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Spatiotemporal Clutter Filtering of Ultrafast
Ultrasound Data Highly Increases Doppler
and fUltrasound Sensitivity

Charlie Demené*, Thomas Deffieux, Mathieu Pernot, Bruno-Félix Osmanski, Valérie Biran, Jean-Luc Gennisson,
Lim-Anna Sieu, Antoine Bergel, Stéphanie Franqui, Jean-Michel Correas, Ivan Cohen,
Olivier Baud, and Mickael Tanter

Abstract—Ultrafast ultrasonic imaging is a rapidly developing
field based on the unfocused transmission of plane or diverging ul-
trasound waves. This recent approach to ultrasound imaging leads
to a large increase in raw ultrasound data available per acquisi-
tion. Bigger synchronous ultrasound imaging datasets can be ex-
ploited in order to strongly improve the discrimination between
tissue and blood motion in the field of Doppler imaging. Here we
propose a spatiotemporal singular value decomposition clutter re-
jection of ultrasonic data acquired at ultrafast frame rate. The sin-
gular value decomposition (SVD) takes benefits of the different fea-
tures of tissue and blood motion in terms of spatiotemporal coher-
ence and strongly outperforms conventional clutter rejection filters
based on high pass temporal filtering. Whereas classical clutter fil-
ters operate on the temporal dimension only, SVD clutter filtering
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provides up to a four-dimensional approach (3D in space and 1D
in time). We demonstrate the performance of SVD clutter filtering
with a flow phantom study that showed an increased performance
compared to other classical filters (better contrast to noise ratio
with tissue motion between 1 and 10mm/s and axial blood flow as
low as 2.6 mm/s). SVD clutter filtering revealed previously unde-
tected blood flows such as microvascular networks or blood flows
corrupted by significant tissue or probe motion artifacts. We re-
port in vivo applications including small animal fUltrasound brain
imaging (blood flow detection limit of 0.5 mm/s) and several clin-
ical imaging cases, such as neonate brain imaging, liver or kidney
Doppler imaging.

Index Terms—Blood flow, Doppler imaging, singular value de-
composition, ultrafast imaging, ultrasound.

I. INTRODUCTION

XTENSIVE work has been conducted over the past 30

years in order to suppress clutter signals originating from
stationary and slowly moving tissue as they introduce major
artifacts in ultrasonic blood flow imaging [1]. This operation
remains a major challenge for the visualization of vascular
paths and the measurement of blood flow velocities because
tissue echoes and blood scatterers echoes tend to share common
characteristics, especially in two widespread clinical cases
e.g., when blood flow velocities become low (in particular
in small vessels) or when tissue motion is important. These
two configurations correspond both to major applications in
general ultrasound imaging. On the one hand, imaging slow
blood flows and therefore microvasculature is an issue in most
organs as skin, muscles, placenta, as well as in tumors for
cancer diagnosis. It is also of major importance in emerging
fields such as fUltrasound imaging of brain activity where the
neurovascular coupling occurs locally in very small vessels.
On the other hand, imaging blood flow in fast moving tissue
is a major issue in applications such as cardiac or abdominal
(liver, kidney,...) imaging.

The reason why clutter filters fail to solve both situations
mentioned above is due to the underlying assumption on which
they are built. In the early history of Color Flow Imaging (CFI),
clutter filtering has always been based on the fair assumption
that tissue signal and blood flow signal have completely dif-
fering spectral characteristics: tissue motion is supposed very
slow or non-existent whereas red blood cells are fast moving
scatterers, meaning that demodulated tissue signal and blood
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signal have non-overlapping spectra centered on the zero
frequency and the Doppler frequency respectively. Based on
this temporal dynamics assumption, the raw ultrasonic signal
is filtered along the temporal dimension using finite impulse
response (FIR) or infinite impulse response (IIR) filters [2], [3].
IIR filters present the advantage of having steeper roll-off than
FIR for a given order, but they also exhibit a longer settling
time because of the lack of correct outputs for the first temporal
points. FIR filters present a short settling time (output is stable
after only n points for an n-order FIR filter) but need a higher
order to efficiently discriminate clutter from blood signal. In
both cases a first limitation arises: due to real-time requirement
and the use of focused ultrasonic beams to build the image, the
number of temporal samples available in each spatial location
is low (usually 8 to 16) and those filters are really difficult to
optimize [4] for a general Doppler imaging application ranging
from cardiac imaging (maximal tissue velocity) to microcir-
culation imaging (very low blood flow speeds). The problem
of the settling time can be reduced by a proper initialization
[5] in the case of IIR filters but the transient response cannot
be completely canceled. On the other hand, another class of
filters called standard linear regression (SLR) filters [6] do not
exhibit any settling time and estimate the tissue signal by a
linear regression on several temporal points of the ultrasound
signal: based on the same assumption than mentioned above, it
is assumed that the slow variations of the signal are exclusively
due to tissue and the rapid fluctuations are exclusively due to
blood flow. Finally, several techniques have been developed
to adapt to each Doppler imaging situation by compensating
background tissue motion: by estimating first tissue velocity
and down-mixing the ultrasound temporal signal via a phase
correction, the spectrum can be shifted so that the center fre-
quency of the tissue signal match the zero frequency [7], [8].
The signal is then processed using a classical fixed cut-off filter
to remove tissue echoes.

In all these methods, only the temporal information has been
used because the hypothesis used to discriminate tissue signal
and blood scatterers signal focused on their different spectral
content. But it can also be noticed that spatial characteristics of
tissue signal are different from those of blood scatterers. Along
one M-mode line, tissue movement toward the transducer
can be approximated by only a shift in the RF data (a phase
shift for In Phase/Quadrature RF data) whereas moving red
blood cells change the profile of the RF data itself. A brief
explanation is that tissue is far less deformable than a red blood
cell arrangement in plasma, and a small movement of tissue
can be seen as a spatial shift of a speckle pattern whereas
a movement of red blood cells implies a reorganization of
the scatterers generating a different speckle pattern. In other
words, tissue signal has a higher spatial coherence than blood
signal in ultrasound imaging. Several authors suggested this
hypothesis and introduced new clutter rejection methods based
on this a priori: Ledoux et al. [9] proposed a clutter reduction
simulation study based on the Singular Value Decomposi-
tion of the correlation matrix between successive temporal
samples of a M-mode line. In this approach both 1D spatial
and temporal information are used via the diagonalization
of the spatiotemporal (time and depth) correlation matrix.
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Several strategies have emerged from this approach and an
exhaustive review of these methods have been proposed by
Yu and Lovstakken in 2010 [10]. Among those developments,
important works such as the down-mixing approach using an
eigen-based tissue motion estimation of Bjearum et al. [8] and
the real time implementation of eigen-based clutter rejection
proposed by Lovstakken ef al. [11] have to be cited. Finally,
Kruse and Ferrara [12] developed an original high frequency
swept scan imaging setup whose datasets have been processed
using principal component analysis to estimate blood velocity
in presence of strong motion.

In all reported methods, discrimination between tissue and
blood flow drastically suffer from a poor ensemble length, i.e.,
a poor number of ultrasound pulses per line of color. The use
of focused beams imposes to adopt a line-per-line scan strategy
(either electronically in the case of transducer arrays, or me-
chanically in the case of a single transducer) in order to cover
an extensive field of view. As a consequence both the number
of temporal samples (collected on a particular location before
the system has to move to another location) and the number
of spatial samples (acquired at different times and therefore
having different characteristics) are limited. From a theoretical
point of view, taking into account different spatial samples along
the swept direction is even intrinsically difficult as these sam-
ples are not acquired simultaneously. Unfortunately, these char-
acteristics of ultrasonic sequences in conventional ultrasound
strongly limit the impact of singular value decomposition. SVD
processing is a powerful signal processing tool but as for digital
filters its full potential is obtained on large datasets.

