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Automatic SWI Venography Segmentation
Using Conditional Random Fields
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Abstract—Susceptibility-weighted imaging (SWI) venography
can produce detailed venous contrast and complement arterial
dominated MR angiography (MRA) techniques. However, these
dense reversed-contrast SWI venograms pose new segmentation
challenges. We present an automatic method for whole-brain
venous blood segmentation in SWI using Conditional Random
Fields (CRF). The CRF model combines different first and second
order potentials. First-order association potentials are modeled as
the composite of an appearance potential, a Hessian-based shape
potential and a non-linear location potential. Second-order inter-
action potentials are modeled using an auto-logistic (smoothing)
potential and a data-dependent (edge) potential.Minimal post-pro-
cessing is used for excluding voxels outside the brain parenchyma
and visualizing the surface vessels. The CRF model is trained and
validated using 30 SWI venograms acquired within a population
of deep brain stimulation (DBS) patients (age range
years). Results demonstrate robust and consistent segmentation in
deep and sub-cortical regions (median and 0.82),
as well as in challenging mid-sagittal and surface regions (median

and 0.83) regions. Overall, this CRF model
produces high-quality segmentation of SWI venous vasculature
that finds applications in DBS for minimizing hemorrhagic risks
and other surgical and non-surgical applications.
Index Terms—Conditional random fields, deep brain stimula-

tion, image-guided neurosurgery, MR venography, susceptibility-
weighted imaging.

I. INTRODUCTION

E FFECTIVE visualization and modeling of the cerebral
vasculature is extremely valuable for planning a variety

of image-guided neurosurgical procedure such as identifying
vessel-free path for insertion of a biopsy needle or implanta-
tion of Deep Brain Stimulation (DBS) probes or stereotaxic
electro encephalography electrodes. However, 3D cerebrovas-
cular models used clinically are generally incomplete due to the
extent of labor required to segment the vasculature and because
the vascular contrast in conventional MR angiography (MRA)
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protocols that involve injection of gadolinium decreases rapidly
with vessel size.
Susceptibility-weighted imaging (SWI) venography [1], [2]

is a recent technique that exploits both the magnitude and phase
of complex -weighted MRI signal to increase sensitivity to
deoxygenated (venous) blood. This protocol can image cerebral
veins with superior contrast and has been shown to improve se-
lection of DBS plans that avoid finer sub-cortical and deep veins
not visible on standard gadolinium contrast [3]. However, SWI
poses new segmentation challenges, because it produces dense
venograms that cannot be segmented using manual or semi-au-
tomatic methods within a reasonable time, and because SWI is
also sensitive to iron-rich brain structures and to signal loss at
inter-hemispheric fissure and air-tissue interfaces. Separation of
surface veins and skull is also challenging because both struc-
tures are hypointense.
The choice of an optimal segmentation strategy depends

upon several factors including the targeted application [4]. For
pre-surgical planning applications, the most influential factors
are: i) robustness to variable image quality, ii) completeness of
segmentation and iii) automation level. Less important factors
are computational efficiency (preoperative images are often
acquired the day before surgery) and vessel contour accuracy
(as it would be in vessel quantification studies).

A. Previous Work
Different methods for automatic vessel segmentation

methods have been proposed in the computer vision litera-
ture. We briefly review three main classes of techniques for
vessel enhancement and segmentation—statistical methods,
scale-space methods, and deformable models—with special
emphasis on cerebrovascular (whole-brain) applications. More
complete reviews are available in [4], [5].
Statistical methods make hypotheses about vessel appear-

ance relative to other tissues. Different appearance models
were proposed for time-of-flight (TOF) MRA [6]–[9], phase
contrast (PC) MRA [10], and CT-angiography (CTA) [11].
These models estimate intensity distributions for vessels and
other tissues, often by fitting a Finite Mixture Model (FMM) to
the dataset's histogram. Discrete segmentation is then computed
via independent (voxel-by-voxel) classification or Markov
Random Field (MRF) (see Section II).
Scale-space methods make geometric assumptions about the

shape of vessels (e.g., elongation, tubularity). Several multi-
scale vessel enhancement filters (e.g., [12]–[15]) were defined
based on principal eigenvalue conditions of the MRI intensity
Hessian matrix that characterize local tubularity (i.e.,

). Alternatively, spherical flux filters [16],
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[17] enhance vasculature by computing the outward flux of a
gradient vector field for spheres of increasing radius. Law and
Chung [18] extended this approach to exploit vessel direction-
ality via an optimal gradient projection axis.
Deformable models make the assumption that vessels are

connected, and evolve an initial seed surface placed inside the
vascular tree until it fills the whole tree. Implementations that
use a level-set formulation [19] are often preferred because they
implicitly model topological changes. Different deformable
models were proposed and validated on PC MRA [17], [20]
and TOF MRA [16], [21].
Shape-based techniques are particularly robust for enhancing

vessels in low-contrast areas and have been used for enhancing
SWI venography [22]–[26]. However, these filters make strong
geometric assumptions that can under-segment surface veins,
especially in reversed-contrast SWI, and vascular anomalies
(e.g., large aneurysms). Non-parametric (appearance-based)
techniques in SWI find limitations in brain areas sensitive
to susceptibility-induced signal loss (e.g., in the mid-sagittal
plane, or basal ganglia). Deformable models come with the
challenge of defining a speed term that allows surface evolution
into all branches (including smaller low-contrast branches)
without leaking into non-vessel structures elsewhere [21].
Also, incomplete contrast in SWI can break the connectedness
assumption posed by the technique.

