k.

2) M-Step: In the M-Step of the algorithm, we update the
parameter estimates using closed-form update expressions that
guarantee increasingly better estimates of the model parameters
[65]. The updates are intuitive: the latent tumor prior &; is an
average of the corresponding posterior probability estimates

are S pleiid @) & Yot 1)

8

1 . o
= F Zp(sz = T|yz703 a):

p(s§ = Tly;;8,&) — p(sily;8,&),  (10)

p(s; = kly;; 0,8) = k)}o(sily;6,8), (1)

(12)

and the intensity parameters /i and ©f, are set to the weighted

statistics of the data for the healthy tissues (k = 1,..., K)
o 2ip(si = kly;; 8, a)yz./ (13)
> p(s = kly;; 0, a)
=k 0 —

Z p(s§ = Kly;; 8, @)

Similarly, for the parameters of the tumor class (77}, we obtain

>, p(ss = Tlys; 6, a)yz

T , (15)
S p(si = Tly;;6,a)
; c — - ¢ _ e 2
'(AJ% - Zz‘p(sz T|y7,707 a)(yz luT) . (16)

Yoip(sf =Tly;; 0, @)

We alternate between updating the parameters {8, a} and the
computation of the posteriors p(s;|y;; 8, @) until convergence,
which is typically reached after 10—15 iterations.

C. Enforcing Additional Biological Constraints

Expectation-maximization is a local optimizer. To overcome
problems with initialization, we enforce desired properties of
the solution by replacing the exact computation with an approx-
imate solution that satisfied additional constraints. These con-
straints represent our prior knowledge about tumor structure,
shape or growth behaviour!.

1) Conditional Dependencies on Tumor Occurrence: A pos-
sible limitation in the generalization of our probabilistic model
is the dimensionality of tissue label vector s; that has K * 2¢
possible combinations in (9) and, hence, the computational de-
mands and memory requirements that grow exponentially with
the number of channels C in multimodal data sets. To this end,
we may want to impose prior knowledge on p(¢;|k;) and p(2;)
by only considering label vectors s; that are biologically plau-
sible. First, instead of assuming independence between tissue
class and tumor occurrence, we assume conditional dependen-
cies, such as p(t{ = 1|k; = C'SF) = 0 for all ¢. We impose
this dependency by removing, in this example, all tumor label
vectors containing both CSF and tumor from the list of vectors
s; that are included in (9). Second, we can impose constraints
on the co-occurrence of tumor-specific changes in the different
image modalities (rather than assuming independence here as
well), and exclude additional tumor label vectors. We consider,
for example, that the edema visible in T2 will always coincide
with the edema visible in FLAIR, or that lesions visible in T1
and Tlc are always contained within lesions that are visible in
T2 and FLAIR.

Together, these constraints reduce the total number of
label vectors s; to be computed in (9), for a standard glioma
imaging sequences with Tlc, T1, T2, and FLAIR, from K
% 20 = 3 % 2% = 48 to as few as ten vectors: three healthy
vectors with ¢ = [0,0,0,0] (corresponding to [G,G, G, G],
[W,W, W, W], and [CSF,CSF,CSF,CSF]); edema with
tumor-induced chances visible in FLAIR in the forth channel
t = [0,0,0,1] (with [W, W, W, T] and [G,G,G, T)); edema

TAn implementation of the generative tumor segmentation algorithm in
Python is available from http://ibbm.in.tum.de.
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with tumor-induced changes visible in both FLAIR and in
T2 ¢+ = [0,0,1,1] (with [W,W,T,T] and [G,G,T,T)); the
non-enhancing tumor core with changes in T1, T2, FLAIR, but
without hyper-intensities in Tlc ¢t = [0,1,1,1] (W, T, T, T)
and [G,T,T,T)); the enhancing tumor core with hyper-in-
tensities in Tlc and additional changes in all other channels
t=1[1,1,1,1 (T, T,T,T).

2) Hyper- and Hypo-Intense Tumor Structures: During the
iterations of the EM algorithm we enforce that tumor voxels are
hyper- or hypo-intense with respect to the current average image
intensity pf of the white matter tissue (hypo-intense for T1,
hyper-intense for Tlc, T2, FLAIR). Similar to [51], we modify
the probability that tumor is visible in channel ¢ of voxel ¢ by
comparing the observed image intensity y; with the previously
estimated ji§, prior to calculating updates for parameters 8 (16).
We set the probability to zero if the intensity does not align with
our expectations:

B(s; = Ty;:0,a) = {p<sf =Tlyis0,@) ifi > jig,

g, otherwise
17)

For hypo-intensity constraints we modify the posterior proba-
bility updates in the same way, using y§ < fi}, as a criterion.