Over the past decade, it was shown that ultrafast ultrasound
imaging based on unfocused wave transmissions can acquire
wide two-dimensional fields of view at very high frame rates
(typically higher than 1000 frames per second). The fast
growing number of emerging clinical applications of ultrafast
imaging [13], [14] and exponential evolution of computation
power of GPU based electronics permits to envision a soon
change of paradigm in ultrasonic imaging. At the cost of a little
loss in focusing capabilities, plane wave imaging enables the
acquisition of a large amount of synchronous samples which,
in the framework of clutter rejection filters, overcome severe
limitations inherent to conventional focused transmissions.

Instead of collecting typically 16 temporal samples in a small
spatial box before electronically moving to another location
as in conventional Doppler imaging, ultrafast imaging uses
plane waves to insonify the medium before beamforming the
backscattered echoes into an image. This enables ultrafast
imaging over a wide field of view at a framerate of several
kHz. As ultrafast imaging relies on focusing in reception only,
resolution is partially lost compared to classical ultrasound
imaging schemes using focusing both in emission and recep-
tion. However, it has been demonstrated that resolution or
motion estimation can be improved using a set of tilted plane or
diverging waves combined after beamforming [15]-[17]. The
ultrasonic modality based on coherent synthetic recombination
of unfocused wave transmissions and used to visualize blood
flows was called Ultrafast Doppler imaging.

In a former study, we reported that Ultrafast Doppler imaging
improved Doppler sensitivity by a factor up to 30 compared
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to conventional Doppler imaging [18]. This is in large extent
due to the temporal ensemble length of an Ultrafast Doppler
dataset compared to a conventional Doppler dataset. As Ultra-
fast Doppler does not need electronic sweeping of the focused
beam along the transducer array, temporal samples are acquired
simultaneously in every pixel of the image. This means that for
a 1 second acquisition at 1 kHz of frame rate, each pixel exhibits
1000 temporal points. The settling time of temporal filters is not
an issue anymore and high order IIR with steep roll-of can be
used as long as the first tens of temporal points are removed
from the signal. The increased sensitivity of Ultrafast Doppler
is in a quite large extent due to this highly efficient clutter fil-
tering combined with a longer ensemble length and a “virtual”
[19] dynamic focusing due to coherent recombination of dif-
ferent sonications.

However, to date, the only a priori used to filter out the clutter
of Ultrafast Doppler Images was based on a temporal discrim-
ination between tissue and blood flow motion [17], [18], [20].
Again, this assumption is not true in the case of slow blood flows
or fast moving tissue where both spectra overlap. In these cases,
spectral filters applied to Ultrafast Doppler encounter the same
difficulties than mentioned previously to discriminate between
tissue and blood flow.

In this paper, we present a way of rejecting clutter signals
from Ultrafast Doppler datasets using Singular Value Decom-
position (SVD) or Principal Component Analysis (PCA). Both
2D spatial and temporal coherence are used to separate tissue
from blood flow, showing a considerable improvement in both
the detection of slow blood flows and the removal of moving
tissues. Thanks to ultrafast sequences, simultaneous raw data
can be reshaped under large Casorati matrix form [21]. This ar-
ticle focuses on the straightforward use of singular value decom-
position of this Casorati matrix for blood/tissue discrimination.
However, the reader should note that very significant develop-
ments were achieved in the field of matrix regression in the last
five years. Most of them are devoted towards low-rank matrix
regression and signal separation, i.e., the so-called Robust PCA
[22]. In addition to pure mathematical developments, these tech-
niques have been widely used in other medical imaging modali-
ties like magnetic resonance imaging (MRI) [23] and x-ray com-
puted tomography [24].

II. THEORY

A theoretical framework is introduced in this section of the
paper to explain the different steps of the clutter rejection algo-
rithm and better understand its implications.

A. The Specificity of Ultrasound Signal

1) The Different Components of the Ultrasound Signal: An
Ultrafast Doppler acquisition consists in a stack of beamformed
ultrasound images (or a cineloop) and can be represented under
the complex valued variable s(z, z,t), where z stands for the
lateral dimension (along the transducers array), z stands for
depth in the medium in front of the ultrasonic probe, and ¢ stands
for time (sampled at a frequency noted Frame Rate from there
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on). It is assumed that this signal can be described as the sum-
mation of three contributions (1): ¢ the clutter signal, b the blood
signal, and n the electronical/thermal noise.

s{z,z,t) = elx, z,t) + bz, z,t) + n(x, 2, t). (D

Those three contributions have different spatial and temporal
characteristics. n can be considered as a zero-mean Gaussian
white noise. The classical approach consists in assuming that
blood signal is a high temporal frequency signal and that tissue
signal is a low frequency signal. It must be also acknowledged
that depending on the ultrasound frequency used for the acquisi-
tion, the backscattered energy of the blood signal can be 10 to 60
dB lower than energy of the tissue signal. Moreover, although
spatial characteristics of blood and tissue signals are rarely in-
vestigated, they also convey different information.

2) Covariance Matrix of Neighboring Pixels: This section
elucidates the spatiotemporal characteristics of blood signal
and tissue signal, first qualitatively by introducing a simpli-
fied signal § to illustrate the common statistical properties of
neighboring pixels, and then quantitatively by constructing the
covariance matrix of neighboring pixels.

Fig. 1 gives insight into the statistical properties of blood
signal b and clutter signal ¢ in the example of rat brain ultrasonic
imaging. As stated before the temporal signal in one pixel ex-
hibits low frequency fluctuations corresponding to tissue move-
ment (in the imaginary part of the signal the three slow oscilla-
tions observed are due to tissue moving when the heart beats)
and high frequency fluctuations due to actual blood cells motion.
In order to compare spatially close temporal signals, a simpli-
fied signal 3(x, z,t) = s(z, 2,t).8(z, 2, t) /|s(x, 2,1)|? is cal-
culated, where 5 is the time average value of s and * stands
for complex conjugate. This simplified illustrative representa-
tion enables to get rid of any phase shift (via the product with
the complex conjugate of the time averaged signal) and of am-
plitude difference (via the division with the squared modulus)
between two pixel signals; and consequently to compare signals
only on the basis of their shape. Fig. 1 shows that in neighboring
pixels, simplified signals present very similar low frequency
variations (tissue motion), whereas the rapid fluctuations (blood
motion) do not present the same pattern from one pixel to an-
other. This aspect is further investigated in Fig. 2, where the nine
pixel signals of the second neighborhood of Fig. 1 are separated
in blood (HF) and tissue (LF) signal with a temporal filter. It is
clear that tissue signal is highly correlated and the covariance
matrix of those nine signals exhibits a high degree of correla-
tion, whereas the blood signal covariance matrix is almost di-
agonal, meaning that blood signal is poorly spatially coherent,
even at a very local scale. Fig. 1 even shows that at large spatial
scales, tissue signal is still quite coherent as the simplified sig-
nals are quite similar in shape between the two neighborhoods.
Thus, tissue signal could be condensed in a few temporal signal
accompanied by a set of spatially arranged complex coefficients
required to recover the amplitude and phase shift proper to each
pixel. In other words, tissue signal realization in all pixels forms
a family of vectors whose cardinality is much higher than the di-
mension of the tissue vector subspace. This is an essential idea
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Fig. 1. Typical example of an Ultrafast Acquisition. The top image depicts
s(z,z,t = 0) of an Ultrafast acquisition acquired during 0.5 s at a Frame
Rate of 500Hz, on the brain of a thinned skull rat (scale bar = 1 mm). To
have an insight into the temporal dimension of this Ultrafast acquisition, two
neighborhoods of nine pixels have been chosen in the image (green and cyan
squares). Inside each pixel, the simplified signal &(z, z,¢) is calculated to get
rid of phase difference and amplitude difference from one pixel to another. 5 is
then plotted with color respective to the position in the nine pixel neighborhood
(black, blue or red). This illustrates that signal in close pixels is very similar in
shape.

to understand the efficiency of the singular-based clutter filter
presented in this paper.