B. Our Approach

This work presents a new Conditional Random Field
(CRF) for segmenting SWI venography datasets. The CRF
model aggregates multiple first- and second-order potentials.
Specifically, appearance, shape, location, auto-logistic (Ising)
interaction and data-dependent interaction potentials are com-
bined to produce robust, complete and fully automated SWI
venogram segmentation. Our method is validated on a database
of 30 SWI datasets acquired from a population of elderly
DBS/Parkinson's patients.
The rest of the paper is organized as follows. Section II re-

views the fundamentals of MRF/CRF modeling and inference.
Section III elaborates on the design of a new CRF model for
segmenting SWI venography datasets. Section IV describes the
experimental methodology used for estimating optimal CRF pa-
rameters and validating the CRF segmentation performance.
Section V presents quantitative and qualitative SWI segmenta-
tion results. Finally, Section VI summarizes the main findings
and provides some insights about potential future works.

II. BACKGROUND

The segmentation of cerebral veins from raw SWI data can be
defined as a labeling problem. The goal is to assign a discrete
label to each voxel based on observed MRI data

. This labeling process results in a
discrete dataset where each voxel

inside the brain parenchyma is classified either as vessel
or other tissue .
Many statistical classifiers infer the posterior distribution

of the labels given the observations using an indepen-
dent scheme that segment each based on a single observation

, without taking into consideration the spatial coherence be-
tween neighboring classifications. These independent methods
are thus limited due to noise in the data and possible intensity
overlap between the different classes. Markov Radom Field
(MRF) methods can overcome these limitations.
In MRF theory, the classification is modeled as a

random process that obeys a Gibbs distribution of the form:
. is an energy func-

tion that models the spatial interaction between the labels
in . is a normalizing constant
that sums all possible configurations of . Upon modeling

, optimal classification is obtained by maximizing
.

A. MRF/CRF Modeling

A fundamental challenge in MRF-based segmentation is to
model an energy function for which the desired labeling
is the minimum of . For segmentation application, it is
common to limit the model to pair-wise voxel interactions [27]
and to pose a smoothness assumption about the desired labeling

. As such, the auto-logistic MRF model (or Ising-MRF in bi-
nary cases) has been extensively used for regularizing statistical
FMM classification. Such MRF can be described as:

(1)

The left summation is computed over all voxels. is
a likelihood probability that is generally estimated via some
low-level FMM process. The right summation is computed over
all pairs of neighboring voxels ( denotes all voxels within a
local neighborhood of voxel ). is a fixed penalty for each oc-
currence of . This MRF formulation provides a useful
framework for smoothing the segmentation output but can also
erase vessels with a diameter smaller than the size of as pre-
viously reported [7], [24]. This effect can be partially mitigated
with asymmetric penalty terms [28], with different configura-
tions of local neighborhood [9], or, as investigated in this study,
with data-dependent interactions.
Conditional random fields (CRF) extend conventional MRFs

by unrestricting the use of all observations to describe first
and high-order potentials. In the most general form, a CRF can
be formulated as:

(2)
Similarly to (1), is a first-order “association” potential and
a second-order interaction potential. However, both and
can depend on parts or all observations in . One common

application of CRFs is to reduce the strength of interactions
when the local observations indicate the presence of an edge in
the data. Data-dependent interaction provides superior capabil-
ities for segmenting fine structures, such as small white-matter
lesions [29], [30] or CTA vasculature [11].
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B. MRF/CRF Inference

A number of local and global optimization methods exist to
estimate . In particular, Iterated Conditional Modes (ICM)
[31] and Graph Cuts [32], [33] are two well-known methods
for MRF/CRF inference. Other methods exist but they are not
as widely used for cerebrovascular segmentation. The reader is
referred to [27] for an overview of different MRF/CRF solvers.
ICM is a greedy method that minimizes locally at each

site iteratively until convergence. ICM is generally fast to
converge. However, one disadvantage with the method is that
it is sensitive to initialization with a pre-segmentation that is
close to the optimal solution . An independent classification
of first-order potentials ( only) is generally sufficient as a pre-
segmentation. Hassouna et al. [7] and Zhou et al. [9] both used
ICM to segment time-of-flight MRA of the brain.
Alternatively, Graph Cuts is a popular global optimization

method for solving discrete MRF/CRF. The main advantage of
Graph Cuts is that it can find a globally optimal solution in poly-
nomial time for binary segmentation cases. However, one main
limitation with standard Graph Cuts technique is that it only ap-
plies to a subset of MRF/CRF with sub-modular energy (i.e.,

). This constraint
puts important limitations on the MRF/CRF model that are not
posed by ICM or other local optimizers. Furthermore, there is a
potential shrinking bias due to the estimation of a minimum cut
that must be taken into account since the structure of interest in
SWI consists of many thin vessel branches.

III. METHOD

The proposed SWI-CRF segmentation builds upon (2).
Specifically, it aggregates multiple first-order association
potentials and second-order interaction potentials (see
Sections III-A and III-B), which are then used to estimate
classification (see Section III-C). Minimal post-processing
is used to exclude hypointense voxels outside the brain
parenchyma thereby enabling visualization of surface veins
(see Section III-D).

