
752 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 3, MARCH 2016

Real-Time Automatic Artery Segmentation,
Reconstruction and Registration for

Ultrasound-Guided Regional Anaesthesia
of the Femoral Nerve

Erik Smistad* and Frank Lindseth

Abstract—The goal is to create an assistant for ultrasound-
guided femoral nerve block. By segmenting and visualizing the
important structures such as the femoral artery, we hope to
improve the success of these procedures. This article is the first
step towards this goal and presents novel real-time methods for
identifying and reconstructing the femoral artery, and registering
a model of the surrounding anatomy to the ultrasound images.
The femoral artery is modelled as an ellipse. The artery is first
detected by a novel algorithm which initializes the artery tracking.
This algorithm is completely automatic and requires no user
interaction. Artery tracking is achieved with a Kalman filter. The
3D artery is reconstructed in real-time with a novel algorithm and
a tracked ultrasound probe. A mesh model of the surrounding
anatomy was created from a CT dataset. Registration of this
model is achieved by landmark registration using the centerpoints
from the artery tracking and the femoral artery centerline of the
model. The artery detection method was able to automatically
detect the femoral artery and initialize the tracking in all 48 ul-
trasound sequences. The tracking algorithm achieved an average
dice similarity coefficient of 0.91, absolute distance of 0.33 mm,
and Hausdorff distance 1.05 mm. The mean registration error
was 2.7 mm, while the average maximum error was 12.4 mm. The
average runtime was measured to be 38, 8, 46 and 0.2 milliseconds
for the artery detection, tracking, reconstruction and registration
methods respectively.

Index Terms—Artery segmentation, artery tracking, femoral
nerve block, GPU, real-time, regional anaesthesia, ultrasound.

I. INTRODUCTION

T HE use of regional anaesthesia (RA) is increasing due
to the benefits over general anaesthesia (GA) such as re-

duced morbidity and mortality [27], [5], [35], reduced postop-
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erative pain, earlier mobility, shorter hospital stay, and lower
costs [9]. Despite these clinical benefits, RA remains less pop-
ular than GA. One reason for this is that GA is far more suc-
cessful and reliable than RA. Ultrasound has been employed
to increase the success rate of RA [14], [12]. However, ultra-
sound-guided RA can be a challenging technique, especially for
inexperienced physicians and in difficult cases. Good theoret-
ical, practical and non-cognitive skills are needed in order to
achieve confidence in performing RA and to keep complications
to a minimum. Studies indicate that RA education focusing on
illustrations and text alone is not sufficient [36]. The RASimAs1
project (Regional Anaesthesia Simulator and Assistant) is a Eu-
ropean research project which aims at providing a virtual reality
simulator to improve the training of doctors performing RA, as
well as an assistant to lessen the cognitive burden and help per-
forming RA procedures.
This article focuses on creating an assistant for ultra-

sound-guided RA to block the femoral nerve. In this application,
the femoral artery is an important structure used to locate the
femoral nerve [24] as shown in Figs. 1 and 3. A study by
Gruber et al. [15] showed that in 77.5% of the cases the femoral
nerve was located within 5 mm of the femoral artery. The rest
were located more than 5 mm lateral of the artery. This article
presents novel methods for identifying and reconstructing
the femoral artery from ultrasound images, and registering a
model of the surrounding anatomy to the images. The idea is
that the registered model together with the segmented artery
will help locate the femoral nerve. The hypothesis that this
assistant helps identifying the femoral nerve is not validated in
this article. However, the assistant will be clinically tested and
evaluated in future work at three different clinical sites as part
of the ongoing RASimAs project. The accuracy of the femoral
artery segmentation and model registration is evaluated in this
article.
Several methods for segmentation of the cross-section of ves-

sels in 2D ultrasound have been reported, using methods such
as level sets [1], fuzzy -means clustering [2] and evolutionary
algorithms [18]. These methods focus on segmenting a single
image. However, in this work the goal is to segment the femoral
artery in real-time on a sequence of ultrasound images. Abol-
maesumi et al. [3], [4] and Guerrero et al. [16], [17] presented

1http://www.rasimas.eu
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Fig. 1. Illustration of the femoral nerve block region showing the femoral
artery, vein and nerve along with femur and the pelvic bone. Image courtesy
of H. E. Mørk (helemork.com).