Contrary to tissue signal, blood signal is not assumed to have
high spatial coherence. In addition, tissue signal energy is much
higher (10 to 50 dB) than blood signal energy, and a separa-
tion method based on covariance estimation certainly finds the
highest covariance values for the tissue signal. This discrimina-
tion based on covariance estimation can be performed using the
singular value decomposition of raw data.

B. Singular Value Decomposition of Ultrafast Ultrasonic Data

Let us consider the spatiotemporal matrix form of s(z, z, t)
corresponding to the raw data cineloop acquired during an ul-
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Fig. 2. The same data than in the green nine pixel neighborhood of Fig. 1 are
filtered using a 50Hz cut off 4*" order Butterworth filter typically used to dis-
criminate between tissue and blood flow signals, and on the graphs it can be ob-
served that the low frequency (LF) part of the nine pixel temporal signal are re-
ally similar in shape and seem highly correlated, whereas the blood signal (HF)
seem highly decorrelated. On the right are displayed the 99 covariance ma-
trix (magnitude) of the normalized zero-mean complex signals, for the low fre-
quency and high frequency part respectively. HF Blood signal is indeed highly
decorrelated compared to LF tissue signal.

trafast acquisition. s(z, z,t) corresponds to set of n, X n, X ny
samples where n,, n, and n, are respectively the number of
spatial samples along x-direction, the number of spatial sam-
ples! along z-direction and the number of time samples. The
raw data matrix is reshaped under a Casorati matrix form by
transforming time series data into a 2D space-time matrix form
S with dimensions (n, x n,,n;) as already proposed in other
imaging modalities such as MRI and CT [22]-[26].

The singular value decomposition (SVD) of this Casorati ma-
trix S consists in finding the three matrices such as:

S =UAV™. )

Where V is a non-square (n, X n,,n;) diagonal matrix, I
and V are orthonormal matrices with respective dimensions
(ngy X ny,n, X n,) and (ng,ne) and * stands for the conju-
gate transpose. Columns of U and V' matrices correspond re-
spectively to the spatial and temporal singular vectors of S. One

Note that all concepts described here are straightforwardly applicable for 4D
data (3D space 41D time). For sake of simplicity, we restrict here the examples
to a 3D case (2D space image + 1D time) which is the most routine case in
biomedical ultrasound.
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should also notice that U and V' also correspond to the eigen-
vectors? of the respective covariance matrices $58* and §*S.

What is the physical meaning of the SVD of matrix S? In
fact, the singular value decomposition (SVD) or principal com-
ponent analysis (PCA) can be thought of as decomposing a ma-
trix S into a weighted, ordered sum of separable matrices A;.
By separable, we mean that the matrix .S can be written as an
outer product of two vectors A; = U; ® V;. Specifically, the
matrix S can be decomposed as:

=3 XNA =D AUV 3)

Thus, the SVD can be used to find the decomposition of an
ultrafast ultrasonic dataset into separable space and time filters.
Here U; and V; are the i*® columns of the corresponding SVD
matrices defined in (6), A; are the ordered singular values, and
each A; is a separable matrix. The number of non-zero J; is
exactly the rank of the matrix. Importantly, one should keep in
mind that each column V; corresponds to a temporal signal with
length 7, and each column U; corresponds to a spatial signal
with length n;. Each vector U; describes in fact a 2D spatial
image I; with dimensions (n,,n,).

As one can notice, the SVD of § decomposes the field into
a sum of separable images I; (characterized by a vector U;)
that are independently modulated by a temporal signal V;. In
other words, all pixels of the ultrasonic spatial images I;(x, z)
characterized by the singular vector U; behave with the same
time signal V;(¥).

Thus, thanks to the SVD processing, the spatiotemporal
cineloop s(z, z,t) corresponding to ultrasonic raw data can be
rewritten as:

rank(S)

s(zyz,t) = > Nli(@, 2)Vi(2). 4)
i=1

In this decomposition, tissue displacements should be de-
scribed mainly in the first singular values and singular vectors as
their high spatiotemporal coherence insures that a large number
of spatial pixels will exhibit the same time profile. On the con-
trary, blood signal should be found in lower singular values as
they exhibit much lower spatiotemporal coherence. Thus, fil-
tering the data using the SVD approach consists in calculating:

st =svI'v: =UA'v*. 5)

Where $7 is the filtered data set and I/ is a matrix filter,
i.e., the diagonal identity matrix with zeros for the first diagonal
elements, leading to a truncated Af diagonal matrix of singular
values corresponding to the removal of tissue motion.

Interestingly, the classical clutter filter approach used in ul-
trasound imaging corresponding to a simple high pass filter can
be written under a quite similar matrix formalism:

S/ =SEI'E". (6)

2Singular Value Decomposition and Principal Component Analysis
are two aspects of the same problem and one decomposition can lead to
the other and vice versa as S*S = VA*U*UAV* = VA2V* and
SS8* = UA*V*VAU* = UA2U*.
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Fig. 3. (a) The ultrafast Doppler acquisition forms a 3D stack of images with
2 spatial dimensions and one temporal dimension (same data than Fig. 1). It is
reshaped in one spatiotemporal representation (Casorati matrix) where all pixels
at one time point are arranged in one column. As a consequence all time points
for one pixel are arranged in one row. (b) The covariance matrix is presented
here in magnitude and is of dimension n; X 72;.

Where E is the Fourier transform matrix and 17 is again the
high pass filter, i.e., the diagonal identity matrix with zeros for
the diagonal elements corresponding to low frequencies (the
first and last ones with a classical FFT algorithm). In the light
of this formulation both filters are temporal filters and rank-re-
ducing for the tissue signal (the tissue is compressed on a subset
of the spectrum that is then set to zero) but the SVD outper-
forms the Fourier decomposition according to the Eckart-Young
theorem [27] as it provides a faster decrease of singular values
and consequently a better tissue blood discrimination. In other
words, the decomposition is better in the multidimensional SVD
approach as the clutter basis vectors are calculated adaptively
(through spatial averaging) and more optimally compared to the
Fourier basis.

C. Implementation of the SVD Filter

Given the hypothesis of high spatiotemporal coherence for
the tissue signal, the idea is to build a new spatiotemporal rep-
resentation of the Ultrafast acquisition in the basis provided by
the singular value decomposition. The first step is presented in
Fig. 3(a) and consists in rearranging the Ultrafast Doppler ac-
quisition into a 2D Casorati matrix S where one dimension is
space and the other dimension is time. Singular value decom-
position could be performed on this matrix S and directly give
the new temporal singular vector basis U and the new spatial
singular vector basis V.

However, in most cases the Ultrafast Doppler acquisition
presents many more spatial points (typically several 10 000)
than temporal points (several hundreds or thousands), and it can
be less demanding from a computing point of view to first form
the n; x n; covariance matrix (Fig. 3(b)) and diagonalize it.
This gives n; temporal eigenvectors that are the right singular
vector V; of S. Fig. 4(a) shows the spectral content of those
eigenvectors sorted by decreasing eigenvalue. Interestingly, the
largest eigenvalues are associated with the temporal singular
vectors presenting the slowest variation. This is consistent with
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Fig. 4. (a) Spectral content estimation (via Periodogram with Tukey apodisa-
tion (0.2)) of all the right singular vectors, sorted with decreasing singular value.
Low frequency temporal signal are associated with the highest singular values.
As all singular vectors are normalized, energy in all spectra (all columns) is
equal to one. (b) Singular values of the matrix A (solid blue) expressed in dB
and cumulative sum of those singular values from n°50 (dashed red). (c) The
first four singular vectors (associated to the largest singular values of the covari-
ance matrix) of the covariance matrix are plotted versus time. It can be observed
that they depict slow temporal variation (the first one is almost a constant value,
the third one depicts clearly the pulsatility of tissue already observed in Fig. 1)
and are devoid of the fast fluctuation of blood signal.