A. Association Potential

Similarly to [30], the association potential is defined as the
composite of three potentials: appearance , shape and
location :

(3)

The association potential classifies each voxel in-
dependently from the classification of neighboring voxels. The
classification is thus based solely on the observations or a
subset of observations. In (3), , and are subsets of
used respectively for computation of appearance, shape and lo-
cation potentials.
The appearance potential models cerebral vascu-

lature with the underlying assumption that venous blood is hy-
pointense relatively to other tissues in SWI. The appearance po-
tential is implemented as a FMM. Thus, is simply the ob-
servation . The shape potential incorporates local

tubularity constraints into the segmentation. The shape poten-
tial is implemented using a Hessian-based vesselness measure.
Thus, is a local subset of used for calculation of the local
vesselness . The location potential incorporates
prior atlas information about the expected location of vessels
and other tissues within the brain. Thus, is the full dataset
since all observations are needed for calculating a transforma-
tion that maps the voxels to atlas locations.
All association potentials are defined on a range and

combined in a multiplicative way or, as per (3), by summing
their . The relative importance of each potential is implicit
to the implementation (and fuzziness) of the potential functions

, , and as described next. Rather than using fixed
weights for the different potentials, this CRF is configured such
that the shape and location potentials are most active in brain
regions where appearance cannot discriminate between vessel
and tissue and less active otherwise.
1) Appearance Potential: The appearance potential models

dependencies between the labels and the raw observations
(i.e., the intensities). Similarly to other statistical vessel seg-

mentation protocols, we used a FMM to model likelihood distri-
butions for each label, but with the reverse assumption
that vessels are hypointense. The appearance potential is thus
described as:

(4)

The hypointense vessel class is modeled as one normal distri-
bution. The tissue class in SWI aggregates different brain struc-
tures with low (e.g., iron), medium (eg. the ventricles) and high
(e.g., white-matter, grey-matter) intensities, and is modeled as a
mixture of three normal distributions. The total probability den-
sity function of the FMM is described as:

(5)

is the class proportion and . The
FMM parameters , are estimated by Expecta-
tion-Maximization [34]. Following EM parameter estimation,
likelihoods for and classes are:

(6)

The first and second columns of Fig. 1 respectively show a
raw SWI dataset in different regions of the brain and the com-
puted appearance potentials (vessel class). While the appear-
ance potential is appropriate to describe vasculature at the brain
surface and sub-cortically, other sources of signal-loss can per-
turb the segmentation within basal ganglia or at the mid-sagittal
plane (see red arrows in Fig. 1).
2) Shape Potential: The shape potential complements the ap-

pearance potential by favoring the class for voxels that are lo-
cally tubular and otherwise penalizing voxels that deviate from
this assumption. Specifically, the shape potential is modeled as:

(7)
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Fig. 1. Appearance and Hessian-based shape potentials. The appearance poten-
tial is sensitive to any hypointense structure including the vasculature, but also
iron-rich lenticular nuclei and signal-loss at the inter-hemispheric fissure (see
red arrows). The shape potential detects vasculature as local tubularity in the
data but can under-segment surface vasculature and large sinuses in mid-sagittal
plane (see blue arrows).

is Frangi et al.'s [14] maximal vesselness response
at voxel . is a sigmoid function of the form

. Parameter moves to an appropriate de-
cision threshold. Parameter controls the fuzziness of the
at voxel . As illustrated in Fig. 1 (third column), Hessian-based
filtering can detect tubular vessels even in low-contrast regions.
However, it is also an imperfect descriptor of the SWI vascula-
ture, especially at the brain surface. Therefore, is weighted
according to the local risk that the appearance potential
leaks into other hypointense structures. Thus, we have:

(8)

with

(9)

is the Euclidean distance to the midline in stereotactic
space. is a generalized Hessian-based objectness measure
[35], that extends the vesselness measure to be sensitive to large
plate-like hypointense structures (see Fig. 2 for an example).

is a binary brain mask that disables at the brain sur-
face. is an atlas probability of vessel pres-
ence (see next section). is a global factor to be estimated.
Overall, the shape potential is most active near the midline and
within large hypointense patches detected by the measure.

Fig. 2. Modified Hessian analysis to detect large hypointense plates. This is
an anti-pattern to identify low-contrast brain regions where an appearance-only
potential may fail.

Reciprocally, the shape potential is less active at the brain sur-
face, within sub-cortical regions and at atlas locations with high-
probability of vessel presence.
3) Location Potential: The location potential further guides

the segmentation by incorporating three probabilistic atlas
as follows:

(10)

represents a probabilistic value for a given
atlas at voxel after non-linear deformation to the patient
data . is an atlas that predicts the location of large
veins that have low inter-subject variability such as the supe-
rior sagittal sinus and the straight sinus. These veins are chal-
lenging to segment on SWI because they receive less signal at-
tenuation in comparison to smaller veins1. is a skin atlas
that prevents hyperintense non-parenchyma voxels from taking
the brain tissue class2. 0.05 is a constant probability for other
voxels, with the assumption that vessels occupy less then 5% of
all brain voxels [3], [7]. is a basal ganglia atlas to penalize
the vessel class inside hypointense basal ganglia nuclei such
as the lenticular nuclei, substantia nigra, etc. Otherwise, these
iron-rich nuclei may be incorrectly classified as vessels by the
appearance and (to some extent) the shape potentials. See Ap-
pendix for additional details on the creation of the probabilistic
atlases.

B. Interaction Potential
The interaction potential models contextual dependencies be-

tween all pairs of neighboring voxels. The interaction term is
composed of a smoothness potential and a data-de-
pendent edge potential :

(11)

penalizes dissimilarities between two neighbor
voxels. penalizes similarities when the observations
support the presence of an edge.

1SWI is sensitive to changes in magnetic susceptibility at the boundary
between deoxygenated blood and other brain tissue; inside a sufficiently large
vein such as the superior sagittal sinus, is lower.