Fig. 2. Artery cross-section modelled as an ellipse with major radius , minor
radius and center .

methods for vessel segmentation and tracking in ultrasound im-
ages using an extended Kalman filter. Their methods were fast
and accurate, but had to be manually initialized with a seed point
inside the vessel.
The contributions of this article are:
• A real-time automatic artery detection method. This
method eliminates the need for manual initialization such
as in the methods of Abolmaesumi et al. [3], [4] and
Guerrero et al. [16], [17].

• A real-time vessel tracking method of the femoral artery
similar to the approaches of Abolmaesumi et al. [3] and
Guerrero et al. [16], [17]. While their methods use two
Kalman filters, one for estimating the position of the vessel
and another to estimate the shape, the proposed method
uses only one Kalman filter resulting in a simpler method.

• A real-time vessel 3D reconstruction method. Unlike the
reconstruction method of Guerrero et al. [16], the proposed
method can also reconstruct bifurcations.

Fig. 3. Top: Cross-section illustration of the region of interest (ROI). Image
courtesy of H. E. Mørk (helemork.com) Bottom: Ultrasound image of the ROI
with manual annotations delineated by an expert. The image was acquired with
an Ultrasonix L14-5 linear probe with harmonic imaging, 6.6 MHz frequency
and 55% gain.

• A real-time vessel registration method which registers a
model of the femoral region anatomy to the ultrasound im-
ages. The method is automatic and provides anatomical
reference to the operator.

II. METHODS

This section first describes the artery model used to detect
and track the femoral artery. Next, the artery detection, tracking
and 3D reconstruction methods are presented. Finally, the regis-
tration method is described. To achieve real-time performance,
the presented methods are implemented using the framework
for heterogeneous medical image computing and visualization
(FAST) [30]. This framework enables efficient computation and
visualization on heterogeneous systems which include different
processors such as CPUs and graphic processing units (GPUs).
GPUs have shown to have great potential in accelerating med-
ical image segmentation [33], registration [13] and visualization
[31], [8].
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A. Experimental Setup

The experimental setup consisted of an Ultrasonix
SonixMDP scanner (Analogic, Boston, USA) together with an
L14-5 linear probe and SonixGPS electromagnetic tracking.
Spatial calibration was done using a calibration matrix from
the manufacturer [34]. Harmonic imaging was used with fre-
quency 6.6 MHz and gain at 55%. The images were streamed
from the ultrasound system to the proposed assistant using the
Plus toolkit and the OpenIGTLink protocol [22]. The pixel
spacing was determined by the Plus toolkit which queries this
information directly from the ultrasound system.

B. Artery Model

The artery cross-section in the ultrasound images is modelled
as an ellipse with major and minor radii and , as shown in
Fig. 2. The cross-section of arteries will not necessarily have
the exact shape of an ellipse. However, in the application of RA
exact delineation of the artery border is not required. The point

and its normal of point on an ellipse of points with
center can be calculated with the following equations.

(1)

(2)
(3)

(4)

C. Artery Detection

In this section, a novel fully automatic artery detection
method is presented which is used to initialize the artery
tracking algorithm described in the next section. First, the
image is blurred using convolution with a Gaussian mask (

) and then the image gradients are calculated.
For a given radii and , the artery score is calculated as the
average dot product of the outward normal and the corre-
sponding image gradient at points on the ellipse, as shown
in (5). Before the dot product is calculated, the image gradient
is normalized so that it has unit length. This normalization
makes this artery detection method invariant to the contrast of
the image, and only the direction of the gradients influence the
score.

(5)

For each pixel, ellipses of different major radius ranging
from 3.5 to 6 mm, flattening factor from 0 to 0.5 (minor ra-
dius ) and were used to calcu-
late the artery score. An increment of 0.25 mm was used for
the radius, and 0.1 for the flattening factor. The ellipse with
the highest score is selected for each pixel. The best score and
the values and is stored for each pixel. The ellipse with
the highest score of all pixels is selected and used to initialize
the tracking. Real-time performance of this artery segmentation
method is achieved by using a GPU to compute the artery score

of all pixels in parallel. This was implemented using FAST and
OpenCL.
For a detected artery to be accepted it has to have a artery

score above the threshold . Also, the centerpoint
detected from five consecutive frames has to be within 1.5 mm
of each other and the average intensity of the detected artery
border has to be above the threshold (gain set to 55%).
These requirements are needed to make the artery detection ro-
bust enough to properly initialize the artery tracking. They rep-
resent a tradeoff between the initialization robustness and how
well-defined the artery contour has to be before the tracking is
initialized.