spatially coherent tissue signal supposed to be quite similar
in neighboring pixels in a way that enables to reduce the
ng X n, realizations of tissue temporal signal on a much smaller
subspace. As a consequence tissue signal is supposed to be
condensed in the first singular vectors whereas blood and noise
signals are described by the singular vectors associated with
lower singular values. The eigenvalue itself is closely related
to the energy associated the corresponding singular vector and
Fig. 4(b) depicts the relative variation of those singular values:
the dashed red line shows that with a threshold of 50 rejected
singular values (see Fig. 5) the SVD clutter rejection will
discriminate the supposedly tissue from a signal 30 dB below,
which is really consistent with the expected relative difference
between tissue energy and blood energy at that range of US
frequencies (15 MHz). The weighted spatial vector A;U; are
then computed by the projection SV as described in (5).
Finally using this decomposition, s(x, z,¢) can be decom-
posed on both a temporal basis and a spatial basis of singular
vectors (Fig. 5). Based on the assumption that tissue signal is
gathered in the first singular vectors, clutter rejection is per-
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Fig. 5. The Ultrafast acquisition (same data than Fig. 1) is decomposed by the
singular value decomposition into a set of spatiotemporal couples of vectors.
The essential idea is that tissue signal is coherent enough to be quite similar over
the entire image, and that it can be described by a set of vectors constituting a
subspace of the temporal signal space, but much smaller. Indeed, by rejecting
the first 49 couples of singular vectors, tissue signal is rejected and a very good
PW Doppler image of the vascularisation in the rat brain is obtained.

formed using a threshold n (whose influence and choice will
be discussed in the next part) on the number of singular vectors
removed from the raw signal (7):

Zu

This filtered signal can then be processed using short time
Fourier transform for blood flow speed measurement (as de-
scribed in the methods section) or the energy per pixel can be
computed (8) to produce the so called Power Doppler image.

/‘Sblood X, Z, )‘ dt.

Vi(t).

Sblood (T, 2, 1) = s(z, 2, t)

(7

PW (x ®
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The efficiency of clutter rejection based on both space and
time filtering of ultrafast data via SVD and its superiority to con-
ventional temporal filtering will be demonstrated in the Results
section with a phantom study and with several in vivo examples
and in different imaging contexts.

III. MATERIALS AND METHODS

In vivo Ultrafast acquisitions were performed using a pro-
grammable ultrasound scanner (Aixplorer, Supersonic Imagine,
France) with dedicated Compound Plane Wave imaging ultra-
sound sequences [17], [16]. This technique uses plane wave
emissions instead of the classical focused emissions, which en-
ables to increase the framerate from a factor 10 to 100, and
focusing is only achieved in reception via the beamforming
process. To recover resolution, compounding is done by coher-
ently adding several tilted plane wave emissions. With such a
process, the framerate can reach the theoretical limit imposed
by the time of flight of ultrasound, typically 10 000 Hz.

A. Phantom Study

In order to quantify the ability of SVD filtering to extract slow
blood flows from moving tissue, a contrast to noise ratio (CNR)
study has been conducted with ultrafast Doppler acquisitions on
a Doppler phantom in presence of probe movement. The double
benefit of using a phantom is to control precisely the acquisition
conditions in terms of blood speed and tissue velocities, and to
know exactly the geometry and position of the vessel for rig-
orous calculation of the CNR.

The ultrasonic probe was mounted on a linear motor (PI trans-
lation stage VT-80, one-directional repeatability 0.8 pm, bi-di-
rectional repeatability £10 pm) to enable periodic translation
along image depth of amplitude 1 mm with a selected speed (1
to 10 mm/s with lmm/s incremental steps). The field of view of
the probe was adjusted on the longitudinal section of the 2 mm
diameter tube of a Doppler phantom (Model 523A, ATS Lab-
oratories, 404 Knowlton St, Bridgeport CT 06608 USA). The
tube was approximately at a 35 mm depth, with a 75° angle
to the probe axis, giving the possibility of reaching small axial
velocities. A blood mimicking fluid (Doppler test fluid model
70, ATS Laboratories, 404 Knowlton St, Bridgeport CT 06608
USA) was injected in that tube with an adjustable pump (Eco-
line VC-MS/CAS-6, ISMATEC) enabling mean fluid velocities
measured at 1, 2, 4, 6 cm/s (thus 2.6, 5.1, 10.4 and 15.5 mm/s of
axial velocities). Ultrafast acquisitions were performed using a 6
angles (ranging from —5° to 5° with 2° incremental steps) com-
pound plane wave ultrasound sequence and a 6 MHz ultrasonic
probe (SL 10-2 Supersonic Imagine, France) (pitch 0.2 mm, ele-
vation focus 35 mm, 96% Bandwidth @-6dB). The Pulse Repe-
tition Frequency (PRF) was 6000 Hz, the frame rate of 1000 Hz
and the number of frames 600. Twelve acquisitions were per-
formed for each (tissue velocity, blood velocity) couple.

The imaged region of interest was 25.6 mm wide and ranged
from 25 mm to 45 mm in depth. The known position of the tube
was manually segmented on the BMode (avoiding bias of seg-
mentation on the Doppler image) in order to give two areas (one
for the vessel and one for the surrounding phantom (tissue), with
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a 0.5 mm dead zone in between), and the CNR was calculated
as the classical:

PWiwbe — PWiissue

CNR =
Std(PWtissue)

(€))

In this equation PW stand for the mean value of the power
Doppler signal (in the tube or in the surrounding tissue), and
std for the standard deviation. Three filtering methodologies
were investigated: the 4'® order high-pass Butterworth filter, the
varying phase increment down mixing approach described in [§]
(consisting in a IQ demodulation using the lag one correlation
phase averaged on a 5 pixel column neighborhood) followed by
4*® order high-pass Butterworth filter, and the SVD filtering ap-
proach. To avoid any bias induced by the choice of the cut off,
every cut off has been tested for the three filters (meaning every
cut off frequency for the first two methods, and every singular
value threshold for the SVD filter), and the one giving the max-
imum CNR was kept for each (tissue velocity, blood velocity)
couple.

B. Rat Brain Imaging

All experiments followed European Union and institutional
guidelines for the care and use of laboratory animals. Adult (>
4-week-old) Sprague Dawley rats underwent a surgical thinning
of the skull under anesthesia (Ketamine/Xylazine) to enable the
propagation of ultrasound. They were then placed in a stereo-
taxic frame and maintained under 1.5% isoflurane during the
time of the acquisition. Ultrafast Acquisition were performed
using a 15 angles (ranging from -14° to 14° with 2° incremental
steps) compound plane wave ultrasound sequence and a 15 MHz
ultrasonic probe (Vermont, France) (pitch 0.08 mm, elevation
focus 8 mm). Pulse Repetition Frequency (PRF) was 7500 Hz,
enabling a frame rate of 500 Hz, enough to correctly sample
axial blood flow speeds up to 2.6 cm/s. Ultrafast Doppler acqui-
sitions lasted 0.5 s, enough to acquire 250 frames and to capture
3 cardiac cycles). Data are used for Fig. 1 to Fig. 5 and for Fig. 7.