2Non-parenchyma voxels are temporarily classified vessels and cropped
during post-processing (see Section III-D).
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1) Smoothness Potential: The smoothness potential is de-
fined as a standard Ising potential:

(12)

is the Kronecker delta function and is a penalty for dis-
similar classification . In many applications, is
chosen constant. However, such isotropic configuration applied
to SWI can eliminate many thin veins with a radius be-
cause a majority of voxels in are (correctly) classified as .
Instead, we implemented an anisotropic Ising potential with two
possible values for ( and ), such that:

otherwise (13)

Note that when and when
. When , it takes fewer voxels to

change the classification of a voxel than in the isotropic
case. Likewise, it takes more voxels to change the
classification of a voxel than in the isotropic case. The
condition , where is the number
of voxels classified as in and is the total number of
voxels in , cancels the anisotropic behavior to prevent over-
segmentation when there is already enough voxels in
.
2) Edge Potential: The edge potential is modeled as follows:

(14)

weights the importance of . is a data-depen-
dent penalty term for similar classification or
in presence of a signed edge in the data:

otherwise

otherwise
(15)

is the first-order image gradient at voxel . is
a unit vector oriented along the edge formed by voxels and
. Thus, penalizes the pattern , in
the presence of a positive edge perpendicular to . Similarly,

penalizes pattern , in the presence of
a negative edge perpendicular to . is a constant term that
takes the value: . This edge potential
can detect fine, low-contrast, vessels with diameter that
could be missed by other potentials or smoothed out by .
Fig. 3 illustrates the role of interaction potentials for

improving strictly independent classification. A standard
Ising-MRF potential (second column of Fig. 3) result in
smoother segmentation, but it also misses fine veins. The
combination of an Ising term and an edge term achieves
both goals of regularizing the segmentation and detecting
finer veins (green voxels in third column of Fig. 3). As il-
lustrated in the second and third row of Fig. 3, most fine
vessels branches detected by connect to a main branch
making the segmentation robust to standard post-processing
by connected-component analysis, commonly used in many

Fig. 3. Comparison of independent FMM, MRF-Ising and proposed CRF clas-
sifications. First column: independent FMM provides a coarse segmentation of
the main vasculature (fine veins are only partially detected due to lower con-
trast). Second column: Standard MRF-Ising achieves smoother segmentation of
the main vasculature but many fine veins are missed. Third column: The CRF
achieves both smooth segmentation and detection of finer vasculature.

cerebrovascular segmentation applications for removing small
isolated clusters.

C. CRF Inference
Optimal classification that maximizes is found

by Iterated Conditional Modes (ICM) [31]. Hence, the CRF is
solved iteratively by updating each classification into
using:

(16)
with

(17)

One limitation of ICM is that it cannot guarantee convergence
to a globally optimal solution. However first-order potentials

provide an initial classification sufficiently close to con-
verge to a desired ICM solution. Furthermore, the local ICM
method can conveniently solve complex CRF models that may
be difficult to solve using a global method, such as Graph Cuts,
either due to the use of multi-neighborhood patterns [9], as in
(13), or non-submodular energy, as in (15).

D. Post-Processing
The only post-processing needed is to exclude non-

parenchyma tissue [28]. To do so, we estimate a convex
parenchyma mask that preserves surface vasculature. This
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Fig. 4. Post-processing for skull-stripping and surface vessel visualiza-
tion. (a) The computed parenchyma mask, in green, overlaid on the CRF
segmentation, in red, to distinguish between vessels and non-brain voxels.
(b)–(c) Visualization of surface veins by \min /max intensity projection by 3D
volume rendering.

mask is computed via a binary majority filter applied iteratively
to the class. Then, vessel concavities at the surface are
detected using a modified ball filter [36] that measures the local
widening within a large neighborhood for all surface voxels

classified as .

(18)

with

(19)

Vessel concavities are detected by computing the ball mea-
sure twice, once with (a standard sphere shape
centered at ) and once with (a local 3D sheet-like
shape of the brain surface also centered at ), to verify that

to exclude remaining flat patches at
the surface that were not eliminated by the binary parenchyma
mask. Fig. 4 illustrates the post processing step. Fig. 4(a) shows
a computed parenchyma mask over the inferred CRF segmen-
tation. Fig. 4(b) shows the surface veins as maximum intensity
projection (MIP) over on a minimum intensity projection (mIP)
of the raw data. This view qualitatively confirms that the seg-
mentation matches the vasculature exhibited by the raw data.
Fig. 4(c) shows a 3D rendering view of the surface vasculature
for integration with the surgical workflow.

IV. EXPERIMENT

A. MRI Acquisition and Preprocessing

SWI datasets were acquired on a 3T Siemens TIM Trio
scanner with a 32-channel head coil on a total of 30 DBS pa-
tients (14 males, 16 females, age range , ,

). We used a multi-echo acquisition strategy to
increase signal-to-noise ratio as described by Denk et al.
[37]. Thus, SWI magnitude and phase datasets were obtained
from a 3D gradient echo sequence with axial orientation,

resolution, 5 equally spaced echo times
(TE) within the range 13-41 ms, a repetition time (TR) of
48 ms and a flip angle of 17 for a total acquisition time
of 10:24 minutes using GRAPPA acceleration (factor of 2).

Fig. 5. Examples of regions-of-interests used to evaluate the performance of
CRF segmentation: (left) deep and sub-cortical veins (center) veins near the
mid-sagittal plane, (right) superficial veins.