D. Artery Tracking

Artery tracking in the ultrasound images is achieved with a
Kalman filter [21]. The Kalman filter estimates a state using a
set of noisy measurements over time. The state consists of
4 variables, the artery center , and the major and
minor radii and . Thus, the proposed Kalman filter estimates
both the position and shape of the artery cross-section which
changes over time as new image frames are received. The state
is predicted for the next image frame using a motion model [7]
as shown in (6), along with the covariance error matrix in (7).

(6)

(7)

For the motion model, the velocity of the artery center was
dampened by a factor of so that

. This gives diagonal state transi-
tion matrices and with values 1.5 and respectively
for the center coordinate. The radius is not expected to change,
therefore the state transition matrix values for the radii and
was set to 1 and 0. The dampening reduces tracking failure when
the artery moves quickly in the image and suddenly stops. A di-
agonal matrix was also used for the process error matrix with
values 0.01. The size of these matrices is equal to the size of the
state vector (4 4).
A hybrid edge detection method is used to detect two dif-

ferent types of edges, step edges and ridge edges. The edge de-
tection finds the normal displacement (

) in a line centered at each point in the predicted
ellipse. The direction of each line is given by the normal vector,
and the line length is set to be equal to the major radius. The
hybrid edge detection method first looks for a step edge using
a step model [26], which entails finding a that minimizes the
following measure where is the image intensity at step
along the line.

(8)
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A measurement noise value is also recorded for each edge
and is calculated based on the edge strength:

(9)

The step edge is only accepted if the denominator of (9) is
above the threshold . If the step edge is not accepted,
a ridge edge detection is performed. This method looks for the
first position on the line where the gradient is larger than the
threshold . If no ridge edge is found either, the measurement
for point is discarded. The measurement noise value for the
ridge edges are set to be .
These edge measurements are nonlinear because they cannot

be expressed as matrix multiplication of the state . There-
fore an extended Kalman filter is used in which the observation
model is linearized. This is done by calculating the Jacobi ma-
trix that relate changes in each ellipse point to changes in the
state . The final measurement vector is the normal projec-
tion of these Jacobi matrices:

(10)

By assuming that the measurements are independent, the mea-
surement noise covariance matrix becomes a diagonal matrix
of the measurement noise values . The multiplications of ,
the state-to-measurement transition matrix and the measure-
ments becomes a simple summation as
shown in (11) and (12) [25]. If no edge is found for a measure-
ment point , it is omitted in the summations.

(11)

(12)

This formulation avoids matrix multiplications and inver-
sions of large matrices in the Kalman update (13) and (14).
As shown by Blake and Isard [6], using as the
Kalman gain, the updated state and error covariance estimate
becomes:

(13)
(14)

E. 3D Artery Reconstruction
The ultrasound probe is tracked using the electromagnetic

tracking system SonixGPS (Analogic, Boston, USA). This en-
ables 3D reconstruction of the artery tracked in the 2D ultra-
sound images. Each center coordinate from the artery tracking
is converted into a 3D coordinate using the transformation pro-
vided by the electromagnetic tracking system. 3D reconstruc-
tion is done by adding a sphere to a volume at the 3D coordi-
nate. Finally, a real-time marching cubes algorithm is used to

Fig. 4. 3D artery reconstruction. The radius and position provided by the artery
tracking method is used to add a sphere to a volume. From this volume, a surface
mesh of the femoral artery is generated and visualized together with the current
ultrasound image.

generate a surface mesh of the volume and visualize it as shown
in Fig. 4. These steps are all performed for each new tracked
centerpoint.
A volume of size 256 256 512 voxels is created and each

voxel is initialized to zero. The longest side of the volume is
aligned with the femoral artery direction. Using a larger volume
would reduce the speed, and using a smaller would reduce the
accuracy of the reconstruction. The voxel spacing is set to 0.5
mm, which means that the volume can cover an area of size
12.8 12.8 25.6 cm which is large enough for the femoral
nerve block region. When the artery tracking is first initialized,
the transformation of the current ultrasound image is used
to position and orient the volume. This is done by placing the
center of the volume at the center of the artery and using the
same orientation as the ultrasound image frame as shown in
(15). It is assumed that the probe is placed in the femoral re-
gion so that the image plane is approximately aligned with the
cross-sectional plane of the femoral artery. The reconstruction
volume is only created and positioned once.