C. Neonates Brain Imaging

Ultrafast Acquisition were performed using a 6 angles
(ranging from —5° to 5° with 2° incremental steps) compound
plane wave ultrasound sequence and a 6 MHz ultrasonic probe
(SL 10-2 Supersonic Imagine, France) (pitch 0.2 mm, eleva-
tion focus 35 mm, 96% Bandwidth @-6dB). Pulse Repetition
Frequency (PRF) was 6000 Hz, enabling a frame rate of 1000
Hz, enough to correctly sample axial blood flow speeds up to
10.3 cm/s. Ultrafast Doppler acquisitions lasted 1 s, enough
to acquire 1000 frames and to capture 2 to 3 cardiac cycles).
This observational study was approved by the institutional
review board (CCP: ‘Comité de Protection des Personnes’,
i.e., Committee for the Protection of Persons, CCP agreement
N°120601) and local ethical committee, and strictly complies
with the ethical principles for medical research involving
human subjects of the World Medical Association Declaration
of Helsinki, and written consent was obtained from parents of
participants. Data were obtained via a transfontanellar (anterior
fontanel) Ultrafast Doppler acquisition of a brain parasagittal



2278

maximum CNR versus axial tissue speed
(butterworth filtering)

maximum CNR versus axial tissue speed
(Down mixing + butterworth filtering)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 11, NOVEMBER 2015

maximum CNR versus axial tissue speed
(SVD filtering)

mean axial flow speed T
10F —O—26mm/s 10 F
—O—52mm/s
104 mm/s
8t —O—155mm/s 8t

N)

mean axial flow speed
—O—26mm/s (4 10
—O—52mm/s
104 mm/s
—O—155mm/s |{ g}

mean axial flow speed
—O—26mm/s
—O—52mm/s
104 mm/s
—O—155mm/s | 4

axial tissue speed [mm/s]

axial tissue speed [mm/s]

axial tissue speed [mm/s]

Fig. 6. Evolution of the CNR versus axial tissue velocity for various blood flow speed: phantom study. The same sets of data have been processed using 4°* order
butterworth high pass filtering (left), down-mixxing prior to 4'* order butterworth high pass filtering (middle), and SVD filtering (right). For each measurement,
the maximum CNR was found by testing all the possible cut off, and for each experimental condition twelve measurements were pooled to compute mean value

(graph circles) and standard deviation (error bars).
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Fig. 7. Comparison of slow blood flow detection (critical for functional
imaging) via temporal filtering and SVD filtering (same data than Fig. 1). In
that case the rat is maintained in a stereotaxic frame and the probe is maintained
in a probe support, the entire setup lying on an anti-vibration table. As a
consequence the motion is minimum and consists only in the tissue pulsatility
due to blood pressure changes during the cardiac cycle. The PW Doppler image
obtained via temporal filtering (50Hz cut off frequency 4" order Butterworth
filter) (a) can be compared to the PW Doppler imaged obtained via SVD (b).
The cyan arrow indicates the set of pixels where a pulse wave like Doppler
profile has been calculated from the Ultrafast Doppler acquisition, in the case
of Butterworth filtering (c¢) and SVD filtering (d). The key point here is the
difference between the spectral bands cut by both filters. Blood signal energy is
kept via SVD filtering in the two area surrounded by the dotted red rectangles.

section performed in vivo on a human neonate and Data are
used for Fig. 8 to Fig. 11.

D. Kidney Imaging/ Liver Imaging

Probe and acquisition parameters were the same as for
neonate imaging, except (angles: -3°3°; frame rate: 3000 Hz)
for liver imaging, and (angles: -5° to 3°, step 2°; frame rate
1600 Hz) for kidney imaging.

Concerning pediatric liver imaging, the observational study
was approved by the institutional review board (CCP: ‘Comité

de Protection des Personnes’, i.e., Committee for the Protec-
tion of Persons, CCP agreement N° PP-14020) and local ethical
committee, and strictly complied with the ethical principles for
medical research involving human subjects of the World Med-
ical Association Declaration of Helsinki, and written consent
was obtained from parents of the participants. Data are used for
Figs. 12 and 13.

Kidney transplant imaging was incorporated in the frame-
work of a study conducted to assess whether Ultrafast Doppler
could help providing a parametric map of the transplant vascu-
larization and assessing normal and abnormal vascularization
within the transplant to detect fibrosis and inflammation. This
clinical study was approved by the French national authorities
(clinical trial number 2012-A01070-43). After imaging the mor-
phology of the kidney with Bmode, imaging of the renal trans-
plant vascularization was performed by one radiologist (J.M.C)
in the longitudinal axis with conventional Doppler Imaging.
Once a good imaging plane was found the Ultrafast Doppler
acquisition was launched. Data are used for Figs. 13 and 14.

E. Signal and Image Processing

Each Ultrafast Doppler acquisition was filtered using either
a 4*" order butterworth filter with a ‘symmetric’ initialization
(mirror reflecting of the 20 first points of the signal) and those
first 20 points where then removed to cancel any settling time of
the filter, or using the SVD filter described in this paper, or using
the varying phase increment down mixing approach described
in [8] (Figs. 6 and 11) prior to the same 4*" order Butterworth fil-
tering. The PW Doppler image was then calculated as the square
root of the mean value of the squared filtered signal (thus corre-
sponding to the energy normalized by the number of samples).
This raw data was used directly for the CNR computations of the
phantom study. In order to improve visualization for the reader
and for fair comparison without inducing perceptive bias, for
the all clinical examples PW Doppler images (regardless of the
filtering process) were normalized with the highest value at 1
and the minimum value at 0, and histogram equalization was
performed with rigorously the same parameters to improve the
reader visualization without inducing any perceptive bias.
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Fig. 8. Comparison between temporal filtering and SVD filtering, the ideal case: no motion and significant blood flow. (a) Effect of both increasing the number
of rejected singular values (top) and increasing the temporal filter cut off frequency (bottom) on an Ultrafast Doppler acquisition (brain neonate imaging). For
both methods the image that gave the best clutter rejection according to the clinicians has been framed in red. A region of interest has been chosen (red cross) in a
vessel and power spectral estimation has been computed on the tissue signal (black dashed line) and blood signal (red solid line) extracted via SVD filtering, and
blood signal (black dotted line) extracted via temporal Butterworth filtering (b). (c) Spectral diagrams (see Fig. 4(a)) (PSD stands for Power spectral Density): on
top weighted with the singular value and on the bottom without weighting. Black lines represent temporal (horizontal) and singular-based (vertical) filtering of the

signal.
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Fig. 9. Comparison between temporal filtering and SVD filtering, the strong motion case. Explanation of the different elements is the same than in Fig. 8, except
for the image in (c) which depicts the image build from the energy lost in temporal filtering but kept in SVD filtering (i.e., the content of the energy in the rectangle
drawn on spectral diagram top (c)).This acquisition was done 2 seconds after Fig. 8, the only difference is that strong motion was present in the moment of the

acquisition.

The spectrograms of Figs. 7(c), 7(d) were generated via short
time Fourier transform (32 samples sliding window, lag 2) on
the temporal dimension of the pixels in the ROI. Each Fourier
transform (meaning each column of the spectrogram) has its
maximum set to 1 in order to improve readability. The spec-
trograms were then averaged in magnitude to be representative
of the spectral content (linked to the axial velocity) in the ROI.

IV. RESULTS
A. Phantom Study

The phantom study enabled to quantify the improvement
of Ultrafast Doppler detection ability by using SVD filtering

versus other well-known methods (high-pass filtering, without
or with down mixing) in various experimental conditions
representative of the clinical setting for the detection of small
vessels: low (1 mm/s) to important (10 mm/s) tissue motion and
moderate (15.5 mm/s) to slow (2.6 mm/s) blood flow. Results
of this study are presented in Fig. 6. It is striking to notice
that even for very small tissue motion, the Butterworth filter
alone gives very low values of CNR due to remaining clutter
signal, compared to the two other approaches. If a reference
value of 2 for the CNR is chosen for discrimination between
tissue and flow, the Butterworth filter is unable to extract any
blood signal of the explored blood speeds range as soon as
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Fig. 10. Comparison between temporal filtering and SVD filtering, the very slow blood flow case. Explanation of the different elements is the same than in Fig. 9.
This acquisition has been done in a parasagittal plane where blood vessels are smaller than in Figs. 8 and 9. The interest here is to show that without motion but
in case of extremely slow blood flow, SVD filtering can still extract signal that could not be extracted via spectral discrimination.
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Fig. 11. Comparison of Butterworth filtering, down-mixing prior to Butterworth filtering and SVD filtering . (a) and (b) The data are the same than in Figs. 9 and
10 respectively and in each case the three images obtained with the best possible clutter rejection according to the clinician are presented side by side and in a
larger format to enable proper comparison. Higher contrast and better small vessels delineation in the case of SVD filtering are unquestionable.