The first echo is fully flow compensated. The third and fifth
echoes are flow compensated in the readout direction. Mag-
nitude and phase images from each echo are combined by
standard SWI reconstruction [2] and averaged. T1w anatomical
contrast of the whole head was also acquired using a 3D,
magnetization-prepared, rapid gradient-echo (MP-RAGE)
sequence with sagittal orientation and resolution
( , , , ,

, ). T1w and SWI
datasets, both acquired during the same scanning session, were
rigidly registered by mutual information.
T1w datasets were corrected for intensity non-uniformity

using N3 [38], normalized across all subjects by histogram
matching [39] and processed with BEaST [40] to extract a
brain mask . The SWI datasets were resampled to 0.5-mm
isotropic resolution, denoised with a non local means algorithm
[41], [42] and corrected using N3 [38]. SWI intensities were
linearly scaled to match intensity histogram peak across all
subjects. Both T1w and SWI contrasts are used to deform the
probabilistic atlases , , to the patient's
anatomy (see Appendix).
All SWI datasets were manually segmented by one expert

rater. A subset of 5 datasets was re-segmented by the same rater
and by a second rater to estimate the intra- and inter-rater vari-
ability. The segmented datasets were randomized and separated
in two pools: training and testing pools. The training pool con-
tains 15 datasets, which are used for atlas creation and CRF pa-
rameter estimation (see Section IV-B). The testing pool contains
the other 15 datasets, which are used to evaluate the CRF seg-
mentation's performance (see Section IV-C).
Manual segmentation of whole-brain 3D SWI data can

be considered intractable. Nowinski et al. [43] reported
that manually segmenting much sparser TOF MRA datasets
can necessitate as much as 8 weeks of manual labor per
subject. Our solution was to segment 2D minimum inten-
sity projection (mIP) slabs that focus on specific vascular
system of interest: deep venous system (10-mm transverse
slab—Fig. 5(a), left and right sub-cortical veins (two 10-mm
transverse slabs—Fig. 5(a), veins near the inter-hemispheric
fissure (10-mm sagittal slab—Fig. 5(b) and surface veins
(30-mm transverse slab—Fig. 5(c) for a total of 150 segmen-
tation examples (5 per subjects). To compare 3D automatic
segmentation against 2D manual segmentation, we compute
2D maximum intensity projection (MIP) of the 3D segmented
data. Quantitative comparison metrics that we used are:
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TABLE I
SUMMARY OF ALL USER PARAMETERS ESTIMATED DURING THE CRF TRAINING PHASE

— The Dice-kappa coefficient [44], which measures the
agreement between automatic and manual segmenta-
tion. Specifically, it measures how well the automatic
segmentation matches the manual segmentation on a
voxel-by-voxel (i.e., hit-or-miss) basis. Consequently,
larger vessels will necessarily have a stronger influence.
This limitation is mitigated by computing the kappa coef-
ficients regionally on smaller ROIs.

— The alignment error, which measures the Euclidean dis-
tance between each vessel voxel in the manual segmen-
tation and the closest vessel voxel in the automatic seg-
mentation and vice-versa. This metric was previously used
in [45] but only the average alignment error was reported
and in a single direction (manual to automatic segmenta-
tion). This metric explains the disagreement between the
automatic andmanual segmentations. Specifically, it quan-
tifies spatial differences related to the estimation of the
vessel-tissue boundary in the two segmentations. It is also
sensitive to differences in segmentation of thin vessels be-
cause of the higher surface-to-volume ratio.

B. CRF Parameter Estimation

The CRFmodel described in Section III comes with a number
of parameters that must be estimated. Optimal parameters are
summarized in Table I. They were determined using the seg-
mentation examples of the training pool via a piecewise learning
approach [46] (see Appendix for the details).

C. Validation

The performance of the trained CRF model was then val-
idated using the other 15 SWI datasets in the testing pool.
As such, kappa similarity and alignment error metrics were

computed on all 75 segmentation examples in the testing pool.
For comparison, these validation metrics were also computed
on alternate segmentations obtained from different intensity
and shape potentials taken individually. Specifically, we vali-
dated against: 1) Frangi et al.'s vesselness3 [14], 2) multi-scale
spherical flux (S-Flux)4 [16], [17], and 3) optimally-oriented
flux (O-Flux)5 [18]. The vesselness potential was computed as
per Table I. S-Flux and O-Flux potentials were computed over
10 radii ( , ). These alternate
segmentations were thresholded to maximize the kappa overlap
with the ground truth. In other words, we compared our CRF
(computed without knowledge of the manual segmentation)
with the maximal overlap that can be achieved by any of these
alternate potentials if the manual segmentation is known. CRF
segmentation is also compared to standard MRF segmentation
to evaluate the effect of the data-dependent interaction term

.

V. RESULTS

A. Quantitative Validation
The box-plots of Fig. 6 shows kappa coefficients between

different automatic segmentations and the manual segmenta-
tion, across all 15 test subjects, for deep venous systems (15
test samples), left and right sub-cortical veins (30 test samples),
mid-sagittal plane (15 test samples) and surface vasculature (15

3Implementation available online at: http://www.mathworks.com/matlabcen-
tral/fileexchange/24409-hessian-based-frangi-vesselness-filter

4Implementation available online at: http://www.mathworks.com/matlab-
central/fileexchange/41108-efficient-implementation-for-spherical-flux-com-
putation--3d-

5Implementation available online at: http://www.insight-journal.org/browse/
publication/885
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Fig. 6. Kappa coefficients between manual and different automatic SWI segmentation (vesselness, S-Flux, O-Flux, MRF, CRF) for different brain areas: (a) deep
venous system (b) sub-cortical veins, (c) mid-sagittal plane (d) surface veins.