3) Spatial Regularity of the Tumor Prior: Little spatial con-
text is used in the basic model, as we assume the tissue class
s; in each voxel to be independent from the class labels of
other voxels. Atlas 7 encourages spatially continuous classifi-
cation for the healthy tissue classes by imposing similar priors in
neighboring voxels. To encourage spatial regularity of the tumor
labels, we extend the latent atlas « to include a Markov random
field (MRF) prior:

(T3, a ocHH[ (1—a;)t b
GXP[*EZ{tf(l

JEN;

9+ - [ a9

Here, N; denotes the set of the six nearest neighbors of voxel
i, and g is a parameter governing how similar the tumor labels
tend to be at the neighboring voxels. When 5 = 0, there is no
interaction between voxels and the model reduces to the one
described in Section II. By applying a mean-field approximation
[66], we derive an efficient approximate algorithm. We let

ng = p(s5=Tly;;0,a)

JEN;

(19)

denote the currently estimated “soft” count of neighbors that
contain tumor in channel ¢. The mean-field approximation im-
plies

p(sily;8,@) o i [ {{wf (y5; 15, 95) Y55 -
[

{1 =N (s a5, 05 5| (20)

where ¢ = a; /[ + (1 — a;) exp(—B(2nf — 6))], replacing
the previously defined (9), using a channel-specific v as a mod-
ification of «; that features the desired spatial regularity.
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III. DISCRIMINATIVE EXTENSIONS

High-level context at the organ or lesion level, as well as
regional information, is not considered in the segmentation
process of the generative model. Although we use different
constraints to incorporate local neighbourhood information,
the generative model treats each voxel as an independent
observation and estimates class labels only from very local
information. To evaluate global patterns, such as the presence
of characteristic artifacts or tumor sub-structures of specific
diagnostic interest, we present two alternative discriminative
probabilistic methods that make use of both local and non-local
image information. The first one, acting at the regional level, is
improving the output of the generative model and maintaining
its hyper- and hypo-intense lesion maps, while the second one,
acting at the voxel level, is transforming the generative model
output to any given set of biological tumor labels.

A. The Probabilistic Discriminative Model

We employ an algorithm that predicts the probability of label
I € L for a given observation j which is described by feature
vector ; = [x;, cee :Uf ]¥ derived from the segmentations of
the generative model. We seek to address two slightly different
problems. In the first task, class labels L indicate whether a
segmented region j is a result of a characteristic artifact rather
than of tumor-induced tissue changes, essentially indicating
false positive regions in the segmentations of the generative
algorithm that should be removed from the output. In the
second task, class labels L represent dense, voxel-wise labels
with a semantic interpretation, for example structural attributes
of the tumor that do not coincide with the hyper- and hyper-in-
tense segmentations in the different channels, but labels such
as “necrosis”, or “non-enhancing core”. We test both cases
in the experimental evaluation, using on channel-wise tumor
probabilities p(s¢ = T'|y;) and on normalized intensities y; to
derive input features for the discriminative algorithms.

To model relations between /; and x; for observation j € N,
we choose random forests, an ensemble of D randomized de-
cision trees [67]. We use the random forest classifier as it is
capable of handling irrelevant predictors and, to some degree,
label noise. During training each tree uses a different set of sam-
ples X . It consists of » randomly sampled observations X"
that only contain features from a random subspace of dimen-
sionality m = log(P), where P is the number of features. We
learn an ensemble of D different discriminative classifiers, in-
dexed by d, that can be applied to new observations z; during
testing, with each tree predicting the membership L(d);. When
averaging over all D predictions that we obtain for the indi-
vidual observation, we obtain an estimate of p(l;|z;) = 1/D
Y- L(d);. We choose logistic regression trees as discrimina-
tive base classifiers for our ensemble, as the resulting oblique
random forests perform multivariate splits at each node and are,
hence, better capable of dealing with the correlated predictors
derived from a multimodal image data set [68]. For both dis-
criminative approaches we use an ensemble with D = 255 de-
cision trees.
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Fig. 3. Evaluation of the generative model and comparison against alternative generative modeling approaches: high-grade (top) and low-grade cases (bottom).
Reported are Dice scores for channel-specific segmentations for both low- and high-grade cases in the BRATS training set calculated in the lesion area. Boxplots
indicate quartiles, circles indicate outliers. Results of the proposed model are shown in red, while results for related but different generative segmentation methods
are shown in blue. Figure A reports performances of univariate tumor segmentations similar to [51]. Figure B: performances of our algorithm with and without
constraints on the expected tumor intensities indicating their relevance. Figure C: performance of a generative model with “flat” global tumor prior afi4: —i.e.,

the model of the standard EM segmenter—and evaluating seven different values e y1q0: € [.005, ..