tissue motion exceeds 4mm/s. The lowest value of blood flow
speed (2.6 mm/s) is not detected even for very low tissue speed
(1 mm/s). This is not surprising as a spectral method cannot
separate 2 signals with comparable speeds and an unfavorable
40 to 60 dB difference of energy. For very slow tissue velocity
(1 mm/s) the down mixing approach and the SVD filtering give
comparable results, except maybe at the slowest blood velocity
that is better extracted via SVD filtering. But as soon as the
tissue motion increases (tissue motion > 4 mm/s), the CNR of
the down mixing approach decreases rapidly whereas the SVD
filtering seems more robust and tends to reach a plateau. This is
due to fact that even if down mixing enables to bring back the
spectrum of the tissue around the 0 Hz frequency, if the spectral
content of tissue and blood flow are too overlapping because
of comparable velocities they cannot be efficiently separated
by a Fourier based filter, whereas the SVD filter can. SVD
filtering appeared to be very robust in this configuration, since
we measured a CNR above 2 for all the tested configurations,
even when the mean axial blood flow velocity was lower than
the tissue velocity (for a blood flow of 5.2 mm/s and a tissue
motion of 10 mm/s, the CNR was 4.440.6; for a blood flow

of 2.6 mm/s and a tissue motion of 10 mm/s, the CNR was
2.940.5).

B. The Functional Imaging Case

A first comparison of SVD clutter filtering and IIR Butter-
worth filtering is given (Fig. 7) in the framework of functional
ultrasound imaging of brain activity (fUltrasound) [18], [20],
[27], [28]. In fUltrasound, it is required to achieve high sen-
sitivity Doppler imaging in order to track the hemodynamic
changes due to neurovascular coupling occurring in very small
vessels (i.e., mm/s blood flows). This figure is of capital impor-
tance to understand how SVD filtering improves both imaging
and quantification enabled by Ultrafast Doppler. Figs. 7(a) and
7(b) show the comparison between the Power Doppler (PW)
images obtained using SVD and temporal high pass filtering re-
spectively on a thinned skull rat brain. The threshold for singular
values and cut-off frequencies were chosen in order to provide
the best image quality for both approaches respectively. The key
point of this figure lies in the difference of detection of low flow
speed depending on the filter.
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Fig. 12. Importance of the ensemble length for SVD Doppler filtering. An Ul-
trafast Doppler acquisition has been processed as if it were a line per line ac-
quisition typical of focused ultrasound processed with the method described by
Ledoux [9]. Instead of using all the data in the 3D matrix, only are kept the tem-
poral points 1 to 16 for the first column of pixels, the temporal points 17 to 32
for the second column of pixels, and so on. This simulates a swept scan Doppler
imaging strategy and the consequence is a lower ensemble length both for space
and time. (a) Compared to the covariance matrix of Fig. 3, the covariance ma-
trix for line per line acquisition is very sparse, with only 16x 16 blocks on its
diagonal. (b) a zoom on a small subregion on the covariance matrix reveals the
small 16x 16 blocks. (¢) The Power Doppler image has been obtained using a
SVD filter on each block of the covariance matrix, as would have been done
in [9], with a removal of only the first singular vector. The image exhibits very
poor sensitivity, and has to be compared to Fig. 13(a) which show the SVD filter
result on the full matrix.

Pulse Wave Doppler is the classical ultrasound modality used
to monitor the evolution of blood flow speed in one location of
the image. The particularity of Ultrafast Doppler acquisition is
that this kind of blood flow speed profile can be a posteriori
computed in every location of the image, as described in [30].
A “Pulse Wave like” Doppler spectrogram can be computed in
every pixel of the Ultrafast Doppler acquisition via short time
Fourier transform of the In Phase/Quadrature signal, and has
been calculated and averaged in magnitude over the region of
interest (the set of pixel depicted by the cyan arrow) in both
filtering cases (Figs. 7(c), 7(d)). What is of first importance on
those spectrograms is the difference between the two filtered
out bands of frequency depicted by the dashed red rectangles:
the SVD filter is able to reject clutter without cutting entirely a
the spectral band where tissue and flow are mixed, giving access
to blood flow speed as low as 0.5 mm/s, whereas the 50 Hz cut
off butterworth filter tends to cut everything below 2.5 mm/s.
This explains why the smallest vessels are better detected via
SVD filtering than via butterworth filtering, and in the case of
fUltrasound, this difference is primordial since neurovascular
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coupling occurs at the capillary level, and the blood flow speed
in the latter is known to be included in the 0.5-1.5 mm/s range
[31].

C. Clinical Imaging

1) The Ideal Doppler Case: Beyond small animal imaging,
the next comparisons are performed in clinical settings. A qual-
itative comparison of SVD clutter filtering and IIR Butterworth
filtering is given by Fig. 8 to Fig. 10. The first example (Fig. 8)
depicts the vasculature of cortical and thalamic areas. Motion
is quite low during this acquisition and blood flow speeds are
moderate (2 cm/s to 8 cm/s). Several values have been chosen
for the number of rejected singular values and the cut off fre-
quency of the butterworth filter and resulting Power Doppler
images are presented. Out of the five examples presented, the
best clutter rejection is obtained for 40 rejected singular values
and 60 Hz of cut off frequency for SVD processing and conven-
tional temporal filtering respectively. Even though this imaging
situation is ideal (no motion artifacts) for the Butterworth high
pass filtering, the number of visible blood vessels is bigger for
SVD filtering than for Butterworth high pass filtering. It can
be noticed that contrast is slightly higher with SVD filtering
than with temporal filtering. Contrary to previous publications
[4]-[6], [8]-[10] that only give a schematic or simulated rep-
resentation of spectral distribution for tissue and blood signal,
the large ensemble length available with Ultrafast Doppler en-
ables to truly plot the spectral content of blood and tissue signal
extracted via SVD filtering and to explain why in general SVD
presents a better clutter rejection than temporal filtering. This
has been done for each case (Fig. 8(b) to Fig. 10) where the
spectral content of tissue signal (black dashed line) and of blood
signal (red solid line) of the ROI defined on the image by a red
cross mark and extracted via SVD are displayed. As a compar-
ison the blood signal filtered via Butterworth filtering has also
been plotted (black dotted line). In this imaging situation noise
signal is roughly 60 dB below tissue signal, so the tails of the red
solid spectra are mostly noise and not blood signal. In Fig. 8 it is
clear that blood and tissue can be separated via temporal filtering
because energy of blood signal is higher than energy of tissue
in a certain spectral band (50 to 150 Hz), which is a required
condition for the vessel to be detected in Power Doppler. This
is the reason why temporal filtering gives quite good results in
this first example. However it can be observed that the energy
of blood signal extracted in the SVD processing is higher than
in the temporal filtered extracted blood signal, which illustrates
why SVD clutter rejection gives generally better contrast than
temporal filters.