TABLE II
MEDIAN INTER-RATER AND INTRA-RATER VARIABILITY FOR

DIFFERENT REGIONS-OF-INTEREST

test samples). Median intra-rater and inter-rater variability re-
sults are shown in Table II. The high values indicate that the
manual segmentations can be used to validate the proposed au-
tomatic technique.
Fig. 7 compares the alignment error between the different

automatic segmentations and the manual segmentation sym-
metrically. The left column illustrates the computed alignment
error as a histogram. The “0 mm” bin describes the of vessel
voxels with exact alignment. The “ ”, “1-2 mm” and
“ ” bins describe the of voxels misaligned by, respec-
tively, less then 1-mm, less than 2-mm and more than 2-mm.
In other words, the “0 mm” bin contains voxels classified as

vessels in the automatic and manual segmentation datasets (i.e.,
true positives). The “ ” and “1-2 mm” bins contain
false-positives and false-negatives voxels at a small distance
of a true-positive (i.e., errors near the vessel boundary). The
“ ” bin contains voxels at a large distance from a
true positive. This last bin describes errors such as missing a
branch or segmentation of non-vessel tissue (e.g., leaks, noise,
etc.). The right column of Fig. 7 computes the Earth Mover's
Distance (EMD) [47] between the CRF histogram and other
segmentations' histograms. A positive EMD means that the
CRF histogram is shifted towards left (low-error) bins in com-
parison to the alternate segmentation. Thus, a positive EMD
indicates that the CRF segmentation has a smaller alignment
error.
Non-parametric two-tailed Wilcoxon tests are used for all

comparisons in Figs. 6 and 7. In comparison to vesselness seg-
mentation, the CRF significantly improves the
kappa overlap and alignment error in all regions-of-interests. In
comparison to flux-based segmentation, the CRF yields com-
parable or improved segmentation within deep
and sub-cortical areas, and significantly improves
the kappa overlap and alignment error at the midline and brain
surface.
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Fig. 7. Alignment errors betweenmanual and different automatic segmentation
(Vesselness, S-Flux, O-Flux, MRF, CRF) for: (row 1) deep venous systems,
(row 2) sub-cortical veins, (row 3) mid-sagittal plane and (row 4) surface veins.
The left column shows histograms of alignment errors computed over all test
subjects. The right column shows comparison between CRF and Vesselness/S-
Flux/O-Flux/MRF histograms using the earth mover's distance (EMD). Positive
EMD indicates that the CRF histogram is shifted to the left relatively to the
alternate segmentation. , , .

The difference between data-dependent CRF and standard
MRF is subtle because it relates to the detection of fine vessels
that have little effect on the overall kappa except in sub-cortical
regions that are dominated by smaller vessels. Differences be-
tween CRF and MRF are best detected by comparing the align-

ment errors. As such, CRF segmentation improves the align-
ment error in general-purpose deep venous system
and sub-cortical regions. On the counter part,
higher alignment error is observed at the midline .
Fig. 8 shows median CRF segmentation results for each

ROI. In deep and sub-cortical ROIs, only few low-contrast
1-voxel thick vessels (0.5 mm diameter) are missed or partially
detected. The simpler MRF model tends to miss more vessels
as indicated (black circles). CRF and MRF segmentations in the
mid-sagittal plane are qualitatively similar and tend to detect
more vessel branches than identified in the manual segmen-
tation. These finer vessels are not necessarily false-positives
as they could have been partially hidden by the hypointense
inter-hemispheric fissure during the mIP operation and thus
difficult to segment manually. CRF is particularly effective at
segmenting these fine hidden vessels, which could also explain
the increase in alignment error illustrated in Fig. 7. Finally, all
major surface veins are correctly segmented by CRF and MRF.
Few smaller branches are missed, in part due to skull stripping.

B. Qualitative Validation
Fig. 9 illustrates CRF segmentation of a single subject in com-

parison to alternate segmentation based on vesselness, S-Flux
and O-Flux potentials.
The first row of Fig. 9 shows segmentation of a standard

20-mm transverse SWI slab exhibiting deep venous and
sub-cortical venous systems. Comparable segmentation is ob-
tained for CRF and flux-based segmentation. In the sub-cortical
area especially, the background tissue is relatively uniform
and highly contrasting thus allowing gradient-based S-Flux
and O-Flux to detect very fine vasculature. CRF also segments
fine vessels because of the data-dependent gradient interaction
term. Classification based strictly on Hessian-based vesselness
filtering is less sensitive to finer vessels and it is difficult to
precisely segment the vessel-tissue boundary. This is because
the vesselness response is strong near the centerline, where the
tubular model is best matched, and ambiguous (threshold-de-
pendent) at vessel boundary. This observation is consistent
with lower kappa overlap and higher alignment errors observed
for vesselness-based segmentation.
The second row of Fig. 9 shows segmentation of a 10-mm

sagittal slab taken medially to exhibit signal loss due to the in-
terhemispheric space. Clearly, flux-based methods are not suit-
able in that region. This explains the low kappa agreement and
high alignment errors obtained for S-Flux and O-Flux. Hence,
segmentation near the mid-sagittal plane necessitates a stronger
tubular shape model. Hessian-based vesselness filtering effec-
tively segments veins hidden by other sources of signal loss at
the midline but undersegments large vessels such as the supe-
rior sagittal sinus and straight sinus also present in this slab.
CRF segmentation that combines a Hessian-based shape poten-
tial and an atlas location potential can detect both large veins
and smaller veins partially obscured by interhemispheric signal
loss.
The third row of Fig. 9 shows segmentation of a 30-mm slab

taken at the brain surface near the apex. These superficial veins
do not exhibit full 3D tubular contrast because the skull is hy-
pointense. For this reason it is particularly challenging to apply
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Fig. 8. Manual, CRF and MRF segmentations in each region-of-interest: (a) deep venous system, (b) sub-cortical veins, (c) mid-sagittal plane, (d) surface veins.
For each ROI, the segmentation with median CRF-kappa overlap is shown. The circles indicate specific vessel branches in deep and sub-cortical ROIs that were
mis-segmented in MRF (i.e., missed or partially detected vessels) and improved by CRF segmentation.