(15)

The voxel position of the artery centerpoint inside the
volume can be calculated as

. All voxels which are within the radius
of this voxel position are given the value 1. Due to pressure
applied by the operator holding the probe, the artery is usually
flattened. In the visualization, the goal is to show the artery
as if such pressure was not applied. This is why a sphere was
chosen instead of an ellipsoid. The volume is then smoothed
by convolution with a 3D Gaussian mask with .
Finally, a surface mesh of the reconstructed volume is generated
by a real-time GPU-based marching cubes algorithm [31] and
visualized in the 3D scene.

F. Registration
The anatomical model was created from a single abdominal

CT image volume with the patient in supine position. From
this CT image volume, the bone was segmented using region
growing, and the centerline of the femoral artery was extracted
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Fig. 5. Landmark registration of the model to the ultrasound images. A target
point is determined with the artery tracking using the centerpoint position and
radius. Two additional landmarks (blue dots) are created. One in the direction of
the artery and one below the artery. A distance of 10 mm from the target point
to the other two landmarks is used in this figure for illustration purposes.

using the tubular extraction method of Smistad et al. [32]. Ide-
ally, a CT scan of the patient undergoing RA would be used.
However, this is not always available, and therefore a single CT
image volume is used to create the model. The model and its
registration is only used to give the operator an overview of the
surrounding bone anatomy in relation to the ultrasound probe
and image using a 3D visualization as shown in Fig. 7. Since
the model does not incorporate the anatomical variation in this
region, the visualization is not expected to be accurate.
Registration of the model to the ultrasound images is difficult

as there are no easily identifiable landmarks in the ultrasound
images. It would be possible to scan different landmark areas or
bones and use this for registration. However, this would involve
changing the actual femoral nerve block procedure, which is
not desired. The artery tracking method provides the centerpoint
and radius for the femoral artery. This is used together with the
assumptions and knowledge of the femoral artery anatomy to
register the model to the ultrasound images. The femoral artery
is a continuation of the external iliac artery, which rises up from
the abdomen under the inguinal ligament. At about 3.5–5 cm in-
ferior to the inguinal ligament, the femoral artery gives off to the
deep femoral artery and becomes the superficial femoral artery
[23]. The target injection site is between the inguinal ligament
and this bifurcation as shown in Figs. 1 and 5. The artery cen-
terpoint with minimum depth and within 1 mm of the largest
radius is selected as the artery target centerpoint. This is not
a unique landmark, and will surely be a source of registration
error which is evaluated in this article. The requirement of min-
imum depth discards all artery centerpoints that are superior to
the inguinal ligament, and the largest radius requirement dis-
cards artery centerpoints after the bifurcations because the ra-
dius generally decreases after the bifurcation. The depth is esti-
mated using the distance from the top of the ultrasound image
to the artery centerpoint.
The corresponding target point is identified manually in the

model and landmark registration is used to register the ultra-
sound images to the model. Three landmarks are needed for the
registration. To obtain two more landmarks, two points at fixed

directions and distances are estimated from the ultrasound im-
ages. The second landmark is selected in the direction of the
artery 1 mm from the target point. The direction of the artery is
calculated using the centerpoints from the artery tracking. The
third landmark is 1 mm below the target point as shown in Fig. 5.
The directions from the target point to the two landmarks are
therefore perpendicular. This insures that only anatomical fea-
sible orientations are generated by the landmark registration.
The downwards direction is estimated using the image plane of
the initial ultrasound image. This requires the operator to ini-
tially hold the probe vertical when placing the probe at the skin.
Afterwards, the operator may tilt the probe, a technique which
is often required to see all the structures properly in ultrasound.
All the corresponding landmarks were identifiedmanually in the
CT image volume.
Let and be the fixed landmarks from the ultrasound

image and the moving landmarks of the model respectively.
Kabsch's algorithm [20] finds the optimal rotation matrix
using singular value decomposition, see [10] for details. The
complete transformation is calculated in (16) using the centroids

and of the fixed and moving landmarks. The target is
updated continuously, and if the target changes, the registration
is executed again and the visualization updated.