The proposed model outperforms all tested alternatives.

TABLE 1
DICE SCORES ON THE TEST SETS USED IN THIS STUDY, FOR THE TWO TASKS OF
SEGMENTING THE WHOLE LESION (TOP) AND THE GADOLINIUM ENHANCING
STRUCTURES (BOTTOM). BRATS RESULTS ARE CALCULATED ON THE WHOLE
BRAIN, STROKE RESULTS IN THE LESION AREA. INTER-RATER REPRESENTS THE
OVERLAP OVER MULTIPLE SEGMENTATIONS OF THE CORRESPONDING TASK
AND DATASETS DONE BY HUMAN RATERS [1]. REPORTED ARE MEAN WITH
STANDARD DEVIATION AND MEDIAN WITH MEDIAN ABSOLUTE DEVIANCE.

Task: complete lesion (FLAIR) mean median
(+ std) (= MAD)
BRATS glioma — generative (raw) S8 (£.22) | .67 (=.11)
BRATS glioma — gener. (postproc.) 62 (£.21) | .72 (£.11)
BRATS glioma — gener.-discr. (region) | .69 (£.24) | .79 (£.06)
BRATS glioma — gener.-discr. (pixel) 718 (£.13) | .83 (£.05)
INTER-RATER (4 raters) .86 (£.06) | .87 (+£.06)
Zurich stroke T8 (£.11) | .79 (=.07)
INTER-RATER (2 raters) 79 (£.11) | .80 (£.12)
Task: enhancing core (T1c) mean median
(+£ std) (= MAD)
BRATS glioma — generative (raw) 46 (£.26) | .60 (£.15)
BRATS glioma — gener. (postproc.) S1L(=x.27) | .64 (£.15)
BRATS glioma — gener.-discr. (region) | .53 (£.27) | .66 (+.14)
BRATS glioma — gener.-discr. (pixel) 54 (£.29) | .66 (£.15)
INTER-RATER (4 raters) 76 (£.10) | .78 (+.08)
Zurich stroke 45 (£.33) | .64 (£.18)
INTER-RATER (2 raters) .82 (£.08) | .83 (£.05)

B. A Discriminative Approach Acting at the Regional Level

As many characteristic artifacts have, at the pixel level, a mul-
timodal image intensity patterns that is similar to the one of
a lesion, we design a discriminative probabilistic method that
is postprocessing and “filtering” the basic output of the gener-
ative model. In addition to the pixel-wise intensity pattern, it
evaluates regional statistics of each connected tumor area, such

., .4]. Blue lines and dots in C indicate average Dice scores.

as volume, location, shape, signal intensities. It replaces com-
monly used postprocessing routines for quality control that eval-
uate hand-crafted rules on lesion size or shape and location by
a discriminative probabilistic model, similar to [44].

1) Features and Labels: The discriminative classifier acts at
the regional level to remove those lesion areas from the output
of the generative model that are not associated with tumor, but
that stem from arbitrary biological or imaging variation of the
voxel intensities. To this end we identify all R isolated regions
in the binary tumor map of the FLAIR image (containing voxels
i with p(s/TATE = Ty.) > 1/2). We choose FLAIR since it
is the most inclusive image modality. As artifacts may be con-
nected to lesion areas, we over-segment larger structures using a
watershed algorithm, subdividing regions with connections that
are less than 5 mm in diameter to reduce the number mixed
regions containing both tumor pixels and artifact patterns. For
each individual region r € 1... R we calculate a feature vector
z, that includes volume, surface area, surface-to-volume ratio,
as well as regional statistics that are minimum, maximum, mean
and median of the normalized image intensities in the four chan-
nels. We scale the image intensities for each channels linearly to
match the distribution of intensities in a reference data set. We
also determine the absolute and the relative number of voxels ¢
with p(sI1¢ = Tly,) > 1/2 within region r, i.e., the volume
of the active tumor. We calculate the linear dimensions of the
region in axial, sagittal, and transversal direction, the maximal
ratio between these three values indicating eccentricity, and the
relative location of the region with respect to the center of the
brain mask, as well as minimum, maximum, mean and median
distances of the regions's voxels from the skull, as a measure of
centrality within the brain. We then determine the total number
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of FLAIR lesions for the given patient and assign this number as
another feature to each lesion, together with its individual rank
with respect to volume both in absolute numbers and as a nor-
malized rank within [0, 1].