a shape potential without undersegmenting the superficial veins.
This explains the lower kappa overlap and higher alignment er-
rors observed for all other potentials. Since Hessian-based fil-
tering imposes stricter shape constraints in comparison to gra-
dient-based S-Flux and O-Flux, it is the least suitable potential
for superficial vein segmentation.
Additional examples on different subjects are shown in

Fig. 10 to demonstrate the generality of the proposed solution.
Note that the raw SWI datasets (first row of Fig. 10) were
acquired on a population of elderly Parkinson's patient and the
raw image quality varies due to possible patient motion (e.g.,
tremors). Subject 1 is the most degraded dataset. Subject 3 is
the highest quality and most dense dataset. CRF segmentation
provides robust and consistent segmentation on all these cases.
In these examples, it is important to note that SWI acquisi-

tions are inherently qualitative as they tend to exaggerate vessel
size. This can be seen in the raw data (e.g., first column of Fig. 9,
first row of Fig. 10) and, consequently, in the CRF segmentation
(last column of Fig. 9, second row of Fig. 10). Indeed, SWI ex-
ploits phase changes occurring at the boundary between tissues
with different magnetic susceptibility. By enhancing the inter-
face between veins and tissue, SWI exaggerates vessel size, but
also enables visualization of finer veins that are otherwise invis-
ible in conventional MRA.

VI. DISCUSSION AND CONCLUSION
Minimizing the risk of damaging the cerebral vasculature

is essential in many neurosurgical procedures. Advanced MR
venography techniques such as SWI can provide definitive ad-
vantages over traditional gadolinium-based MRI for imaging
finer venous structures [3]. However, current clinical segmenta-
tion protocols are impractical for dense SWI venograms, espe-
cially when large brain coverage is needed. This study demon-
strates that a CRFmodel with an energy function that aggregates
different and order potentials (appearance, shape, loca-
tion, Ising interaction, and data-dependent interaction) is suit-
able for automatic, robust, whole-brain SWI segmentation. Our
results show that the aggregated CRF approach effectively seg-
ments veins within deep venous and sub-cortical areas, and im-
proves segmentation of more challenging brain regions near the
midline and at the brain surface.
The 3D CRF model was trained and validated using 2D

min/max intensity projection (MIP) space due to feasibility
constraints for generating reliable manual segmentation of
very dense SWI vasculature with acceptable (low) intra- and
inter-rater variability. This comes without any loss of gen-
erality and we tested the segmentation using multiple MIP
orientations: transverse and sagittal. The segmentation exam-
ples used for training and testing the CRF segmentation were
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Fig. 9. Comparison of binary SWI segmentation using Frangi et al's vesselness, spherical flux (S-Flux), optimally oriented flux (O-Flux) and the proposed CRF.
(row 1) standard 20-mm transverse MIP taken at the level of the lateral ventricles. (row 2) 10-mm sagittal MIP at the inter-hemispheric fissure. (row 3) 30-mm
transverse MIP at the brain surface.

Fig. 10. Additional CRF segmentation examples exhibiting consistent results across different subjects. Note that subject 1's dataset is degraded due to patient
motion.

all manually delineated using ITK-SNAP [48], without any
pre-segmentation that could bias the manual segmentation.
Quantitative validation metrics used in this work include

standard Dice-kappa overlap and alignment errors. The kappa
metric measures the agreement between manual and automatic
segmentation, but does not measure how far “disagreeing”
voxels (i.e., false-positives and false-negatives) are from the
closest “agreeing” vessel voxels. This is measured by the
alignment error analysis. Other related works previously re-

ported the mean alignment error [45], which only provides
partial information about the alignment error, or the maximal
alignment error [11], which can be too sensitive to isolated
false-positives that are trivial to exclude by post-processing.
In this work, the alignment error was presented as a complete
histogram. This revealed that the aggregated CRF segmentation
comes with fewer “disagreeing” voxels and the disagreement
is also smaller in distance in comparison to segmentation
based on a single potential. Illustrative segmentation examples
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further demonstrate the generality of the segmentation across
the different brain regions.
One limitation of the current CRF model is the sensitivity to

susceptibility artifacts observed near air-tissue interfaces (e.g.,
nasal cavities and ear canal) and specifically near the orbito-
frontal cortex (black arrow in Fig. 9, second row) and within
inferior temporal lobes (not shown). This is a limitation of the
SWI method itself and additional location potentials could be
incorporated for excluding these artifacts from the final segmen-
tation. It is important to note that alternate angiography modal-
ities should be considered for applications that necessitate ex-
ploration or inferior temporal lobes or orbito-frontal cortex [3].
Another limitation of our SWI acquisition strategy is that the

second and fourth echoes are not flow compensated. As noted
by Denk et al. [37] large arterial vessels may experience signal
loss due to fast flow in these non-flow compensated echoes and
could be mistaken for veins by our CRF. However, 3 out of
5 echoes being averaged are flow compensated, and we found
this sufficient to provide robust preservation of signal from the
arteries, at least for brain regions dorsal to the circle-of-Willis.
In larger arteries below this level it is also important to note that
SWI is not the most convenient modality because of air-tissue
interface susceptibility artifacts. A potential future work could
consist of adding arterial-dominated TOF contrast as input to
the CRF model for superior separation between veins and large
arteries in ventral brain regions.
By design, this CRF model applies to reverse-contrast SWI