Fig. 8(c) represents the spectral content of A;V;(¢) (upper
image) and of V;(¢) (lower image) versus the rank 7 of the sin-
gular value A;. On this representation in the singular vector
space, the superimposed horizontal black lines represent the
cutoff threshold of best Butterworth filtering and the vertical
black line represent the cut-off threshold of best SVD filtering
(vertical black line). The first image (top) enables to compre-
hend the relative differences in energy from the first singular
vector to the last one, whereas the second one (bottom) en-
ables to observe the differences between normalized spectral
contents of individual temporal singular vector. For blood/tissue
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Fig. 13. Clinical examples of filtering improvement via SVD clutter rejection: (a) Ultrafast Doppler acquisition on a child (8 years old) liver processed via SVD,
much more small vessels are detected than with butterworth filtering (b). (c) On a transplanted kidney, Ultrafast Doppler gives very good sensitivity with both
processing but the few vessels with low flow speed (large vein, long arrow) (very small arteries, deep in the organ, small arrow) are almost completely filtered out

by butterworth filtering (d).

discrimination, the first image may be the most important, be-
cause it represents the repartition of the total signal energy in a
frequency-singular value space: trying to maximize the energy
of blood signal over tissue signal in a Power Doppler image is
related to the maximization of the integration of the energy in
a portion of this frequency-singular value space. In the case of
temporal filtering this subspace is chosen as the two rectangles
above and below the two horizontal black lines, whereas in the
case of SVD clutter rejection this subspace is chosen as the rec-
tangle on the right of the vertical black line. With this repre-
sentation the double advantage of SVD filtering over temporal
filtering is obvious: whereas the latter leaves the “tails” of the
tissue spectrum in the filtered signal and removes a great part
of blood signal energy (low speeds), the vertical boundary of
SVD filtering is much more optimal for the separation of tissue
and blood. This explains the higher contrast for the SVD filtered
Power Doppler image: although the main part of tissue signal is
filtered by temporal Butterworth filtering, the huge difference of
amplitude between tissue echoes and blood echoes makes the in-
tegration of the energy of tissue signal in the remaining spectral
band not negligible compared to the integration of blood signal
energy. Also a small part of blood signal is removed between
the two horizontal lines.

2) The Strong Motion Case: In the presence of motion this
difference becomes tremendous. Fig. 9 presents an acquisition
done only two seconds after Fig. 8, but the neonate moved a
little bit during this second acquisition, resulting in a strong mo-
tion artefact on the Power Doppler image. To recover a com-
plete clutter rejection the cut off frequency of the temporal fil-
tering as to be set to as high as 250 Hz (sampling frequency 1000
Hz) whereas a slight increase to 80 rejected singular values is

enough in the case of SVD filtering. Even if a certain level of
clutter is tolerated, any image processed with temporal filtering
is far from depicting as much vessels as the SVD filtered image.
The effect on the Power Doppler is obviously explained by the
frequency-singular value diagram presented in (c): to filter pro-
nounced high frequencies in the tissue signal, the temporal filter
strategy is to increase the gap between the two horizontal lines,
and almost completely filters out the blood signal. As depicted in
the central spectrum (b), the vessel marked by the red cross mark
would never be detected by temporal filtering because its energy
is below tissue signal in every spectral domain. In Fig. 9(c) is
displayed the Power Doppler image computed from the energy
lying in the rectangle delimited by the singular-value threshold
and the two cut off of the temporal filter. In other words it is the
blood energy lost by the temporal filter compared to the SVD
filter. It shows that a large amount of information is lost in the
small vessels when using a temporal filter instead of the SVD
filter.

3) The Very Slow Blood Flow Case: The last example in
Fig. 10 shows that even with no motion artifacts, SVD filtering
is much superior to detect really small vessels whose blood
speed is not high enough to get out of the tail of the spectral
content of tissue signal (red cross mark: a vessel appearing in
SVD processed Power Doppler image and not in temporally
processed Power Doppler image). Once again the contrast is
higher with SVD processing. Finally, a zoomed view of the op-
timized Power Doppler images obtained respectively for tem-
poral filtering, down mixing prior to temporal filtering, and SVD
filtering is presented in Fig. 11 in order to emphasize the ability
of multidimensional SVD filtering to provide better contrast and
detect smaller vessels.
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D. The Importance of the Plane Wave Imaging Ensemble
Length

It was emphasized in the introduction that SVD filtering takes
advantage of the large ensemble length provided by the Ultrafast
Doppler technique compared to the classical focused emission
technique. This is of primordial importance and is illustrated in
Fig. 12. In this figure, Ultrafast Doppler data are processed as if
they had been acquired with a swept scan strategy used in con-
ventional Doppler: only the temporal points 1 to 16 are kept for
the first column of the image, then only the temporal points 17
to 32 are kept for the second column and so on. This simulates
a swept scan strategy used in CFI where only 16 temporal sam-
ples can be acquired per line because of the need to electroni-
cally quickly move to another location. Those data are then pro-
cessed as proposed by Ledoux in [9]. The huge difference with
Ultrafast Doppler SVD filtering lies both in the small number of
temporal point acquired in each location and the lack of simul-
taneity of these temporal acquisitions, and that difference can
be understood directly by looking at the covariance matrix: in
each block of the covariance matrix the SVD filter has to find
a subspace for tissue. As a consequence its ability to efficiently
compress the tissue signal on a few singular vector before the
subtraction operation is highly impaired.

V. DISCUSSION

SVD clutter rejection has been shown to improve signifi-
cantly the sensitivity of Ultrafast Doppler in various imaging
situations. It is especially efficient in two situations of major
interest in Doppler imaging. It removes strong motion artifacts
occurring during freehand exams usually downgrading the
Doppler image quality. It also strongly improves detection of
small vessels characterized by low flow speeds even if mild
motion is present. For all studied configurations, SVD clutter
rejection provided at least a higher contrast and generally supe-
rior detection capabilities. The outperformance of SVD clutter
rejection is intrinsically linked with the ultrafast data acquisi-
tion. By providing multidimensional simultaneous ultrasonic
data in 2D and soon in 3D at high frame rates, the ultrafast
sequence can rely on much larger ensemble lengths in both time
and space in order to discriminate tissue and probe motion from
blood flow. Thus, the multidimensional SVD filter outperforms
conventional temporal filters and leads to better discrimination
because it takes into account large spatial ensemble lengths and
the average statistics of the complete image is included. Finally,
even in the most difficult situation where tissue motion is not
completely stationary but rather low frequency and quite local,
the SVD filtering works effectively to discriminate it from
blood flow due fractal intrinsic properties of the vasculature.
Indeed, the fractal nature of the vasculature implies that very
low blood flows are present almost only in very small vessels
much smaller than typical regions of tissues affected by the
same range of motion. As their spatial statistics are different,
the temporal variations of tissue and blood flow are nicely
separated.

SVD filtering should have an important impact in the field
of fUltrasound (functional ultrasound imaging of brain activity)
since local hemodynamic changes linked to neurovascular cou-
pling occur mainly in very small vessels where the blood flow
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Fig. 14. Fusion (side to side concatenation with manual coregistration) of 2
Doppler images acquired in the same plane respectively on the left and right
sides of the transplanted kidney of a human patient. The images are filtered via
SVD filtering. The in vivo vascular network of the transplanted human kidney
is delineated with a very high sensitivity without requiring the use of contrast
agent.

speed is not measurable with conventional approaches. More-
over, the application of SVD filtering to ultrafast Doppler in the
brain will be of particular interest for fUltrasound brain imaging
of awake and freely moving animals where the optimal discrim-
ination between tissue/probe motion artifacts and blood flow in
small vessels becomes crucial.