(16)

G. Evaluation
A total of 48 ultrasound image sequences from both legs of

3 male and 3 female subjects were collected using the setup de-
scribed in Section II-A. The subjects were all in supine position
during acquisitions. Initially, the probe was placed below the in-
guinal ligament. Next, the probe was moved in an area from 2–3
centimeters above the ligament down to the bifurcation where
the femoral artery gives off to the deep femoral artery of the
thigh. The number of images per sequence ranged from 118 to
740. For each sequence, the artery was manually segmented in
4 randomly selected frames. This resulted in 192 manual seg-
mentations used to evaluate the artery detection and segmenta-
tion methods. The dice similarity coefficient [11] was calcu-
lated to measure the overlapping regions of the segmentation
and the ground truth as shown in (17). For the contour of

the segmentation, the mean absolute distance and Hausdorff
distance was calculated in millimeters. These measures were
calculated as shown in (18) and (19), and used to evaluate the
artery detection and tracking methods. is the distance
from contour point in to the closest contour point in .
and are the number of pixels on the contour of and re-
spectively.

(17)

(18)

(19)
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Fig. 6. Best (left column) and worst (right column) segmentation results for three of the subjects determined by the dice similarity coefficient in (17). The green
line is the manually segmented artery, while the yellow smooth line is the result of the proposed artery tracking method.

The registration method was evaluated by measuring the dis-
tance from each centerpoint obtained with the artery tracking
method to the centerline of the registered model. The distance
was calculated for the entire extracted centerline, thus for the
entire scanned area.

III. RESULTS

The artery detection initialized the tracking successfully in
all 48 sequences, and was evaluated separately by executing the
proposed algorithm on each of the manually segmented images,
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Fig. 7. 3D visualizations for each of the six subjects. The visualization shows the ultrasound probe, ultrasound image, reconstructed femoral artery and the reg-
istered bone model.
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TABLE I
ACCURACY OF THE ARTERY DETECTION USING THE MEASURES IN (17)–(19)

TABLE II
ACCURACY OF THE ARTERY TRACKING USING THE MEASURES IN (17)–(19)

TABLE III
ACCURACY OF THE MODEL TO ULTRASOUND REGISTRATION

without the requirement that the artery must be detected at a
similar location in five consecutive frames. In 11 of the 192
manually segmented images, the proposed method was not able
to detect any artery, and in 4 cases a false artery was detected.
Due to the requirement that the artery must be detected at a
similar location in five consecutive frames this did not lead to
an incorrect initialization. The artery detection method achieved
an average dice similarity coefficient of 0.86, mean absolute
distance 0.52 mm, and Hausdorff distance of 1.45 mm as shown
in Table I.
The results of the artery tracking method for each ultrasound

sequence are summarized in Table II. On average, the tracking
method achieved a dice similarity coefficient of 0.91, mean ab-
solute distance of 0.33 mm, and mean Hausdorff distance 1.05
mm, after being initialized by the proposed detection method.
Images of the best and worst segmentation results, according to
, are shown in Fig. 6 for three of the subjects.
Table III shows the results for the registration error. The av-

erage distance between the centerline and the centerpoint of the
artery in the ultrasound images was 2.7 mm. The average max-
imum distance was 12.4 mm. Fig. 7 shows 3D visualizations
of the ultrasound probe and image, the reconstructed femoral
artery, and the model of the surrounding anatomy after registra-
tion for each of the six subjects.

TABLE IV
AVERAGE SPEED IN MILLISECONDS OF PROCESSING ONE FRAME FOR EACH OF
THE ULTRASOUND SEQUENCES. NOTE THAT THE ARTERY DETECTION IS ONLY

RUN FOR THE FIRST FRAMES, UNTIL THE TRACKING IS INITIALIZED

The runtime of the artery detection, tracking, reconstruction
and registration methods was also measured. Table IV contains
the average speed of processing one frame of each sequence
with the different steps. The computer used to measure the run-
time was running Ubuntu 14.04 Linux with an AMD A10 CPU
with 16 GB RAM, an AMD Radeon R9 290 GPU with 4 GB
RAM, and a solid state drive.

IV. DISCUSSION

The artery detection method was able to automatically detect
the femoral artery and initialize the tracking in all 48 ultrasound
sequences, while the method of Guerrero et al. [17] has to be
manually initialized. This is a great benefit to the femoral nerve
block assistant application as no user interaction is needed. It
has been suggested to use ultrasound Doppler data to initialize
vessel tracking [29]. However, enabling Doppler flow on the
ultrasound system for the entire image sector reduced the frame
rate significantly, and it was not possible to use Doppler with the
harmonic imaging frequency used in the femoral nerve block
application. Also, visualizing the flow continuously is not part
of the normal work flow for these procedures and would distract
the operator. Ideally, both Doppler and B-mode data would be
used to initialize tracking. The proposed initialization method
can easily be extended to use Doppler as well as B-mode data.
Guerrero et al. [17] reported a mean error of 1.7 pixels using