acquisitions. Specifically this CRF was trained and evaluated
using a multi-echo SWI acquisition protocol. However, the
same CRF model also applies to more conventional single-echo
SWI acquisitions, either by re-training the CRF or using the
default parameters summarized in Table I. The advantage of
a multi-echo acquisition strategy is the higher signal-to-noise
ratio obtained due to the averaging of signal from the multiple
echo times, which enhance visualization and detection of very
fine sub-cortical veins. The main disadvantage of the multi-echo
acquisitions is that longer TEs accentuate -weighted con-
trast and signal attenuation in basal ganglia structures with
higher iron content. This limitation is mitigated by the use of
location priors that penalize the vessel class inside iron rich
basal ganglia nuclei.
Furthermore, this CRF model was designed to segment

datasets that follow a standard SWI reconstruction process. As
such, the information obtained from the phase and magnitude
of the MRI is merged together, by applying an independent
voxel-wise operation to voxels with negative phase, to produce
a new susceptibility-weighted contrast. This comes with the
advantage that our CRF model applies to off-the-shelf SWI
acquisitions as implemented by most MRI manufacturers.
However, our raw data consisted of 5 echoes with separate
magnitude and phase data that provide extra, potentially valu-
able, information for vessel segmentation. A number of variants
of our CRF could therefore be explored as future work. One
variant could consist of treating the intensities specific to each
echo as a vector of observations rather than a signal average,
since each echo time produces different -weighted contrast.
Another variant could consist of processing the magnitude and
phase of the MRI echoes separately. In particular, additional

Fig. 11. Typical brain intensity histogram on SWI data (red dots) and EMfitting
(blue line) of a Finite Mixture of 4 normal distributions (dashed lines).

CRF potentials could be designed to detect advanced phase
patterns, spatially and across different echo times, that may
better describe the venous vasculature.
In summary, this paper described an automatic CRF segmen-

tation for SWI venography datasets and that improves classi-
fication based on a single potential. Patient-specific 3D mod-
eling of the cerebral veins finds potential application in mini-
mally invasive interventions for planning safe key-hole trajec-
tories and other non-surgical applications, for example, in fMRI
studies to screen for significant venous structures that might
be within areas of blood oxygenation level-dependent (BOLD)
activations [26].

APPENDIX
PIECE-WISE CRF TRAINING

Piece-Wise Training for the Appearance Potential: There are
no free parameters to estimate for the Appearance Potential.
However, the EM requires some initialization. Since SWI inten-
sities are normalized across all subjects, fixed parameters were
used to initialize the 3 normal distributions that model the tissue
intensities. Initial parameters for the vessel class are determined
by simple thresholding of vesselness filtered SWI . As illus-
trated in Fig. 11, the FMM is accurately fitted to the intensity
histogram with an absolute error of 0.0230 that
compares well with values previously reported in other MRA
applications [7].
Piece-Wise Training for the Shape Potential: Internal ves-

selness parameters were initialized as suggested in [14] (
, , ). The vesselness mea-

sure was computed over multiple scales within the range
. These parameters work well in prac-

tice. Similar internal parameters were used for the objectness
measure of (8), but with higher scales

to detect large non-vessel patches of signal loss.
The shape potential, as described in (7)–(9), requires estima-

tion of two parameters ( and ).
— Parameter is learned by thresholding to maximize the

kappa coefficient over all training examples. Thus, we used
.
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TABLE III
MULTI-CONTRAST NON-LINEAR REGISTRATION PARAMETERS.

ITERATIONS 1–20 USE T1W CONTRAST AND ACHIEVE COARSE-TO-FINE
BRAIN ALIGNMENT. ITERATIONS 21–24 USE SWI CONTRAST

AND ACHIEVE FINE VASCULAR ALIGNMENT

Fig. 12. Location potential defined on a non-linear 15-subjects SWI atlas. (first
row) Different slabs of the raw multi-subject atlas. (second row) The prob-
abilistic atlases: red scale , blue scale , green scale

.

— Parameter is learned by classifying all training dataset
using the first-order (association) potentials while in-
creasing within the range with a step size of 5.
is chosen to maximize the kappa overlap at the inter-hemi-
spheric fissure without scoring worse in deep venous
system or sub-cortical areas. Thus, we used .

Piece-Wise Training for the Location Potential: We used an
existing atlas for [49]. and were defined
by creating a non-linear T1w-SWI template using the 15 sub-
jects of the training pool as described next.
The T1w datasets were linearly transformed to stereotactic

space using a 9-parameters affine transformation. Then, a non-
linear T1w template was created using an iterative technique
previously described and validated in [50]. Finally, a non-linear
SWI template was created to further improve vasculature align-
ment. All registration iterations are achieved using ANIMAL
[51] and Table III provides a brief summary of the registration
parameters used at each step.
Large sinuses were manually segmented on the multi-subject

SWI template, warped back into non-linear T1w-space sepa-
rately for all 15 subjects and averaged to yield . In other
words, iterations 21–24 of Table III are inverted to cancel vas-
culature-related deformations, thus modeling inter-subject vas-
cular variability, while keeping other brain deformations.
is processed similarly, except that we inverted all non-linear de-
formations (iterations 1–24). Fig. 12 illustrates the 15-subjects

SWI average (first row) and the three location potentials (second
row).
Piece-Wise Training for the Interaction Potential: The inter-

action potential parameters: , , are estimated using the
complete CRF.
— The ratio of asymmetry is selected to balance the

number of and label changes before and
after ICM in sub-cortical regions that are characterized by
the presence of many small veins.

— Similarly to [30], we varied the values of in the range
and in the range , and computed the av-

erage kappa and false-positive rate over all deep and sub-
cortical training examples. Over all pairs , we se-
lected to maximize the kappa overlap and to mini-
mize the FP rate.

We used and . This
ratio is consistent with previous findings based on the pseudo-
likelihood estimate [28].
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