The SVD clutter rejection also improves sensitivity and mo-
tion filtering in clinical applications such as kidney, liver, thy-
roid, heart imaging (data not shown). In this manuscript, re-
sults in neonate brain (Fig. 8 to Fig. 11), child liver and trans-
planted kidney (Fig. 13) were presented to illustrate the interest
of this processing but many other unpresented data were ac-
quired in thyroid and cardiac imaging and lead to the same
conclusions. Neonate brain imaging is an interesting example
of imaging application where it is difficult to ask patients to
hold their breath. In such situations respiration motion com-
bined to the ever-present pulsatility motion, are unavoidable.
It is then difficult to filter out optimally slowly moving tissue
from slow blood flow signal with a butterworth filter. In the
liver example shown (Figs. 13(a) and 13(b)), tissue motion re-
quires a 120Hz cut off frequency for the temporal filter and
consequently vessels with blood speed below 1.5 cm.s ! dis-
appeared of the image, whereas SVD filtering is able to reject
clutter without losing those small vessels. In the kidney example
shown (Figs. 13(c) and 13(d)), tissue can be filtered out with a
90Hz cut off frequency for the temporal filter, and the blood flow
speeds are consequent in most vessels (> 1.2 cm.s 1), how-
ever SVD filtering still improves detection on venous structures
in the central part of the image (long arrow) that present very
low flow speeds (~ 0.8 + 0.2 cm.s~1) and completely disap-
pear with temporal filtering. It is the same for deep small vessels
whose signal is quite weak due to absorption (small arrow) and
that can be quickly filtered out by a temporal filter. The sen-
sitivity of Ultrafast Doppler combined with the discrimination
capabilities of SVD filtering offers a level of detection never
reached before with an ultrasound modality, even with the use
of contrast agent (Fig. 14).
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SVD clutter rejection is a powerful and versatile tool for Ul-
trafast Doppler imaging filtering, effective in many clinical ap-
plications. However this study presents some limitations, and a
lot of areas for improvement have to be investigated. The first
point is that no adaptive method for the choice of the threshold
used for singular vector rejection has been proposed, but this
is mainly due to the fact that the adjustment of this value is
not as critical as for cut off frequency choice. It can be noticed
that in all the examples presented in this paper a threshold of
80 rejected singular values would have given images with good
quality, whereas temporal filter had to be precisely adjusted to
reject clutter, with cut off frequencies ranging from 60 Hz to 250
Hz. However different strategies can be imagined for adaptive
SVD clutter rejection: energy considerations on the level of the
cumulative sum of the singular value can help, given an energy
ratio in dB between blood signal and tissue signal depending
on the acquisition parameters (ultrasound frequency, absorption
coefficient . . .), to discriminate between the tissue subspace and
the blood subspace of the singular vector space. A more sophis-
ticated strategy is to calculate the central frequency of each in-
dividual temporal singular vector and to reject singular vector
below a certain central frequency (a certain speed), strategy
which do not overcome the problem of choosing a threshold
because a certain speed has to be chosen, but which is adap-
tive to the amplitude of the motion present during the acquisi-
tion. Also, threshold can be dynamically chosen during the dif-
ferent phases of the cardiac cycle because the dimension of the
tissue subspace increases for example during systole because of
stronger tissue motion. These strategies will be presented with
ongoing research in future work. Finally, the software beam-
forming capabilities provided by ultrasound scanners based on
GPU boards [13] gives the physician the ability to adapt man-
ually the singular value threshold to the desired image quality.
This simplest strategy could turn out to be the most efficient
compared to automatic approaches as the sonographers would
rather manually optimize their image quality for different or-
gans or patients.

Interestingly, robust and automatic approach for the choice
of the filter threshold has been an extensive research topic in
the applied mathematics community in the last decade. These
approaches, i.e., the so-called Robust PCA [22], would permit
to better choose the singular value thresholding. Our ultrasound
problem fits to the context of robust PCA as the ultrasonic data
acquired during ultrafast sequences can be seen as the super-
position of a low-rank component (tissue motion) and a sparse
component (blood motion).

First of all, the singular values of a random Gaussian matrix
which corresponds to the noise component in (1) follows a
Marchenko-Pastur distribution. This property can be taken
benefit from to directly determine a rough statistical threshold
by using Stein's Unbiased Risk Estimator (SURE method) as
discussed by Candes et al. and Donoho ef al. [21], [32]. In
particular, Candes et al. applied the SURE method in order to
determine an automatic threshold for the SVD decomposition
in the context of dynamic MRI processing. In particular, they
demonstrated the efficient use of the singular value thresholding
(SVT) unbiased risk estimate for automated and optimized
denoising of dynamic cardiac MRI series. The SURE method
clearly demonstrated an improved assessment of myocardial

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 11, NOVEMBER 2015

perfusion. In this approach, the thresholding of singular values
is not a hard-thresholding rule (ie replacing a subset of singular
values by zeros), but rather introduce a soft-thresholding rule
consisting in shrinking the singular values towards zero by a
constant amount to determine during an iterative process. The
outperformance of this more sophisticated approach will be
evaluated in further works. Conversely to the other estimation
approaches cited in Candes paper, we want to get rid of the main
signal. Noise is present in addition to the blood signal in the
low singular values subspace. However, as noted on Fig. 8(b),
tissue signals (black curve) are 30 dB higher than blood flow
signals (red curve) and blood flow signals are approximately
30 dB higher than the electronic noise level (tails of red curve).
The accuracy and precision of local velocity estimation was
studied both theoretically and experimentally in a previous
paper using the same research platform [33].

Beyond the phantom study that provided quantitative Con-
trast to Noise Ratio data on the efficiency of SVD filtering com-
pared to well-known other filtering algorithms, several points
remain to clarify with quantitative data and controlled condi-
tions, and will be addressed in future work. The range of tissue
velocity explored in that phantom study has to be increased to
cover high motion application, such as cardiac imaging, and the
influence of the vessel size on the SVD filtering CNR has to
be investigated and compared with other gold standard filters.
Also, this study covered in plane tissue motion, but should also
quantify the influence of out of plane motion.

The influence of the ensemble length has been underlined in
this paper in terms of a comparison between really short en-
sembles (focused ultrasound) and very long ensembles (plane
wave acquisitions). However the ensemble size used to build
the Casorati matrix prior to SVD filtering has to be studied
carefully, because it will be closely related to real-time capa-
bility of SVD filtering. In particular, temporal sliding windows
or spatial-block processing will be investigated to find potential
tradeoff between clutter rejection and computation time.

Computation is generally a bottleneck for real time imaging.
With the current Matlab® implementation, and on an average
quad core Xeon 2.66 GHz, the time to compute the SVD fil-
tering is 0.5 s fora (100 x 128 x 256) Ultrafast acquisition, 1.7s
for a (100 x 128 x 512) Ultrafast acquisition, 3.4 s for a (200
x 128 x 512) Ultrafast acquisition, and tend to be linear with
the increase of the number of points in space and quadratic with
the increase of the number of points in time (due to the choice
of the covariance matrix presented in the method section). It is
then indubitable that with the currently available processors, a
reasonable choice for the processed temporal length of the Ul-
trafast Doppler acquisition and fastest C+-+ or GPU implemen-
tation, real time SVD filtering is reachable starting today.

Clinical data presented in this paper have been acquired with
linear array and relatively high ultrasound frequency (6 MHz
and 15 MHz). However this is not exclusive of other configu-
ration and current work in our lab are conducted using Doppler
SVD filtering with lower emission frequencies or phased array
with diverging waves. Latest results on 3D ultrafast imaging
rely on the use of SVD filtering with a 3 MHz probe and plane
and diverging waves.

For some applications requiring very high performance levels
for clutter filtering, the multidimensional SVD filter will be-
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come mandatory. It is the case for human brain ultrasound func-
tional imaging, because frechand imaging of neurovascular cou-
pling rest upon detection of really slow blood flow in arteri-
oles and venules. Tremendous sensitivity of Ultrafast Doppler
combined to optimal filtering abilities of SVD clutter rejection
is a milestone toward that end. In cardiac imaging, the detec-
tion of myocardium vascularization without any contrast agents
in the fast moving cardiac muscle would also strongly benefit
from the use of such SVD approaches. Osmanski et al. pro-
posed for Ultrafast Doppler imaging a demodulation approach
for the discrimination of myocardium blood and tissue motion
in 2012 [34]. The SVD clutter filtering can outperform this ap-
proach for the visualization of coronary arteries without contrast
agents. Such high sensitivity vascular imaging without contrast
agents could also be interesting for tumor vascularization char-
acterization as blood flow in the tumor micro vascularization
is today impossible to detect due to limited cut-off frequency
thresholds of classical clutter filters necessary to cancel tissue
motion artifacts.

Finally, it has been shown in this article that the SVD filter
performance is increasing with the ensemble length both in
space and time, this is the reason why SVD filtering applied on
2D spatial data provided by ultrafast imaging outperforms SVD
filtering applied to 1D spatial data provided by conventional
focused emissions. For this reason, the extension of SVD clutter
filtering to 4D ultrasonic data (3D space + 1D time) provided
by ultrafast matrix arrays [35] should lead to even better results
and an additional improvement of filtered data in 3D Ultrafast
Doppler imaging.
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