Overall, we construct P = 39 features for each region r
(Fig. 6). To assign labels to each region, we inspect them vi-
sually and assign those overlapping well with a tumor area to
the true positive “tumor” class L, = 1, all other to the false
positive “artifact” class L, = 0. When labeling regions in the
BRATS training data set (Section V), all regions labeled as true
positives have at least 30% overlap with the “whole tumor” an-
notation of the experts.

C. A Discriminative Approach Acting at the Voxel Level

The generative model returns a set of probabilistic maps indi-
cating the presence of hypo- or hyper-intense modifications of
the tissue. In most applications and imaging protocols, however,
it is necessary to localize arbitrary tumor structures—with bi-
ological interpretations and clinically relevant semantic labels,
such as “edema”, “active tumor” or “necrotic core”. These struc-
tures do not correspond one-by-one to the hypo- and hyper-in-
tense lesions, but have to be inferred by evaluating spatial con-
text and tumor structure as well. We use the probabilistic output
of the generative model, together with few secondary features
that are derived from the same probabilistic maps and image
intensity features, as input to a classifier predicting the poste-
rior probability of the desired semantic labels. The discrimina-
tive classifier evaluates local and non-local features to map the
output of the generative model to semantic tumor structure and
to infer the most likely label L for each given voxel, similar to
[32].

1) Features and Labels: To predict a dense set of semantic
labels L we extract the following set of features z; for each
voxel j: the tissue prior probabilities p(k;) for the K = 3 tissue
classes (z}); the tumor probability p(s; = T) for all C = 4
channels (%), and the C' = 4 image intensities after they have
been scaled linearly to the intensities of a reference data set
(:cgm) From these data we derive two types of features. First,
we construct the differences of local image intensities or prob-
abilities for all three types of input features (:v;”, x5, :l;;m). This
feature captures the difference between the image intensity or
probability z; of voxel j and the corresponding image inten-
sity or probability of another voxel k. For every voxel j in our
volume we calculate these differences :L'?Zf F= x; — x3, for 20
different directions, with spatial offsets in between 3 mm to 3
cm, i.e., distances that correspond to the extension of most rele-
vant tumor structures. To reduce noise the subtracted values of
xy, are extracted after smoothing the image intensities locally
around voxel %k (using a Gaussian kernel with 3 mm standard
deviation). We calculate differences between tumor or tissue
probability at a given voxel and the probability of the same loca-
tion on the contralateral side. Second, we evaluate the geodesic
distance between voxel j and specific image features that are
of particular interest in the analysis. The path is constrained to
areas that are most likely gray matter, white matter or tumor as
predicted by the generative model. More specifically, we use the

distance of m?“““e of voxel j to the boundary of the the brain
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tissue (the interface of white and gray matter with CSF), the dis-
tance :t?e‘im to the boundary of the T2 lesion representing the
approximate location of the edema. This latter distance £3¢%™
is calculated independently for voxels outside (£2°¢" ") and in-

J
side (x?e‘im‘) the edema. In the same way, we calculate :z?““r

and m?‘wt* representing the inner and outer distance to the next
T1c hyper-intensity. We calculate the number of voxels that are
labeled as “edema” or “active tumor” among the direct neigh-
bours of voxel j (zjdm’a"‘t), and determine the x-y-z location of
the voxel in the co-registered NMI space (23/7).

Overall, we construct P = 651 image features z; =
[a:;?,xj,z;m,z?’ff,zg, jdm’“t,zy‘w] for each voxel j and,
when adapted to the BRATS training data set (Section V), five
labels L; as provided by clinical experts.

IV. EXPERIMENT 1: PROPERTIES AND PERFORMANCE OF THE
GENERATIVE MODEL

In a first experiment, we evaluate the relevance of different
components and parameters of the probabilistic model, compare
it with related generative approaches,and evaluate the perfor-
mance on the public BRATS glioma dataset, and test the gener-
alization in a transfer to a related application dealing with stroke
lesion segmentation.