their method on ultrasound images of the common carotid
artery, jugular vein and saphenous vein and artery. They do
not report the error in millimeters nor the pixel spacing of
their ultrasound data, only the range of pixel spacing for their
system (0.069 – 0.2 mm). The mean absolute distance using the
proposed method on the femoral artery datasets in pixels is 4,
thus worse than the method by Guerrero et al. [17]. However,
this may partially be due the low pixel spacing of the ultrasound
images used in this work (0.079–0.087 mm). Gruber et al. [15]
reported an average cross-sectional area of of
the femoral nerve. Sandgren et al. [28] measured the average
femoral artery radius to be 4.9 mm in male subjects and 4.1 mm
in female subjects resulting in an average cross-sectional area
of 75 and 53 . Thus, we argue that the achieved tracking
accuracy (mean absolute difference of 0.33 mm) is good in
terms of the application of ultrasound-guided femoral nerve
block.
The accuracy of the registration was measured using the

distance between the centerline of the femoral artery in the
model and the centerpoints of the artery tracking. The mean
distance was 2.7 mm, while the average maximum distance
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TABLE V
A LIST OF PARAMETERS USED IN THE PROPOSED METHODS ALONG WITH A DESCRIPTION OF HOW THEIR VALUE INFLUENCE PERFORMANCE

was 12.4 mm. Anatomical subject variations of the femoral
artery and the artery landmarks are most likely the main
causes of the registration error. Currently, a static model of
the surrounding anatomy is used, which does not incorporate
the anatomical variations seen in a population. However, the
model is only used to give the operator an overview of the sur-
rounding bone anatomy. No anatomically invalid orientations
were created by the registration, nor were the bone mesh and
artery mesh intersecting for any of the acquisitions. Several
anaesthesiologists have commented on the registration and
visualization, concluding that it looks anatomically feasible
and is very promising in terms of assisting the procedure. It
was discovered that the maximum error occurs superior to the
inguinal ligament at the artery centerpoints farthest away from
the target point. An area which is not of great interest for the
procedure. A higher maximum error was observed in those
subjects with a higher height difference compared to the model.
Thus, compensating for the height difference might be a way to
reduce the maximum error. Whether the static model is good
enough will be evaluated in future work when the final femoral
nerve block assistant is clinically tested.
The runtime of the tracking was about 7–8 ms for each image,

thus less than the 23 ms reported by Guerrero et al. [17]. For the
artery detection and reconstruction, the runtime was higher, but
still within the real-time constraint of 10–25 frames per second
of the ultrasound system. This was achieved with a GPU and
the FAST framework. An alternative to the artery reconstruc-
tion method of filling a volume and running marching cubes
is to draw triangulated ellipsoids. This would be much faster.
However, the proposed method was more visually pleasing, en-
abled smoothing of the reconstruction, and will also enable re-
construction of other non-circular structures in the future, such
as the femoral nerve.
The ultrasound images of the first three subjects were ac-

quired with a depth of 4 cm, the rest with a depth of 2.5 cm. This

resulted in different image sizes as shown in Table IV. This did
not significantly influence the runtime, although the large im-
ages had about 18 thousand more pixels. The reason for this
is that the artery detection is only executed in the image down
to 2 cm. This is also why the runtime for the artery detection
is slightly higher for the images acquired with 2.5 cm depth.
These images had a lower pixel spacing resulting in more pixels
processed. The artery reconstruction is run on a volume of the
same size for all subjects and therefore not dependent on the ul-
trasound image size.
The proposed methods contain several parameters, which

values have been determined through experimentation.
Table V provides a list of these parameters along with a de-
scription of how their value influence the performance of the
proposed methods.
Future work includes segmentation of other structures, such

as the femoral nerve, fascia lata and fascia iliaca, needle inser-
tion guidance and enhancement of the local anaesthetic after in-
jection. The idea is that the visualization of the ultrasound probe,
surrounding anatomy and segmented artery will help locate the
femoral nerve and fascias, and guide the needle insertion and
anaesthetic injection. It may also be necessary to create a model
which incorporates the anatomical differences in a population
using methods such as statistical shape models [19].

V. CONCLUSION

The presented methods are able to automatically and accu-
rately track the femoral artery in ultrasound images and use
this to reconstruct the artery in 3D and register it to a model of
the surrounding anatomy in real-time. The proposed algorithms
will be part of an assistant for ultrasound-guided regional anaes-
thesia of the femoral nerve.
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