A. Data and Evaluation

1) Glioma Data: We use the public BRATS 2012-2013
dataset that provides a total of 45 annotated multimodal
glioma image volumes [1]. Training datasets consist of 10/20
low/high-grade cases with native T1, Gadolinium-enhanced
T1 (Tlc), T2 and FLAIR MR image volumes. The test dataset
contains no labels, but can be evaluated by uploading image
segmentations to a server; it includes 4/11 low-grade/high-grade
cases. Experts have delineated tumor edema, Gadolinium-en-
hancing “active” core, non-enhancing solid core, cystic/necrotic
core. We co-register the probabilistic MNI tissue atlas of
SPM99 with the T1 image of each dataset using the FSL
software, and sampled to 1 mm? isotropic voxel resolution. We
perform a bias field correction using a polynomial spline model
(degree 3) together with a multivariate tissue segmentation
using an EM segmenter that is robust against lesions? [51].
Image intensities of each channel in each volume are scaled
linearly to match the histogram of a reference.

2) Stroke Data: Images are acquired in patients with acute
and subacute ischemic stroke. About half of the 18 datasets
comprise T1, T2, Tlc and FLAIR images in patients in the
sub-acute phase, acquired about one or two days after the
event; another half comprises T1, Tlc, T2 base diffusion and
mean diffusivity (MD) images acquired in acute stroke patients
within the first few hours after the onset of symptoms. For
both groups the imaging sequences return tissue contrasts of
normal tissues and lesion areas that are similar to hyper- and
hypo-intensities expected in glioma sequences; stroke lesions
are characterised here by T1 hypo-, Tlc hyper-, T2 hyper- and

2available  from

ems.php

http://www.medicalimagecomputing.com/downloads/
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Fig. 4. Exemplary BRATS test sets, with results for generative and generative discriminative models. Shown are axial views through the tumor center for T1,
Tlc, T2 and FLAIR image (columns from left to right) and the segmented hypo- or hyper-intense areas (red and cyan). Regions outlined in red have been identified
as “true positive” regions by the regional discriminative classifier and the resulting tumor labels are shown in column 5 with edema (bright gray) and active
tumor region (white). Column 6 shows results of the voxel-wise generative-discriminative classifier, and column 7 the expert's annotation. Gray and white matter
segmentations displayed in the last three columns are obtained by the generative model.

FLAIR /MD hyper-intense changes. For the quantitative eval-  axial, sagittal, and coronal slice, in each of the four modalities.
uation of the algorithm, we delineate the lesion in every 10th In addition, we annotate about 10% of the 2D slices twice
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Fig. 5. Generalization to ischemic stroke cases (showing acute stroke: rows 1-3; subacute stroke: rows 4—6) with T1, Tlc, FLAIR/MD, T2/MAD images of
each patient (from left to right, three patients per row). Automatic segmentations are delineated in red, lesions in manually segmented volumes are shown in blue
(typically beneath a red line); T1 and T1c lesions were only visible for some cases.

to estimate variability. We register the probabilistic atlas and
perform a model based bias field correction as for the glioma
data. Image intensities are scaled to the same reference as for
the glioma cases.

3) Evaluation: To measure segmentation performance in the
experiments with this dataset, we combine the set of four tumor
labels (edema and the three tumor core subtypes) to one bi-
nary “complete lesion” label map. We compare this map with
the hyper-intense lesion as segmented in T2 and FLAIR. Sep-
arately, we compare the “enhancing core” label map with the
hyper-intense lesion as segmented in T1c MRI. Quantitatively,
we calculate volume overlap between expert annotation A and
predicted segmentation B using the Dice score D(A, B) =
2+ AANBJ/AV B. We compute Dice scores for whole brain
when testing performances on the BRATS data set. We also
calculate Dice score within a 3 cm distance from the lesion to
measure local differences in lesion segmentation rather than in
global detection performances.

B. Model Properties and Evaluation on the BRATS Data set

1) Comparison of Generative Modelling Approaches: We
compare the proposed generative model against related genera-
tive tissue segmentations models and evaluate the relevance of

individual components of our approach on the BRATS training
data set. We calculate Dice scores in the area containing the le-
sion and the 3 cm margin.

Fig. 3 A illustrates the benefit of the proposed multivariate
tumor and tissue segmentation over a univariate segmentations
that treat tumor voxels as intensity outliers similar to Van
Leemput's EM segmentation approach for white matter lesion
[51]. On the given data this baseline approach leads to a high
number of false positives, either requiring stronger spatial reg-
ularization or a more adaptive tuning of the outlier threshold.
Fig. 3B reports the benefit of enforcing intensity constraints
within the proposed generative model. While the benefit for
the large hyper-intense regions visible in T2 and FLAIR is
minor, the difference for segmenting the enhancing tumor core
visible in T1c in high-grade patients is striking: the constraint
disambiguates tumor-related hypo-intensities—similar to those
visible in native T1, for example, from edema—from hyper-in-
tensities induced by the contrast agent in the active rim. Fig. 3C
reports a comparison between our approach and Prastawa's
classic tumor EM segmentation approach [22] that models
lesions as an additional class with a “flat” global atlas prior.
We test different values for the tumor prior « in (2), evaluating
result for a1 € [.005,.01,.02,.04,.1, .2, .4]. We find that
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Fig. 6. Measuring feature relevance of the discriminative model. Features
relevant for discriminating between false positives and true positives regions.
We evaluate the permutation importance [67] of each feature extracted for the
FLAIR regions (see text for details). Boxplots show the decrease in accuracy
for all 255 trees of the oblique random forest (boxes representing quartiles) with
high values indicating high relevance. The gray bar indicates the performance
of a random feature (“RND”) under this measure, features displayed in red
perform significantly better (as indicated by a paired Cox-Wilcoxon test at 5%
level). Location and shape of the regions are most discriminative, as well as
the general number of lesions visible in the given FLAIR image, and selected
image intensities.

every channel and every segmentation task has a different op-
timal «r,:. However, each optimally tuned generative model
with flat prior is still outperformed by the proposed generative
model.

2) Enforcing Spatial Regularity: Our model has a single pa-
rameter that has to be set which is the regularization param-
eter 3 coupling segmentations of neighbouring voxels. Based
on our previous study [55], we performed all experiments re-
ported in Fig. 3 with weak spatial regularization (3 = .3). To
confirm these preliminary results we test different regularization
settings with 8 € [0,272,272,...,2%], now also evaluating
channel-specific performance in the lesion area (Fig. 7 in the
online Supplementary Materials). We find a strong regulariza-
tion to be optimal for the large hyper-intense lesions in FLAIR
3 > .5, suppressing small spurious structures, while little or no
regularization is best for the hardly visible hypo-intense struc-
tures visible in T1 (8 < .5). Both T2 and Tlc are rather insen-
sitive to regularization. We find the previous value of 8 = .3
to work well, but choose 3 = .5 for both low- and high-grade
tumors in further experiments, somewhat better echoing the rel-
evance of FLAIR.

3) Evaluation on the BRATS Test set: We apply our segmen-
tation algorithm to the BRATS test sets that have been used for
the comparison of twenty glioma segmentation methods in the
BRATS evaluation [1]. We identify the segmentations in FLAIR
with the “whole tumor” region of the BRATS evaluation pro-

tocol, and the T1lc enhancing regions with the “active tumor”
region. We evaluate two sets of segmentations: segmentations
that are obtained by thresholding the corresponding probabil-
ities at 0.5, and the same segmentations after removing all re-
gions that are smaller than 500 mm? in the FLAIR volume. This
latter postprocessing approach was motivated by our observa-
tion that smaller regions correspond to false positives in almost
all cases. We calculate Dice scores for the whole brain.

Table I reports Dice scores for the BRATS test sets with re-
sults of about .60 for the whole tumor and about .50 for the
active tumor region (‘raw’). As visible from Fig. 4, results are
heavily affected by false positive regions that have intensity pro-
files similar to those of the tumor lesions. Applying the basic,
size-based postprocessing rule improves results in most cases
(‘postproc.’). Most false positives are spatially separated from
the real lesion and when calculating Dice scores from a region
that contains the FLAIR lesion and a 3 cm margin only, results
improve drastically to average values of .78(+£.09 std.) for the
whole tumor to and .55(%.27 std) for the active region (not
shown in the table) which aligns well with results obtained for
T2 and Tlc on the training set (Fig. 3).

C. Generalization Performance and Transfer to the Stroke
Data set

We test the generalization performance of the generative
model by using it for delineating ischemic stroke lesions that
are similar in terms of lesion size and clinical image infor-
mation. We apply the generative model as optimized for the
BRATS dataset to the stroke images. As a single modification
we allow Tlc lesions to be both inside the FLAIR and T2
enhancing area and outside, as bleeding (which leads to the
T1c hyper-intensities) may not coincide with the local edema.
Stroke images contain cases with both active and chronic
lesions with significantly different lesion patterns.

Although datasets, imaging protocol, and even major acqui-
sition parameters differ, we obtain results that are comparable
to the tumor data. We calculate segmentations accuracies in
the lesion area and observe good agreement between manual
delineation and automatic segmentation in all four modalities
(Fig. 5). We also observe false positives at the white matter-gray
matter interfaces, similar to those we observed for the glioma
tests data (Fig. 4). Most false positive regions are disconnected
from the lesion and could be removed with little user interac-
tion or postprocessing. Inter-rater differences and performance
of the algorithm are comparable to those from the glioma test
set, with Dice scores close to .80 for segmenting the edema
and around .50-.60 for T1c enhancing structures (Table I). Re-
sults on the stroke data underline the versatility of the genera-
tive lesion segmentation model and its good generalization per-
formance not only across different imaging sequences, but also
across applications. To the best of our knowledge this is one of
the first attempts to automatically segment ischemic stroke le-
sion in multimodal images using a generative model.

V. EXPERIMENT 2: PROPERTIES AND PERFORMANCES OF THE
GENERATIVE-DISCRIMINATIVE MODEL EXTENSIONS

Results of the generative model show its robustness and ac-
curacy for delineating lesion structures. Still, it also shows to
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be sensitive to artifacts that cannot be recognized by evaluating
the multimodal intensity pattern at the voxel level, and hypo-
and hyper-intense structures can only be matched with selected
tumor labels. To this end, we evaluate the two discriminative
modeling strategies that are considering non-local features as
input and arbitrary labels as output. We first evaluate model
properties on the BRATS training set and then compare perfor-
mances to results of other state-of-the art tumor segmentation
algorithms on the BRATS test set.

A. Relevant Features and Information Used by the
Discriminative Models

The random forest classifier handles learning tasks with
small sample sizes in high dimensional spaces by only relying
on few “strong” variables and ignoring irrelevant features
[69]. Still, in order to understand the information used when
modeling the class probabilities, we can visualize the impor-
tance of the input features used. To this end we evaluate the
relevance of the individual features using Breiman's feature
permutation test [67] that compares the test error with the
error obtained after the values of a given feature have been
randomly permuted throughout all test samples. The resulting
decrease in test accuracy, or increase in test error, indicates
how relevant the chosen feature is for the overall classification
task. Repeated for each feature of all trees in the decision
forest, this measure helps to rank the features and to compare
the relevance as shown in Fig. 6. In our test we augment
the dataset with a random feature (random samples from a
Gaussian distribution with mean 0 and standard deviation
of 1) to establish a lower baseline of the relevance score.
For each feature we compare the distribution of changes in
classification error against the changes of this random feature
in a paired Cox-Wilcoxon test. We analyze feature relevance
in a cross-validation on the BRATS training set.

Results for the first discriminative model acting at the re-
gional level are shown in Fig. 6. We find plausible features to be
relevant: the relative location of the region with respect to the
center of the brain (indicated as center _x, center_y, center_z
in the figure), the surface-to-volume ratio (border2area),
the total number of lesions visible for the given patient
(num_lesions), the ratio of segmented voxels in Tlc
(tumorrl1eN), and some descriptors of image intensities,
such as the minimum in FLAIR (in#4_min), the maximum,
median and average of the T2 intensities (int3_x), as well
as the maximum in Tlc (intl_max) and the minimum in T1
(int2_min).

For the second discriminative model acting at the pixel level
we find about 80% of the features to be relevant, with with
some variation across the different classification tasks. The fea-
tures that rank highest in all tests are those we derived from
the probability maps of the generative model: the total number
of local edema or active tumor voxels, the geodesic distance to
the nearest edema or active tumor pixels, but also the relative
anatomical location in the MNI space, and selected image in-
tensities and intensity differences (such as the intensity values
of T1 and FLAIR for edema and T1c for active core, and local
differences in the T1 image intensities).
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B. Performance on the BRATS Test set

Fig. 4 displays nine exemplary image volumes of the BRATS
test set. Shown are the raw probability maps of the generative
model (red and cyan; columns 1-4), those regions that are se-
lected by the regional discriminative model (cyan) and the de-
rived tumor segmentation (column 5), as well as the output of
the voxel-level tumor classifier (column 6), together with an ex-
pert annotation (column 7).

Quantitative results are reported in Table I, and we find both
discriminative models to improve results over those derived from
the “raw” probability maps of the generative model. With few
exceptions most “false positive” artifact regions are removed
(Fig. 4). The voxel-level model shows to be more accurate than
the regional-level model, also correcting for “false negative”
areas in the center of the tumor (rows 1, 3, 6, and 7). In addition to
whole tumor and active tumor areas, the second discriminative
model is also predicting the location of necrotic and fluid filled
structures, as well as the “tumor core” label (with a Dice score
of .58; segmentations not shown in the figure). Sensitivities and
specificities for this latter model are balanced with sensitivities
of .75/.58/.63 for the three tumor regions (whole tumor/tumor
core/active tumor) and a specificities of .86/.71/.56.

The BRATS challenge also allows us to compare the two
generative-discriminative modeling approaches with eighteen
other state of the art methods including inter-active ones, and
we reproduce results of the challenge in Fig. 8 in the online
Supplementary Materials of this manuscript. The generative
model with discriminative post-processing at the regional level
(indicated by Menze (G)) performs comparable to most other
approaches in terms of Dice score and robust Hausdorff dis-
tance for “whole tumor” and “active tumor”. However, it cannot
model the “tumor core” segmentation task as this structure
does not have a direct correspondence to any of the segmented
hyper- and hypo-intensity regions and, hence, does does not
provide competitive results for this tumor sub-structure. The
voxel-level generative-discriminative approach (indicated by
Menze (D)) is able to predict “tumor core” labels. It ranks first
among the twenty evaluated methods in terms of average Haus-
dorff distances for both “tumor core” and in “whole tumor”
segmentation, and it is the second best automatic method
for the “active tumor” segmentation. In the evaluation of the
average Dice scores it is second best for “whole tumor”, it is
ranking third among the automated methods for the “tumor
core” task, and its result are statistically indistinguishable
from the inter-rater variation for “active tumor”. Most notably,
the voxel-level generative-discriminative approach is outper-
forming all discriminative models that are similar in terms
of random forest classifier and feature design [37], [32], [2],
[34], but that do not rely on the input features derived from the
probability maps of the generative model.

VI. SUMMARY AND CONCLUSIONS

In this paper, we extend the atlas-based EM segmenter by a la-
tent atlas class that represents the probability of transition from
any of the “healthy” tissues to a “lesion” class. In practice, the
latent atlas serves as an adaptive prior that couples the proba-
bility of observing tumor-induced intensity changes across dif-
ferent imaging channels for the same voxel. Using the standard
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brain atlas for healthy tissues together with the highly specific
multi-channel information provides us with segmentations of the
healthy tissues surrounding the tumor, and enables us to automat-
ically segment the images. The proposed generative algorithm
produces outlines of the tumor-induced changes for each channel
which makes it independent of the multimodal imaging protocol.
We complement the basic probabilistic model with a discrimi-
native model and test two different modeling strategies, both of
them addressing shortcomings of the generative model, and find
the resulting discriminative-generative model to define the state
of the art in tumor segmentation on the BRATS data set [1].

The proposed generative algorithm generalizes the proba-
bilistic model of the standard EM segmenter. As such, it can
be improved by combining registration and segmentation [62],
or by integrating empirical or physical bias-field correction
models [15], [70]. The generative segmentation algorithm that
we optimized for glioma images exhibits a good level of gen-
eralization when applied to multimodal images from patients
with ischemic stroke. The method is likely to also work well for
traumatic brain injury with similar hypo- and hyper-intensity
patterns, and it can also be adapted to multimodal segmentation
tasks beyond the brain. It may be interesting to evaluate rela-
tions to multi-channels approaches that do not rely on multiple
physical channels, but high-dimensional sets of features ex-
tracted from one or few physical images [71]. Analyzing feature
relevance indicated that the location of a voxel or region within
the MNI space helped in removing false positives, as most of
them appeared at white matter-gray matter interfaces or in areas
that are often subject to B-field inhomogeneities. Extensions
of the generative model may use a location prior that lowers
the expectation of tumor occurrences in these areas. Moreover,
preliminary findings suggest that results may improve by using
non-Gaussian intensity models for the lesion classes.

Some tumor structures—such as necrotic or cystic regions,
or the solid tumor core—cannot easily be associated with local
channel-specific intensity modifications, but are rather identified
based on the wider spatial context and their relation with other
tumor compartments. We addressed the segmentation of such
secondary structures by combining our generative model with
discriminative model extensions evaluating additional non-local
features. As an alternative, relations between visible tumor struc-
tures can be enforced locally using MRF as proposed by [35],
or in a non-local fashing following the hierarchical approach
following [54]. Future work may also aim at integrating image
segmentation with tumor growth models enforcing spatial or
temporal relations as in [53], [ 14]. Tumor growth models—often
described through partial differential equations [72] — offer a
formal description of the lesion evolution, and could be used
to describe the propagation of channel-specific tumor outlines
in longitudinal series [73], as well as a shape and location prior
for various tumor structures [23]. This could also promote a
deeper integration of underlying functional models of disease
progression and formation of image patterns in the modalities
that are used to monitor this process [74].

To support the further use and analysis of our generative seg-
mentation algorithm, we make an implementation available in
Python from http://ibbm.in.tum.de, also illustrating its use on
reference data from the BRATS challenge.
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